CN107138049B - 一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用 - Google Patents

一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用 Download PDF

Info

Publication number
CN107138049B
CN107138049B CN201710458896.1A CN201710458896A CN107138049B CN 107138049 B CN107138049 B CN 107138049B CN 201710458896 A CN201710458896 A CN 201710458896A CN 107138049 B CN107138049 B CN 107138049B
Authority
CN
China
Prior art keywords
tio
ceramic membrane
nano
preparation
nanobelt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710458896.1A
Other languages
English (en)
Other versions
CN107138049A (zh
Inventor
许效红
石春颖
刘宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201710458896.1A priority Critical patent/CN107138049B/zh
Publication of CN107138049A publication Critical patent/CN107138049A/zh
Application granted granted Critical
Publication of CN107138049B publication Critical patent/CN107138049B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种Cu/TiO2‑NB纳米多孔陶瓷膜及其制备方法与应用。该纳米多孔陶瓷膜为亲水型多孔陶瓷膜,首先采用水热法合成钛酸纳米带,然后利用沉积沉淀法在钛酸纳米带的表面负载金属铜纳米颗粒,最后将定量的Cu/TiO2纳米带通过压片、煅烧制得。本发明的铜纳米颗粒联结TiO2纳米带的纳米多孔陶瓷膜,铜纳米颗粒的负载增强了二氧化钛对可见光的吸收,进而提高TiO2的可见光催化活性,兼具杀菌和分离功能,有利于产水质量的提高和稳定。

Description

一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用
技术领域
本发明涉及一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用,属于新型过滤材料技术领域。
背景技术
饮用水中的颗粒杂质和病原微生物对人类的健康构成很大的威胁,人类的很多疾病都是由于水体传播细菌病毒等所致。因此,去除饮用水中的有害微生物及颗粒杂质,保障饮水安全,对维护人类健康极为重要。对于水体中的细菌病毒净化,传统方法有紫外线杀菌灭毒,使用臭氧或含氯、含溴的杀菌剂等,但使用杀菌剂往往会产生有毒的副产物,对人体健康产生新的威胁(Environ.Sci.Technol.201448:11620-11628)。目前,膜分离技术由于可以有效地滤除有害微生物及颗粒杂质,且不产生任何二次污染,在水处理方面有广泛地应用(Science 2011:3712-717)。但是膜分离过程中由于微生物在膜表面的吸附和生长而产生的生物膜溶胀会降低膜通量、产水质量和膜的使用寿命,一直是膜分离技术亟待解决的问题之一(J.Mater.Chem. 201020:4567-4586)。目前的解决策略之一是设计组装多功能抗菌膜;另一种方法是在膜的表面修饰杀菌剂,如在膜表面或膜中嵌入杀菌的纳米金属颗粒(Chem.Sci.20167:5126-5131)。
纳米二氧化钛(TiO2)材料具有光催化活性,可在紫外光照射下杀灭水体中的细菌病毒。其中一维TiO2纳米结构,如纳米带,由于其高的长径比和比表面积,很容易集成组装为多孔膜。这种膜具有高孔隙率和均匀的孔结构,其应用于水处理中显示了高膜通量和高选择性 (Environ.Sci.2016 2:17-42)。另外,金属铜是已被人类发现并应用数千年的广谱杀菌金属 (Antimicrob.Agents Chemother.200751:2605-2607)。目前已证明,金属铜表面、铜纳米颗粒、氧化铜和氧化亚铜纳米颗粒、铜离子等均具有很好的抗微生物活性,包括细菌、真菌和病毒等(ACS Nano20126:1609-1618)。美国和欧盟已认可铜为可应用于医疗卫生及公共生活领域中的杀菌材料(J.Mater.Chem.B2016 4:1296-1309)。
目前,基于二氧化钛纳米带表面负载铜纳米颗粒为原材料,兼具杀菌灭毒和微孔过滤双重功能的纳米多孔陶瓷膜尚未见任何文献报道。
发明内容
针对现有技术的不足,本发明提供一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用,本发明的陶瓷膜负载铜纳米颗粒的TiO2纳米带赋予二氧化钛杀菌性能,解决膜生物溶胀的技术难题,提高膜的性能和产水质量。
本发明的技术方案如下:
一种Cu/TiO2-NB纳米多孔陶瓷膜,所述的陶瓷膜为铜纳米颗粒联结TiO2纳米带的二氧化钛纳米多孔陶瓷膜,其中,金属铜的负载量为1-20%,膜的平均孔径为100~500nm;当管路压力为1~5bar时,膜通量为1~10L·h-1·m-2
根据本发明优选的,金属铜的负载量为5-10%。
本发明的陶瓷膜中的金属铜颗粒使其具有灭杀微生物功能,可以有效提高膜的性能,掺杂的铜纳米颗粒可以和钛酸纳米带形成异质结构,同时增强陶瓷膜的紫外-可见光的吸收强度,实现光催化促进灭杀微生物效率,金属铜颗粒在陶瓷膜的成型中起到联结二氧化钛纳米带的作用,使较低的烧结温度下得到的陶瓷膜有良好的孔结构。
本发明的陶瓷膜应用于生活饮用水的过滤净化过程,可以有效截留水中的有机污染物、细菌、病毒、悬浮固体颗粒等,同时Cu/TiO2-NB纳米多孔陶瓷膜具有广谱抗微生物功能,可高效灭杀水中的细菌、病毒、真菌等微生物,有效地抑制其在膜表面的滋生和生长,减轻甚至防止膜分离过程的生物溶胀现象,显著提高膜的分离性能、使用寿命和产水或出气质量,适用于饮用水的深度净化处理。
根据本发明,一种Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,包括步骤:1)钛酸(H2Ti3O7) 纳米带的制备,2)采用沉淀沉积法将铜纳米颗粒负载到纳米带制备Cu/TiO2纳米带,3) Cu/TiO2纳米带通过压片、煅烧制得Cu/TiO2-NB纳米多孔陶瓷膜。
根据本发明优选的,钛酸(H2Ti3O7)纳米带的制备,步骤如下:
a)将二氧化钛与NaOH溶液按照二氧化钛:NaOH溶液质量体积比为1:100~1:10的比例超声搅拌混合均匀,单位:g/mL;然后于100~300℃恒温反应24~72h,反应结束后,自然冷却至室温;
b)步骤a)得到的反应物抽滤、洗涤得到钛酸钠(Na2Ti3O7)纳米带,将所得Na2Ti3O7纳米带分散于浓度为0.1~1mol/L的盐酸溶液中酸化,再次抽滤、水洗后,置于的烘箱中干燥 12~48h,即得钛酸(H2Ti3O7)纳米带。
根据本发明优选的,所述的二氧化钛为二氧化钛P25,NaOH溶液浓度为10~15mol/L。
根据本发明优选的,盐酸溶液的加入量与NaOH溶液体积比为10:1~100:1。
根据本发明优选的,制备Cu/TiO2纳米带的具体步骤如下:
将钛酸纳米带分散于超纯水中,然后加入Cu(CH3COO)2溶液,避光搅拌1~6h使其分散均匀;再加入与铜离子摩尔比为500:1~100:1的尿素溶液,在温度50~100℃,磁力搅拌下避光反应2~6h;待沉淀-沉积反应结束,将产物进行抽滤、洗涤、干燥;然后进行还原处理,得到Cu/TiO2纳米带。
根据本发明优选的,钛酸纳米带与超纯水的质量体积比为:0.01~0.1g:50~150mL,钛酸纳米带与Cu(CH3COO)2溶液的质量体积比为:0.01~0.1g:100~1000μL;Cu(CH3COO)2溶液的浓度为0.01-1mol/L。
根据本发明优选的,所述的还原处理为在H2流速为20~80mL/min,N2流速为 20~80mL/min中进行还原处理,还原处理温度为200~600℃,时间为1~4h,升温速度为 2~10℃/min。
根据本发明优选的,Cu/TiO2纳米带压片压力为1~10Mpa,保持1~10min。
根据本发明优选的,压片后的Cu/TiO2纳米带进行煅烧,煅烧温度为600~1200℃,煅烧时间为:2~6h,升温速度为1~5℃/min。
根据本发明优选的,Cu/TiO2-NB纳米多孔陶瓷膜的应用,用于饮用水的深度净化,适用压力为1~10bar。
本发明的滤膜为高温煅烧制备的亲水型纳米多孔陶瓷膜。钛酸纳米带是采用水热法在高温强碱溶液中生长形成,然后利用沉积沉淀法在钛酸纳米带的表面负载金属铜颗粒,然后将定量的Cu/TiO2纳米带通过压片、煅烧制得Cu/TiO2-NB纳米多孔陶瓷膜。
本发明的优点如下:
1、本发明的陶瓷膜负载铜纳米颗粒的TiO2纳米带使滤膜本身具有杀菌性能,解决滤膜生物溶胀的技术难题。
2、本发明的铜纳米颗粒联结TiO2纳米带的纳米多孔陶瓷膜,铜纳米的负载增强了二氧化钛对可见光的吸收,进而提高TiO2的可见光催化活性。
3、本发明的铜纳米颗粒联结TiO2纳米带的纳米多孔陶瓷膜,降低了烧结温度,有利于得到较小的孔径、高孔隙率和高膜通量,同时大大降低膜制备过程中的能耗。
4、本发明的陶瓷膜同时兼具杀菌和分离功能,有利于产水质量的提高和稳定。
附图说明
图1为实施例1步骤(1)得到的钛酸纳米带的扫描电子显微镜SEM照片;
图2为陶瓷膜的扫描电子显微镜SEM照片,其中,a为800℃烧结煅烧得到的TiO2-NB陶瓷膜的电镜照片,b为1000℃烧结煅烧得到的TiO2-NB陶瓷膜的电镜照片,c为实施例1 在1200℃烧结煅烧得到的Cu/TiO2-NB陶瓷膜的电镜照片;
图3实施例1、实施例2制得的Cu/TiO2-NB纳米多孔陶瓷膜的XRD图,其中, 5%Cu/TiO2-NB为实施例1的多孔陶瓷膜XRD图,1%Cu/TiO2-NB为实施例2的多孔陶瓷膜 XRD图;
图4实施例1制得的Cu/TiO2-NB纳米多孔陶瓷膜的XPS图;
图5实施例1制得的Cu/TiO2-NB纳米多孔陶瓷膜的UV-vis图。
具体实施方式
下面结合实施例及说明书附图对本发明的技术方案做进一步说明,但本发明所保护范围不限于此。
实施例中所述二氧化钛购自德国德固萨公司;
实施例1
一种Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,步骤如下:
(1)将2.4g二氧化钛(P25)均匀分散于480mL浓度为10mol/L的氢氧化钠溶液中,于200℃恒温干燥箱中碱热反应72h,得到钛酸钠纳米带,然后将样品置于1000mL浓度为0.1 M的盐酸溶液中酸化24h,得到钛酸纳米带,得到的钛酸纳米带的扫描电子显微镜SEM照片如图1所示。
(2)取上述钛酸纳米带0.1g于含有100mL去离子水的循环套管中,超声分散,得到分散均匀的悬浮液,然后在搅拌下向悬浮液中同时加入800μL Cu(CH3COO)2溶液,继续避光搅拌2h,再用尿素溶液调节pH为8.5,80℃恒温条件下老化4h,之后抽滤、水洗、干燥和H2还原预处理,得到铜负载量为5wt%的Cu/TiO2纳米带。
(3)将Cu/TiO2NBs倒入直径为12mm的模具内,快速颠至均匀,放置于压片台,压力为 4Mpa,保持1min后解压。将产物放入马弗炉内,由室温以5℃/min升至1200℃,恒温2h 后结束煅烧,自然冷却至室温后取出,得到Cu/TiO2-NB纳米多孔陶瓷膜。
得到的Cu/TiO2-NB陶瓷膜的电镜照片如图2中c所示;从c中可以看出,负载铜的Cu/TiO2-NB陶瓷膜具有良好的烧结效果均匀的孔结构;纳米多孔陶瓷膜的XRD图如图3所示,从图中可以看出,Cu/TiO2-NB陶瓷膜有明显的金属铜的特征峰;因此铜成功负载于陶瓷膜中,并以金属态铜存在;纳米多孔陶瓷膜的XPS图如图4所示,从图4中可以看出,铜主要以金属铜和氧化铜混合物的形式存在膜中;纳米多孔陶瓷膜的UV-vis图如图5所示,图5 显示负载铜可以增强二氧化钛对可见光的吸收,进而提高TiO2的可见光催化活性。
实施例2
一种Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,同实施例1所示,不同之处在于:
步骤(2)取步骤(1)钛酸纳米带0.1g于含有100mL去离子水的循环套管中,超声分散,得到分散均匀的悬浮液,然后在搅拌下向悬浮液中同时加入Cu(CH3COO)2溶液,继续避光搅拌2h,再用尿素溶液调节pH为8.5,80℃恒温条件下老化4h,之后抽滤、水洗、干燥和H2还原预处理,得到铜负载量为1wt%的Cu/TiO2纳米带。
通过压片、煅烧后得到的纳米多孔陶瓷膜的XRD图如图3所示,通过图3可以看出,实施例1、实施例2显示铜成功负载于陶瓷膜中,随着铜负载量的增加(实施例2),陶瓷膜金属铜的特征峰越明显,并以金属态铜存在。
实施例3
一种Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,同实施例1所示,不同之处在于:
步骤(2)取步骤(1)钛酸纳米带0.1g于含有100mL去离子水的循环套管中,超声分散,得到分散均匀的悬浮液,然后在搅拌下向悬浮液中同时加入Cu(CH3COO)2溶液,继续避光搅拌2h,再用尿素溶液调节pH为8.5,80℃恒温条件下老化4h,之后抽滤、水洗、干燥和H2还原预处理,得到铜负载量为8wt%的Cu/TiO2纳米带。
实施例4
一种Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,同实施例1所示,不同之处在于:
步骤(2)取步骤(1)钛酸纳米带0.1g于含有100mL去离子水的循环套管中,超声分散,得到分散均匀的悬浮液,然后在搅拌下向悬浮液中同时加入Cu(CH3COO)2溶液,继续避光搅拌2h,再用尿素溶液调节pH为8.5,80℃恒温条件下老化4h,之后抽滤、水洗、干燥和H2还原预处理,得到铜负载量为10wt%的Cu/TiO2纳米带。
实施例5
一种Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,同实施例1所示,不同之处在于:
步骤(3)将Cu/TiO2NBs倒入直径为12mm的模具内,快速颠至均匀,放置于压片台,压力为6Mpa,保持4min后解压。将产物放入马弗炉内,由室温以3℃/min升至1000℃,恒温4h后结束煅烧,自然冷却至室温后取出,得到Cu/TiO2-NB纳米多孔陶瓷膜。
实施例6
一种Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,同实施例1所示,不同之处在于:
步骤(3)将Cu/TiO2NBs倒入直径为12mm的模具内,快速颠至均匀,放置于压片台,压力为8Mpa,保持1min后解压。将产物放入马弗炉内,由室温以3℃/min升至800℃,恒温6h后结束煅烧,自然冷却至室温后取出,得到Cu/TiO2-NB纳米多孔陶瓷膜。

Claims (6)

1.一种Cu/TiO2-NB纳米多孔陶瓷膜,所述的纳米多孔陶瓷膜为铜纳米颗粒联结TiO2纳米带的二氧化钛纳米多孔陶瓷膜,其中,金属铜的负载量为5-10%,膜的平均孔径为100~500nm;当管路压力为1~5 bar时,膜通量为1~10 L·h-1·m-2
Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,包括步骤:1)钛酸(H2Ti3O7)纳米带的制备,2)采用沉淀沉积法将铜纳米颗粒负载到纳米带制备Cu /TiO2纳米带,3)Cu/TiO2纳米带通过压片、煅烧制得Cu/TiO2-NB纳米多孔陶瓷膜;
制备Cu /TiO2纳米带的具体步骤如下:
将钛酸纳米带分散于超纯水中,然后加入Cu(CH3COO)2溶液,避光搅拌1~ 6h使其分散均匀;再加入与铜离子摩尔比为500:1~100:1的尿素溶液,在温度50 ~ 100℃,磁力搅拌下避光反应2~ 6 h;待沉淀-沉积反应结束,将产物进行抽滤、洗涤、干燥;然后进行还原处理,得到Cu/TiO2纳米带;
Cu/TiO2纳米带压片压力为1~10 Mpa,保持1~10 min,压片后的Cu/TiO2纳米带进行煅烧,煅烧温度为600~1200℃,煅烧时间为:2~6h,升温速度为1~5℃/min。
2.一种如权利要求1所述的Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,包括步骤:1)钛酸(H2Ti3O7)纳米带的制备,2)采用沉淀沉积法将铜纳米颗粒负载到纳米带制备Cu/TiO2纳米带,3)Cu/TiO2纳米带通过压片、煅烧制得Cu/TiO2-NB纳米多孔陶瓷膜;
钛酸(H2Ti3O7)纳米带的制备,步骤如下:
a)将二氧化钛与NaOH溶液按照二氧化钛: NaOH溶液质量体积比为1:100 ~ 1:10的比例超声搅拌混合均匀,单位:g/mL;然后于100~300℃恒温反应24~72 h,反应结束后,自然冷却至室温;
b) 步骤a)得到的反应物抽滤、洗涤得到钛酸钠(Na2Ti3O7)纳米带,将所得Na2Ti3O7纳米带分散于浓度为0.1~1 mol/L的盐酸溶液中酸化,再次抽滤、水洗后,置于烘箱中干燥12~48h,即得钛酸(H2Ti3O7)纳米带;
制备Cu/TiO2纳米带的具体步骤如下:
将钛酸纳米带分散于超纯水中,然后加入Cu(CH3COO)2溶液,避光搅拌1~ 6h使其分散均匀;再加入与铜离子摩尔比为500:1~100:1的尿素溶液,在温度50 ~ 100℃,磁力搅拌下避光反应2~ 6 h;待沉淀-沉积反应结束,将产物进行抽滤、洗涤、干燥;然后进行还原处理,得到Cu/TiO2纳米带;
Cu/TiO2纳米带压片压力为1~10 Mpa,保持1~10 min,压片后的Cu/TiO2纳米带进行煅烧,煅烧温度为600~1200℃,煅烧时间为:2~6h,升温速度为1~5℃/min。
3.根据权利要求2所述的Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,其特征在于,所述的二氧化钛为二氧化钛P25,NaOH溶液浓度为10~15 mol/L。
4.根据权利要求2所述的Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,其特征在于,盐酸溶液的加入量与NaOH溶液体积比为10:1 ~ 100:1。
5.根据权利要求2所述的Cu/TiO2-NB纳米多孔陶瓷膜的制备方法,其特征在于,钛酸纳米带与超纯水的质量体积比为:0.01~0.1 g : 50~150 mL,钛酸纳米带与Cu(CH3COO)2溶液的质量体积比为:0.01~0.1 g :100~1000 μL;Cu(CH3COO)2溶液的浓度为0.01-1 mol/L,所述的还原处理为在H2流速为20~80mL/min,N2流速为20~80mL/min中进行还原处理,还原处理温度为200~600℃,时间为1~4 h,升温速度为2~10℃/min。
6.一种权利要求1所述的Cu/TiO2-NB纳米多孔陶瓷膜的应用,其特征在于,用于饮用水的深度净化,适用压力为1~10bar。
CN201710458896.1A 2017-06-16 2017-06-16 一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用 Expired - Fee Related CN107138049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710458896.1A CN107138049B (zh) 2017-06-16 2017-06-16 一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710458896.1A CN107138049B (zh) 2017-06-16 2017-06-16 一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107138049A CN107138049A (zh) 2017-09-08
CN107138049B true CN107138049B (zh) 2020-09-01

Family

ID=59782617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710458896.1A Expired - Fee Related CN107138049B (zh) 2017-06-16 2017-06-16 一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN107138049B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694561A (zh) * 2017-09-29 2018-02-16 天津大学 一种负载型分散贵金属量子点催化剂及其制备方法
CN107890867B (zh) * 2017-12-15 2020-10-09 浙江工业大学 一种灰色Pd/TiO2纳米线光催化剂及其制备方法和应用
CN108187692B (zh) * 2018-01-08 2020-07-28 山东大学 一种负载双金属的二氧化钛纳米多孔陶瓷催化剂及其制备方法和应用
CN108506864A (zh) * 2018-03-29 2018-09-07 深圳大图科创技术开发有限公司 一种物联网太阳能智能路灯
CN108534377A (zh) * 2018-03-29 2018-09-14 深圳万智联合科技有限公司 一种基于物联网的太阳能热水器智能监控系统
CN108634018A (zh) * 2018-03-29 2018-10-12 深圳万发创新进出口贸易有限公司 基于太阳能的茶叶烘干机
CN110078527A (zh) * 2019-05-22 2019-08-02 嘉兴学院 一种改性陶瓷膜的制备方法及其应用
CN110787650A (zh) * 2019-11-22 2020-02-14 深圳市君脉膜科技有限公司 多孔纳米抗菌颗粒和复合中空膜的制备方法及复合中空膜
CN110711504B (zh) * 2019-11-22 2024-01-23 深圳市君脉膜科技有限公司 多孔纳米抗菌颗粒和复合反渗透膜的制备方法、复合反渗透膜
CN110694493B (zh) * 2019-11-22 2024-02-27 深圳市君脉膜科技有限公司 多孔纳米抗菌颗粒和复合纳滤膜的制备方法、复合纳滤膜
CN110813102A (zh) * 2019-11-22 2020-02-21 深圳市君脉膜科技有限公司 多孔纳米抗菌粒子和复合管式膜的制备方法及复合管式膜
CN112939580B (zh) * 2021-01-29 2022-07-01 广西碧清源环保投资有限公司 一种陶瓷过滤膜的制备方法
CN113318601B (zh) * 2021-05-17 2022-06-21 浙江理工大学 一种具有抑菌功能陶瓷膜的制备方法
CN113546527B (zh) * 2021-07-28 2022-05-27 江西嘉陶无机材料有限公司 一种银、镧离子净水复合陶瓷膜工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340433B1 (en) * 2000-09-15 2002-01-22 Engelhard Corporation Water purification using titanium silicate membranes
CN104084203B (zh) * 2014-07-14 2015-12-30 东南大学 一种Cu-Ti与TiO2复合薄膜材料的制备方法
CN104258852B (zh) * 2014-10-23 2016-08-24 河海大学 银修饰的二氧化钛多层多孔光催化薄膜、其制备方法及其用途
CN104549368B (zh) * 2015-01-28 2017-06-20 山东大学 一种负载双金属型Cu‑Pt/TiO2‑NBs催化剂的制备方法与应用
CN106669431B (zh) * 2016-12-02 2019-11-12 常州大学 一种具有同时催化与膜分离功能的二氧化钛纳米线超滤膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Concurrent filtration and solar photocatalytic disinfection/ degradation using high-performance Ag/TiO2 nanofiber membrane;Lei Liu, et.al;《water research》;20111213;第42卷;第1101-1112页 *
Transparent thin films of Cu–TiO2 with visible light photocatalytic activity;Marcin Janczarek et.al;《Photochemical & Photobiological Sciences》;20141024;第1-6页 *

Also Published As

Publication number Publication date
CN107138049A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
CN107138049B (zh) 一种Cu/TiO2-NB纳米多孔陶瓷膜及其制备方法与应用
Moradi et al. CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin
Leong et al. TiO2 based photocatalytic membranes: A review
Srinivasan et al. Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection
Saud et al. Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants
Colmenares et al. Polypropylene nonwoven filter with nanosized ZnO rods: Promising hybrid photocatalyst for water purification
Rajavel et al. Photocatalytic and bactericidal properties of MXene-derived graphitic carbon-supported TiO2 nanoparticles
Zhao et al. Antibacterial action of silver-doped activated carbon prepared by vacuum impregnation
Cheng et al. A novel preparation method for ZnO/γ-Al 2 O 3 nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles
Lee et al. Visible-light-responsive bicrystalline (anatase/brookite) nanoporous nitrogen-doped TiO2 photocatalysts by plasma treatment
Paiman et al. In situ growth of α-Fe2O3 on Al2O3/YSZ hollow fiber membrane for oily wastewater
JP2012509169A (ja) 多孔ブロックナノファイバー複合フィルタ
Liu et al. Synthesis and bactericidal ability of TiO 2 and Ag-TiO 2 prepared by coprecipitation method
KR101065804B1 (ko) 균일한 아나타제형 이산화티탄 나노입자의 제조방법
Abbas et al. Photoactive catalysts for effective water microbial purification: Morphology-activity relationship
Garcia-Benjume et al. Enhanced Photocatalytic Activity of Hierarchical Macro-Mesoporous Anatase by ZrO 2 Incorporation.
ur Rehman et al. Surfactant assisted CuO/MCM-41 nanocomposite: Ultra efficient photocatalyst for degradation of methylene blue dye and inactivation of highly drug resistant bacteria
CN111034720A (zh) 一种氧化锌-金属有机框架复合抗菌材料的制备方法
Visinescu et al. Additive-free 1, 4-butanediol mediated synthesis: a suitable route to obtain nanostructured, mesoporous spherical zinc oxide materials with multifunctional properties
Supothina et al. Hydrothermal synthesis and photocatalytic activity of anatase TiO2 nanofiber
Zhang et al. Modification of polyvinylidene fluoride membrane with different shaped α-Fe2O3 nanocrystals for enhanced photocatalytic oxidation performance
CN112375804B (zh) 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理
CN110694493B (zh) 多孔纳米抗菌颗粒和复合纳滤膜的制备方法、复合纳滤膜
CN110790338A (zh) 用于水体杀菌和净化的双功能材料及其制备方法和应用
CN107581196A (zh) 一种碳纳米银/二氧化钛复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200901

Termination date: 20210616

CF01 Termination of patent right due to non-payment of annual fee