CN107128958A - 一种降低α‑Al2O3粉体相转温度的方法 - Google Patents

一种降低α‑Al2O3粉体相转温度的方法 Download PDF

Info

Publication number
CN107128958A
CN107128958A CN201710333275.0A CN201710333275A CN107128958A CN 107128958 A CN107128958 A CN 107128958A CN 201710333275 A CN201710333275 A CN 201710333275A CN 107128958 A CN107128958 A CN 107128958A
Authority
CN
China
Prior art keywords
powder
temperature
ball
phase
phase turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710333275.0A
Other languages
English (en)
Inventor
李蔚
刘会娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201710333275.0A priority Critical patent/CN107128958A/zh
Publication of CN107128958A publication Critical patent/CN107128958A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种降低α‑Al2O3粉体相转温度的方法。其制备过程如下:以高纯Al2O3前驱体(如γ‑Al2O3、Al(OH)3、AACH)为原料,以Al2O3量的0.1‑0.5wt%的MgO粉作为掺杂剂,经球磨混合后干燥,然后在电炉中1050℃下煅烧1.5h,即可完成粉体的相转,获得单相的细晶α‑Al2O3粉体,比不加掺杂剂时的相转温度(约1200℃)低150℃左右。本发明使用MgO粉作为掺杂剂,掺入量小,可以较好地保持Al2O3粉体的纯度,同时工艺简单,适于大规模生产,具有良好的工业化前景。

Description

一种降低α-Al2O3粉体相转温度的方法
技术领域
本发明涉及一种降低α-Al2O3粉体相转温度的方法,属于材料科学技术、先进陶瓷粉体制备领域。
背景技术
α-Al2O3粉体是指具有α晶相的Al2O3粉体,具有机械性能好、化学性能稳定、绝缘性强、耐高温等多种优点,广泛应用于陶瓷和耐火材料生产、超精研磨和抛光、复合材料填料、锂电池隔膜等领域。工业上,α-Al2O3粉体的制备主要是利用不同的前驱体在高温炉中煅烧相转获得。由于相转温度比较高(通常为1200-1400℃),α-Al2O3粉体颗粒形成后会立即长大,很容易形成“蠕虫状”的硬团聚结构,不利于下一步的使用。因此,设法降低相转温度,以获得颗粒细且团聚少的α-Al2O3粉体便成为研究开发的热点。其中,通过掺杂来降低α-Al2O3的相转温度,因其操作简单、便于工业化生产,更为大家所关注。比如:吴玉程等在Al2O3前驱体添加2% TiO2胶体,结果在1100℃煅烧1.5 h就可完成α相变,这比纯的前驱体降低了100℃。薛茹君等发现ZnO掺杂对Al2O3的α相变有显著的促进作用,掺5% ZnO的Al2O3在1150℃煅烧全部完成α相变,掺10% ZnO的Al2O3在1050℃已经出现了部分α-Al2O3,在1100℃煅烧后全部完成了相变,比未掺杂的Al2O3降低了100℃。田清波等在 Al(OH)3中加入5wt%NH4F,结果在 900℃煅烧2.5h,可获得六角片状的α-Al2O3。宋振亚在AACH中加入8%的MgO凝胶,发现掺杂8%MgO的样品在1100℃全部完成α相变。但是,目前的掺杂工艺有一个明显的不足,就是掺杂量都比较大(一般都高于1%,有的甚至多达10%),因此所获的α-Al2O3粉体中残留大量的杂质(比如前述宋振亚在AACH中加入8%的MgO凝胶降低了α相转的温度,但同时也产生了大量尖晶石化合物),使Al2O3纯度大大降低,严重影响其应用。
发明内容
本发明的目的是提供一种通过少量掺杂就能实现α-Al2O3粉体相转的方法,从而在较低温度下合成α-Al2O3粉体,同时不会导致粉体纯度大幅下降。
为了实现上述发明目的,本发明采用的技术方案如下:以γ-Al2O3、Al(OH)3、AACH(勃姆石)等作为前驱体原料,选用MgO作为掺杂物,湿法球磨混合后,经干燥、研磨、过筛得到混合干粉。将混合干粉放置于马弗炉中升温至一定温度煅烧一定时间, 随炉自然冷却,即得到纯度较高的α-Al2O3粉体。
在上述技术方案中,MgO的掺杂量为Al2O3量的0.1-0.5wt%(当使用Al(OH)3、AACH等为前驱体原料时,需先计算出其中的Al2O3量,再依此确定MgO的掺杂量)。球磨混合介质为ZrO2磨球和去离子水,料:水:球=1:2:3,球磨时间为24h。球磨后的混合料在烘箱中烘干,干燥温度为80-120℃。煅烧温度为1050℃,保温时间为1.5h。
本掺杂工艺完成α-Al2O3粉体相转的温度为1050℃,比不掺杂的α-Al2O3粉的相转温度下降150℃左右。与现有掺杂工艺相比,本发明的最大的特点就是:掺杂物的添加量很低,只有Al2O3粉体的0.1-0.5wt%,远低于现有掺杂工艺所用的1-10wt%的掺杂量,因此能很好地保持Al2O3粉体的纯度。另外,本发明操作方法简单,生产流程短,所需要的工艺设备也很简单,可大量节约时间成本,适合规模化生产。
具体实施方式
实施例1:以γ-Al2O3为原料合成α-Al2O3粉体。取6份高纯γ-Al2O3粉末,每份100g,放置于6个球磨罐中,选用MgO作为掺杂物,其掺杂含量分别为Al2O3的0.05wt%、0.1wt%、0.3wt%、0.5wt%、0.7wt%、0.9wt%,分别加入前述的6个球磨罐中,随后加入ZrO2磨球和去离子水进行湿法球磨混合(料:水:球=1:2:3)。24h后将混合料取出在100℃的烘箱中干燥后研磨、过筛,最后置于刚玉坩埚中,不同温度下煅烧1.5h,随炉冷却到室温,即得到白色的Al2O3粉体。
对上述Al2O3粉体进行XRD分析,XRD分析表明当MgO掺杂量为Al2O3的0.1-0.5wt%时,在1050℃煅烧1.5h均可得到纯净α-Al2O3粉体,而当MgO掺杂量更低或更高时,在1050℃煅烧1.5h只有部分转化成为α-Al2O3相。
实施例2:以AACH为原料合成α-Al2O3粉体。取6份AACH前驱体粉末,每份100g,放置于6个球磨罐中。计算出每100g的AACH中Al2O3的量,按计算出的Al2O3量的0.05wt%、0.1wt%、0.3wt%、0.5wt%、0.7wt%、0.9wt%称量出6份MgO粉,分别加入前述的6个球磨罐中,随后加入ZrO2磨球和去离子水进行湿法球磨混合(料:水:球=1:2:3)。24h后将混合料取出在100℃的烘箱中干燥后研磨、过筛,最后置于刚玉坩埚中,不同温度下煅烧1.5h,随炉冷却到室温,即得到白色的Al2O3粉体。
对上述Al2O3粉体进行XRD分析,XRD分析表明当MgO掺杂量为Al2O3的0.1-0.5wt%时,在1050℃煅烧1.5h均可得到纯净α-Al2O3粉体,而当MgO掺杂量更低或更高时,在1050℃煅烧1.5h只有部分转化成为α-Al2O3相。
实施例3:以Al(OH)3为原料合成α-Al2O3粉体。取6份Al(OH)3前驱体粉末,每份100g,放置于6个球磨罐中。计算出每100g的Al(OH)3中Al2O3的量,按计算出的Al2O3量的0.05wt%、0.1wt%、0.3wt%、0.5wt%、0.7wt%、0.9wt%称量出6份MgO粉,分别加入前述的6个球磨罐中,随后加入ZrO2磨球和去离子水进行湿法球磨混合(料:水:球=1:2:3)。24h后将混合料取出在100℃的烘箱中干燥后研磨、过筛,最后置于刚玉坩埚中,不同温度下煅烧1.5h,随炉冷却到室温,即得到白色的Al2O3粉体。
对上述Al2O3粉体进行XRD分析,XRD分析表明当MgO掺杂量为Al2O3的0.1-0.5wt%时,在1050℃煅烧1.5h均可得到纯净α-Al2O3粉体,而当MgO掺杂量更低或更高时,在1050℃煅烧1.5h只有部分转化成为α-Al2O3相。

Claims (4)

1.一种降低α-Al2O3相转温度的方法,其制备工艺是:以高纯γ-Al2O3、Al(OH)3或AACH粉体为原料,以一定量的MgO为掺杂剂,二者混合后在一定温度下煅烧,即可获得纯度较高的细晶α相Al2O3粉体。
2.根据权利要求1所述一种降低α-Al2O3相转温度的方法,其特征在于:MgO的掺杂量为Al2O3量的0.1-0.5wt%(当使用Al(OH)3、AACH等为前驱体原料时,需先计算出其中的Al2O3量,再依此确定MgO的掺杂量)。
3.根据权利要求1所述一种降低α-Al2O3相转温度的方法,其特征在于:原料与掺杂剂通过机械球磨方式混合;球磨混合介质为ZrO2磨球和去离子水,料:水:球=1:2:3,球磨时间为24h,球磨后的混合料在烘箱中烘干,干燥温度为80-120℃。
4.根据权利要求1所述一种降低α-Al2O3相转温度的方法,其特征在于:相转的煅烧温度为1050℃,保温时间为1.5h。
CN201710333275.0A 2017-05-12 2017-05-12 一种降低α‑Al2O3粉体相转温度的方法 Pending CN107128958A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710333275.0A CN107128958A (zh) 2017-05-12 2017-05-12 一种降低α‑Al2O3粉体相转温度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710333275.0A CN107128958A (zh) 2017-05-12 2017-05-12 一种降低α‑Al2O3粉体相转温度的方法

Publications (1)

Publication Number Publication Date
CN107128958A true CN107128958A (zh) 2017-09-05

Family

ID=59731824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710333275.0A Pending CN107128958A (zh) 2017-05-12 2017-05-12 一种降低α‑Al2O3粉体相转温度的方法

Country Status (1)

Country Link
CN (1) CN107128958A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939044A (zh) * 2021-03-03 2021-06-11 杭州智华杰科技有限公司 一种提高导热氧化铝的导热率的方法
CN114855113A (zh) * 2022-05-13 2022-08-05 华东理工大学 一种低吸发比高发射率涂层材料及其制备工艺、以及一种涂层系统及其制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762816A (zh) * 2005-08-26 2006-04-26 郑州大学 一种高分散性α-Al2O3纳米粉体的制备方法
CN1915824A (zh) * 2006-09-04 2007-02-21 中南大学 低温催化煅烧制备纳米α-Al2O3的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762816A (zh) * 2005-08-26 2006-04-26 郑州大学 一种高分散性α-Al2O3纳米粉体的制备方法
CN1915824A (zh) * 2006-09-04 2007-02-21 中南大学 低温催化煅烧制备纳米α-Al2O3的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋振亚: ""A12O3超微粉体的制备、改性及其a相变控制的研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939044A (zh) * 2021-03-03 2021-06-11 杭州智华杰科技有限公司 一种提高导热氧化铝的导热率的方法
CN114855113A (zh) * 2022-05-13 2022-08-05 华东理工大学 一种低吸发比高发射率涂层材料及其制备工艺、以及一种涂层系统及其制备工艺
CN114855113B (zh) * 2022-05-13 2024-03-08 华东理工大学 一种低吸发比高发射率涂层材料及其制备工艺、以及一种涂层系统及其制备工艺

Similar Documents

Publication Publication Date Title
CN102295304B (zh) 一种拟薄水铝石及微晶刚玉磨料的制备方法
CN104229844B (zh) 一种超细高活性低钠α‑氧化铝粉体的制备方法
CN104829218B (zh) 一种双峰活性氧化铝微粉及其制备方法
CN107935007B (zh) 二次焙烧制备高温低钠氧化铝的方法
CN111908922A (zh) 一种低温合成稀土铪酸盐高熵陶瓷粉体及制备方法
CN107902681B (zh) 一种钙铝水滑石的制备方法
WO2020113958A1 (zh) 一种机械力化学制备高性能铁红/黏土矿物杂化颜料的方法
CN107640776A (zh) 一种具有微‑介孔结构mfi分子筛的制备方法
CN110436907A (zh) 一种利用煤矸石制备莫来石的方法
CN106374104A (zh) 一种空气气氛制备氟磷酸钒钠材料的方法
CN107128958A (zh) 一种降低α‑Al2O3粉体相转温度的方法
CN106083001B (zh) 一种纳米晶蓝色陶瓷刚玉磨料及其制备方法
CN102127396B (zh) 高压制备磁致冷材料化合物及其制备方法
CN105036167A (zh) 一种六铝酸钙及其制备方法
WO2020195721A1 (ja) スピネル粉末
CN111362672A (zh) 一种铝矾土基陶瓷填料制备工艺
CN104150538A (zh) 一种低温制备BiFeO3方法
CN108217706A (zh) 一种Fe2O3和CuO共掺低温制备α-Al2O3粉体的方法
CN103570347B (zh) 一种纳米钛酸钡的四方相转变方法
CN109053181A (zh) 一种六铝酸钙轻质高强材料及其制备方法
CN113683418B (zh) 一种用于热喷涂的钽酸盐球形粉体CaMoTa2O9及其制备方法
CN105272315A (zh) 一种多孔锆铝酸钙及其制备方法
CN105152220B (zh) 球磨法制备尖晶石锰酸锂的方法
CN110550943A (zh) 一种微波加热制备高温尾气净化用低膨胀陶瓷材料的方法
CN106348773A (zh) 一种添加SiAlON‑AlN‑TiN的抗锂电材料侵蚀耐火坩埚

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170905