CN110055490A - 一种奥氏体不锈钢表层的复合处理方法 - Google Patents

一种奥氏体不锈钢表层的复合处理方法 Download PDF

Info

Publication number
CN110055490A
CN110055490A CN201910368119.7A CN201910368119A CN110055490A CN 110055490 A CN110055490 A CN 110055490A CN 201910368119 A CN201910368119 A CN 201910368119A CN 110055490 A CN110055490 A CN 110055490A
Authority
CN
China
Prior art keywords
stainless steel
corrosion
pvd
austenitic stainless
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910368119.7A
Other languages
English (en)
Inventor
曹驰
陈志林
陈碧碧
牟鑫斌
胡柏林
杨瑞成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WENZHOU PUMP AND VAVLE ENGINEERING RESEARCH INSTITUTE LANZHOU UNIVERSITY OF TECHNOLOGY
Lanzhou University of Technology
Original Assignee
WENZHOU PUMP AND VAVLE ENGINEERING RESEARCH INSTITUTE LANZHOU UNIVERSITY OF TECHNOLOGY
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WENZHOU PUMP AND VAVLE ENGINEERING RESEARCH INSTITUTE LANZHOU UNIVERSITY OF TECHNOLOGY, Lanzhou University of Technology filed Critical WENZHOU PUMP AND VAVLE ENGINEERING RESEARCH INSTITUTE LANZHOU UNIVERSITY OF TECHNOLOGY
Priority to CN201910368119.7A priority Critical patent/CN110055490A/zh
Publication of CN110055490A publication Critical patent/CN110055490A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种奥氏体不锈钢表层的复合处理方法,包括耐蚀强化渗氮和物理气相沉积(PVD)处理。本发明首先将奥氏体不锈钢工件在400℃~450℃之间进行低温渗氮,表层获得耐蚀硬化层,然后将完成耐蚀强化处理后的不锈钢工件进行PVD处理,在工件表面沉积一层化学性质稳定、低摩擦系数的涂层。通过采用本发明的复合处理的方法,可以在奥氏体不锈钢表面形成具有一定厚度的高硬度、高结合力、低摩擦系数、耐腐蚀和耐磨损的复合表层,从而使奥氏体不锈钢在保持良好耐蚀性的同时具备高的耐磨性。

Description

一种奥氏体不锈钢表层的复合处理方法
技术领域
本发明属于金属表面处理技术领域,具体涉及一种对奥氏体不锈钢表层进行耐蚀强化和物理气相沉积复合处理的方法。
背景技术
奥氏体不锈钢具有良好的耐腐蚀性,但因其耐摩擦磨损性能较差,限制了奥氏体不锈钢在某些工业环境中的应用。物理气相沉积(PVD)涂层由于高硬度、强稳定性等特点已经被广泛用于提高工件耐磨性,其使用过程中主要问题在于涂层与基体硬度差异大、膜基结合力和承载能力有限、涂层存在微孔而无法完全保证基体耐蚀等。
为了改善涂层与基体的硬度差以及膜基结合力,在PVD处理前通常对奥氏体不锈钢表层进行渗氮处理,但是,现有的常规渗氮处理无法提升不锈钢表面的耐蚀性能,对于奥氏体不锈钢而言,这种常规渗氮处理工艺反而大大降低了其耐蚀性能。
发明内容
为了解决单独PVD涂层在奥氏体不锈钢上存在与基体硬度差异大、膜基结合力和承载能力有限等问题,本发明提出了一种奥氏体不锈钢表层的复合处理方法。
本发明釆用的技术方案为,一种奥氏体不锈钢表层的复合处理方法,所述复合处理包括耐蚀强化渗氮处理和PVD处理。
进一步地,上述的耐蚀强化渗氮处理温度优选为400℃~450℃,经过耐蚀强化渗氮处理后的奥氏体不锈钢的表层硬度达到800~1100HV0.1
上述的耐蚀强化渗氮处理包括气体渗氮、盐浴渗氮和离子渗氮。
进一步具体地,本发明奥氏体不锈钢表层的复合处理方法,包括如下步骤:
步骤1)、耐蚀强化渗氮处理
将奥氏体不锈钢工件进行耐蚀强化处理,使其表面获得一层高硬度且耐腐蚀的过饱和固溶体组织;
步骤2)、PVD处理
将步骤1)完成耐蚀强化渗氮处理后的奥氏体不锈钢工件进行物理气相沉积的表面硬化处理,在工件表面沉积一层物理气相沉积涂层,使奥氏体不锈钢工件表面最终得到高硬度、高结合力、低摩擦系数、耐腐蚀和耐磨损的复合表层。
在上述技术方案的基础上,步骤2)所述PVD处理时间优选不低于3h;PVD处理温度比步骤1)所述的耐蚀强化渗氮处理温度低50℃以上;PVD涂层种类优选氮化物涂层。
与常规的渗氮+PVD处理相比,本发明的表面复合硬化处理产生了以下有益效果:
1、本发明首先对低硬度的奥氏体不锈钢进行耐蚀强化渗氮处理,获得高硬度、耐腐蚀的渗层,然后在外表层增加一层稳定性好、低摩擦系数的PVD涂层。由于耐蚀强化处理产生的渗层可以为PVD涂层提供良好支撑,使涂层与基体间的硬度过渡更加平缓,且渗层本身耐腐蚀的性质克服了因PVD涂层存在孔隙而无法保护基体不受腐蚀的缺点,最终可以在奥氏体不锈钢表面得到高硬度、高结合力、低摩擦系数、耐腐蚀和耐磨的复合表层。
2、本发明中所采用的耐蚀强化渗氮和PVD处理技术在对奥氏体不锈钢进行处理时,处理温度均低于450℃,和常规渗氮相比,工件的变形量很小,更加适用于不锈钢精密零件的加工。
附图说明
图1为实施例1中试样表层区域的电镜照片;
图2为奥氏体不锈钢工件未做任何处理盐雾腐蚀72h的照片;
图3为奥氏体不锈钢工件耐蚀强化渗氮+PVD处理后盐雾腐蚀72h的照片;
图4为奥氏体不锈钢工件常规渗氮+PVD处理后盐雾腐蚀72h的照片;
图5为不同状态奥氏体不锈钢试样电化学试验结果;
图6为表4中第1组试样盐雾腐蚀试验照片;
图7为表4中第2组试样盐雾腐蚀试验照片;
图8为表4中第3组试样盐雾腐蚀试验照片;
图9为表4中第4组试样盐雾腐蚀试验照片;
图10为表4中第5组试样盐雾腐蚀试验照片;
图11为表4中第6组试样盐雾腐蚀试验照片。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
一种奥氏体不锈钢表层的复合处理方法,具体包括如下步骤:
步骤1)、耐蚀强化渗氮处理
首先通过超声波清洗机对待处理的奥氏体不锈钢工件进行除锈和除油的表面清洁处理和烘干处理,避免油污杂质对后续渗氮的影响;然后将完成表面清洁处理和烘干处理的奥氏体不锈钢工件放入渗氮炉内,设置炉内温度为450℃,开始耐蚀强化处理,渗氮后的表面硬度在976HV0.1。此外,也可以采用其他表面清洁和烘干的处理工艺以实现对奥氏体不锈钢工件除锈、除油和烘干的目的;
步骤2)、PVD处理
将完成耐蚀强化的工件从渗氮炉中取出,装入PVD设备并开始沉积涂层。炉内温度设定为400℃,且为保证耐蚀强化层的效果,沉积时间为3h。物理气相沉积后的表面硬度达到1504HV0.1
采用上述耐蚀强化渗氮+PVD复合处理的奥氏体不锈钢工件,最后表面形成一层厚度为25μm的复合硬化层,其电镜图片如图1所示。
本发明的工作原理为:奥氏体不锈钢的耐蚀强化处理即将非金属元素渗入不锈钢表面,造成组织晶格畸变,使得表面硬度达到约800HV0.05以上,并能将耐蚀元素保留在基体(固溶体)内而保持其耐蚀性。处理后的工件表面存在较高的残余压应力而表现出优异的抗疲劳性能。这种强化原理和奥氏体不锈钢常规渗氮的硬化原理(第二相析出硬化)完全不同,以致解决了常规渗氮后耐腐蚀性下降的缺点。虽然PVD涂层本身非常耐蚀,但涂层无法做到完全致密,故其对基体的保护是不完整的,常规渗氮+PVD处理的工件仍然容易被腐蚀(如图4所示)。而奥氏体不锈钢进行耐蚀强化渗氮+PVD处理后,由于基体自身耐蚀,即使PVD涂层无法完全覆盖工件表面,仍然不会发生腐蚀(如图3所示)。
本发明在对奥氏体不锈钢进行耐蚀强化渗氮+PVD复合处理过程中,耐蚀强化渗氮温度至关重要。从表1中可知,当耐蚀强化渗氮温度大于400℃时,表面硬度可以达到803Hv0.1以上,从而为后续的PVD涂层提供很好的过渡作用;但当温度过高(>450℃)时,则容易造成渗氮层中铬的氮化物析出,引起耐蚀性能下降(盐雾试验8h后表层出现腐蚀),因此,本发明中耐蚀强化渗氮温度应控制在400℃~450℃。温度对渗层的性能影响如表1所示。
表1耐蚀强化渗氮温度与渗层性能的关系
另外,本发明奥氏体不锈钢耐蚀强化渗氮+PVD复合处理过程应保证一定的PVD处理时间,以获得足够厚度的涂层来达到明显提高工件硬度和耐磨性的目的。复合改性层硬度与PVD处理时间(PVD处理温度为400℃)的具体关系如表2所示。从表2可知,当PVD处理时间过短,涂层较薄,导致最终改性层硬度不高。在本实施例中,为了保障复合改性层硬度能明显高于耐蚀强化层,同时又考虑到过长的处理时间会降低经济效益,故选取3h作为PVD处理时间。
同时,对比耐蚀强化渗氮温度为400℃时的渗层在PVD后的性能表现,其表面硬度无法达到1500HV以上,过长的PVD处理时间甚至会导致硬度下降。这是因为高温会造成渗氮层硬度下降,使得PVD涂层失去高硬度的支撑,而后续PVD处理时间的延长所带来涂层厚度的增加又十分有限,故PVD处理温度和耐蚀强化渗氮温度必须存在温度差,否则无法获得性能优良的复合硬化层。如表2所示,当耐蚀强化渗氮温度为450℃、PVD处理温度为400℃时,其表面硬度可以达到1500HV以上,从而获得了性能优良的复合硬化层。
表2复合改性层硬度与PVD处理时间的关系
本实施例中,当PVD处理时间为3h时,必须保证进行PVD处理的温度在400℃以下,否则将导致工件丧失耐蚀性,其性能随PVD温度变化如表3所示。这是由于奥氏体不锈钢耐蚀强化处理形成的S相组织是亚稳态过饱和固溶体,在高温条件下会发生分解生成CrN。当铬的氮化物析出后,不可避免地会出现基体贫铬,从而降低了工件的耐蚀性。综合硬度、耐蚀性、结合力(行业普遍认为PVD温度越高结合力越好)各项指标,为了获得最优的性能和经济效益,PVD的温度和时间均应在一定的范围内选择。
表3复合改性层性能与PVD处理温度的关系(3h)
本实施例的工件表面(316L不锈钢)得到了高硬度、高结合力、低摩擦系数、耐腐蚀和耐磨的复合表层,与经其他方式处理后的奥氏体不锈钢一起进行了显微硬度检测、涂层结合力检测、磨损试验和盐雾腐蚀试验,具体实验条件如下:
在MVC-1000JMT1显微硬度计下测试试样显微硬度,所用载荷为50g,保压时间为15s;
涂层结合力测试在MFT-4000多功能材料表面性能试验仪(划痕)上测试,加载速度80N/min;
磨损试验在CFT-I型材料表面性能综合测试仪上进行,摩擦副选用材质为GCr15、直径3mm的钢球,硬度58HRC,摩擦方式为往复式干摩擦,实验时间1800s;
耐蚀性分析采用上海辰华生产的CHI600E型电化学工作站进行Tafel极化曲线测试,试样作为工作电极,腐蚀介质为3.5%的NaCl溶液,温度为室温;
盐雾试验在BK-60可程式盐雾试验机中进行,NaCl浓度为5%,温度35℃,时间72h。
试验结果表明:本发明(表4中第6组试样)耐蚀强化渗氮+PVD处理后的试样自腐蚀电位高于未处理试样(表4中第1组试样)(见图5各组试样极化曲线),而常规渗氮+PVD处理后的试样自腐蚀电位最低,耐蚀性最差(表4中第5组试样)。得到相关数据见表4。
表4奥氏体不锈钢不同处理方式的各项性能
尽管上文对本发明的具体实施方式给予了详细描述和说明,但是应该指明的是,我们可以依据本发明的构想对上述实施方式进行各种等效改变和修改,其所产生的功能作用仍未超出说明书所涵盖的精神时,均应在本发明的保护范围之内。

Claims (8)

1.一种奥氏体不锈钢表层的复合处理方法,包括耐蚀强化处理和物理气相沉积处理,其特征在于:所述的耐蚀强化处理为耐蚀强化渗氮处理。
2.如权利要求1所述的一种奥氏体不锈钢表层的复合处理方法,其特征在于:所述的耐蚀强化渗氮处理温度为400℃~450℃,耐蚀强化渗氮处理后的奥氏体不锈钢表面硬度为800~1100HV0.1
3.如权利要求2所述的一种奥氏体不锈钢表层的复合处理方法,其特征在于:所述的耐蚀强化渗氮处理包括气体渗氮、盐浴渗氮和离子渗氮。
4.如权利要求1所述的一种奥氏体不锈钢表层的复合处理方法,其特征在于,包括如下步骤:
步骤1)、耐蚀强化渗氮处理
将奥氏体不锈钢工件进行耐蚀强化处理,使其表面获得一层高硬度且耐蚀的过饱和固溶体组织;
步骤2)、物理气相沉积处理
将步骤1)完成耐蚀强化渗氮处理后的奥氏体不锈钢工件进行物理气相沉积的表面硬化处理,在工件表面沉积一层物理气相沉积涂层,使奥氏体不锈钢工件表面最终可以得到高硬度、高结合力、低摩擦系数、耐腐蚀和耐磨损的复合表层。
5.如权利要求4所述的一种奥氏体不锈钢表层的复合处理方法,其特征在于:经步骤2)所述物理气相沉积处理后的奥氏体不锈钢工件表面硬度达到1500~1800HV0.1
6.如权利要求4所述的一种奥氏体不锈钢表层的复合处理方法,其特征在于:步骤2)所述物理气相沉积处理时间不低于3h。
7.如权利要求4所述的一种奥氏体不锈钢表层的复合处理方法,其特征在于:步骤2)所述物理气相沉积处理温度比步骤1)所述的耐蚀强化渗氮处理温度低50℃以上。
8.如权利要求4所述的一种奥氏体不锈钢表层的复合处理方法,其特征在于:步骤2)所述物理气相沉积涂层种类选用氮化物涂层。
CN201910368119.7A 2019-05-05 2019-05-05 一种奥氏体不锈钢表层的复合处理方法 Pending CN110055490A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910368119.7A CN110055490A (zh) 2019-05-05 2019-05-05 一种奥氏体不锈钢表层的复合处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910368119.7A CN110055490A (zh) 2019-05-05 2019-05-05 一种奥氏体不锈钢表层的复合处理方法

Publications (1)

Publication Number Publication Date
CN110055490A true CN110055490A (zh) 2019-07-26

Family

ID=67322312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910368119.7A Pending CN110055490A (zh) 2019-05-05 2019-05-05 一种奥氏体不锈钢表层的复合处理方法

Country Status (1)

Country Link
CN (1) CN110055490A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295505A (zh) * 2021-12-27 2022-04-08 绍兴市特种设备检测院 一种奥氏体不锈钢热处理状态快速检验方法
CN114458584A (zh) * 2022-02-17 2022-05-10 西华大学 一种具有表面压应力的膜片及其制备方法和应用
CN114875354A (zh) * 2022-05-05 2022-08-09 常州市方正型钢有限公司 一种高强度无缝异型钢及其加工工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430004A (zh) * 2008-12-12 2009-05-13 武汉大学 一种pvd铬基陶瓷复合涂层活塞环及其制备方法
CN101518935A (zh) * 2008-12-06 2009-09-02 舟山市汉邦机械科技有限公司 Pvd纳米复合陶瓷涂层螺杆及其制造方法
CN201325158Y (zh) * 2008-12-23 2009-10-14 舟山市汉邦机械科技有限公司 有硬质涂层的螺杆
CN101591780A (zh) * 2008-05-29 2009-12-02 浙江一胜特工模具股份有限公司 一种刀具耐磨涂层的制备方法
CN201982710U (zh) * 2011-01-28 2011-09-21 浙江汇锦梯尔镀层科技有限公司 一种不锈钢球阀的阀芯
CN103215536A (zh) * 2012-01-20 2013-07-24 上海世传金属材料研发中心 在不锈钢表面形成耐蚀硬化层的低温渗氮方法
CN104480478A (zh) * 2014-12-31 2015-04-01 马鞍山市安工大工业技术研究院有限公司 一种渗氮pvd复合涂层及其制备方法
CN105839165A (zh) * 2016-04-20 2016-08-10 深圳八六三计划材料表面技术研发中心 一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法
CN106065460A (zh) * 2016-05-23 2016-11-02 圆兴(厦门)精密工具有限公司 微型挤压丝锥复合涂层及其制备工艺和制备设备
CN106399930A (zh) * 2016-09-28 2017-02-15 华南理工大学 一种合金钢表面渗氮后原位pvd镀膜的一体化复合处理方法
CN106890367A (zh) * 2017-03-29 2017-06-27 纳狮新材料股份有限公司 复合涂层手术刀及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591780A (zh) * 2008-05-29 2009-12-02 浙江一胜特工模具股份有限公司 一种刀具耐磨涂层的制备方法
CN101518935A (zh) * 2008-12-06 2009-09-02 舟山市汉邦机械科技有限公司 Pvd纳米复合陶瓷涂层螺杆及其制造方法
CN101430004A (zh) * 2008-12-12 2009-05-13 武汉大学 一种pvd铬基陶瓷复合涂层活塞环及其制备方法
CN201325158Y (zh) * 2008-12-23 2009-10-14 舟山市汉邦机械科技有限公司 有硬质涂层的螺杆
CN201982710U (zh) * 2011-01-28 2011-09-21 浙江汇锦梯尔镀层科技有限公司 一种不锈钢球阀的阀芯
CN103215536A (zh) * 2012-01-20 2013-07-24 上海世传金属材料研发中心 在不锈钢表面形成耐蚀硬化层的低温渗氮方法
CN104480478A (zh) * 2014-12-31 2015-04-01 马鞍山市安工大工业技术研究院有限公司 一种渗氮pvd复合涂层及其制备方法
CN105839165A (zh) * 2016-04-20 2016-08-10 深圳八六三计划材料表面技术研发中心 一种奥氏体不锈钢及提高硬度和耐蚀性的处理方法
CN106065460A (zh) * 2016-05-23 2016-11-02 圆兴(厦门)精密工具有限公司 微型挤压丝锥复合涂层及其制备工艺和制备设备
CN106399930A (zh) * 2016-09-28 2017-02-15 华南理工大学 一种合金钢表面渗氮后原位pvd镀膜的一体化复合处理方法
CN106890367A (zh) * 2017-03-29 2017-06-27 纳狮新材料股份有限公司 复合涂层手术刀及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡秋晨: "奥氏体不锈钢离子渗N及离子渗N/镀CrN组织性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295505A (zh) * 2021-12-27 2022-04-08 绍兴市特种设备检测院 一种奥氏体不锈钢热处理状态快速检验方法
CN114295505B (zh) * 2021-12-27 2024-03-01 绍兴市特种设备检测院 一种奥氏体不锈钢热处理状态快速检验方法
CN114458584A (zh) * 2022-02-17 2022-05-10 西华大学 一种具有表面压应力的膜片及其制备方法和应用
CN114458584B (zh) * 2022-02-17 2024-01-19 西华大学 一种具有表面压应力的膜片及其制备方法和应用
CN114875354A (zh) * 2022-05-05 2022-08-09 常州市方正型钢有限公司 一种高强度无缝异型钢及其加工工艺
CN114875354B (zh) * 2022-05-05 2023-09-05 常州市方正型钢有限公司 一种高强度无缝异型钢及其加工工艺

Similar Documents

Publication Publication Date Title
CN110055490A (zh) 一种奥氏体不锈钢表层的复合处理方法
KR100274299B1 (ko) 오스테나이트계 스테인레스제품의 질화방법
Bell Surface engineering of austenitic stainless steel
KR100325671B1 (ko) 오스테나이트계금속에대한침탄처리방법
Dalmau et al. Tribocorrosion behavior of new martensitic stainless steels in sodium chloride solution
Xuegang et al. Electrochemical corrosion resistance of CeO2-Cr/Ti coatings on 304 stainless steel via pack cementation
Wang et al. Microstructure and tribological properties of plasma nitriding cast CoCrMo alloy
Zhang et al. Microstructure and properties of 1Cr12Ni2WMoVNb (GX-8) steel bored barrels with and without QPQ treatment
Bell et al. STAINLESS STEEL Low Temperature Nitriding and Carburizing.
Yi et al. A study for pre-processing of Nb diffusion in Nb–N layer by double-glow plasma alloying
Zavieh et al. The role of surface chemistry and fatigue on tribocorrosion of austenitic stainless steel
Jeyaprakash et al. Laser cladding of NiCrMoFeNbTa particles on Inconel 625 alloy: microstructure and corrosion resistance
US11459659B2 (en) Nanocrystalline material based on stainless steel surface, and preparation method therefor
Yetim et al. Surface modification of 316L stainless steel with plasma nitriding
Su et al. Influence of single-and multilayer TiN films on the axial tension and fatigue performance of AISI 1045 steel
CN107142478A (zh) 一种新型耐磨耐腐蚀涂层
Gilewicz et al. Wear and corrosion behavior of CrCN/CrN coatings deposited by cathodic arc evaporation on nitrided 42CrMo4 steel substrates
CN114231895B (zh) 一种奥氏体不锈钢高性能化低温高效离子复合渗表面改性方法
Hsu et al. Erosion and corrosion behaviors of ADI deposited TiN/TiAlN coatings by cathodic arc evaporation
Sankar et al. Surface Modification of EN353 Gear Material by Chromium Plating and Plasma Nitriding to Improve Surface Properties, Corrosion and Wear Resistance
Meletis Wear-corrosion behavior of ion plated thin films
Kusmič et al. Corrosion Resistance of Ferritic Stainless Steel X12Cr13 After Application of Low-Temperature and High-Temperature Plasma Nitriding
Jędrusik et al. Characterisation of oxide coatings produced on aluminum alloys by MAO and chemical methods
Tang et al. Corrosion and wear behaviors of Inconel 718 nickel-based alloy by boroaluminizing
Dearnley Corrosion wear response of S phase coated 316L

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190726