CN107124129A - 一种在线辨识感应电机全参数的方法 - Google Patents

一种在线辨识感应电机全参数的方法 Download PDF

Info

Publication number
CN107124129A
CN107124129A CN201710345153.3A CN201710345153A CN107124129A CN 107124129 A CN107124129 A CN 107124129A CN 201710345153 A CN201710345153 A CN 201710345153A CN 107124129 A CN107124129 A CN 107124129A
Authority
CN
China
Prior art keywords
mrow
msub
mover
msubsup
psi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710345153.3A
Other languages
English (en)
Other versions
CN107124129B (zh
Inventor
黄进
陈嘉豪
叶明�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710345153.3A priority Critical patent/CN107124129B/zh
Publication of CN107124129A publication Critical patent/CN107124129A/zh
Application granted granted Critical
Publication of CN107124129B publication Critical patent/CN107124129B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/09Motor speed determination based on the current and/or voltage without using a tachogenerator or a physical encoder
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开一种在线辨识感应电机全参数的方法。首先,以某种控制策略(如矢量控制)驱动感应电机正常运行;其次,在定子励磁电流上注入中频正弦波;然后,依照本方法给出的参数自适应律,可以保证包括转速在内的所有参数收敛到足够准确的值;最后,辨识所得的转速被用于无速度传感器控制。本方法不但同时对包括转速在内的五个参数进行辨识,而且其鲁棒性很强,即便是在转速暂态下参数辨识也能保持稳定。

Description

一种在线辨识感应电机全参数的方法
技术领域
本发明公开一种在线辨识感应电机全参数的方法,特别涉及一种基于电压模型和电流模型之间的匹配误差的感应电机的全参数辨识方法,属于电机参数辨识领域。
技术背景
研究无速度传感器感应电机驱动系统的全参数辨识的文献非常少,因为很难在不影响电机正常运行的前提下,保证多个参数的同时收敛。但是,在无速度传感器系统中,任何的参数误差都会直接影响转速辨识的精度,如果能实现对所有参数的辨识,将会是非常有益的。
本发明描述了一种在线辨识感应电机全参数的方法。该方法利用电压模型和电流模型之间的匹配误差来更新参数,为了保证全参数的收敛,需要在定子励磁电流中注入一个中频的正弦量,辨识得到的转速可以用于无速度传感器控制,而对其他参数的辨识保证了转速辨识的准确性。
发明内容
为了填补包括转速在内的全参数在线辨识的空白,本发明提出一种适用于感应电机的一种在线辨识电机全参数的方法。
一种在线辨识感应电机全参数的方法,在感应电机正常运行的前提下,通过注入额外激励,以实现包括转速在内的全参数辨识,进而实现无速度传感器控制,其实现步骤如下:
(1)对感应电机进行矢量控制;
(2)在定子励磁电流上注入中频正弦波,使得电机的磁链幅值产生中频小幅度的波动;
(3)依照参数自适应律,更新包括转速在内的五个参数的值;具体如下:
(3A)按电压模型和电流模型分别构造磁链估计器
其中,顶标“^”代表估计值;上标VM和CM代表电压模型和电流模型;转子磁链估计值定子电流is和定子电压us均表示矢量;代表转子时间常数的倒数;其中,待辨识参数包含定子电阻等效漏感等效转子电阻等效励磁电感和转速
(3B)计算模型间匹配误差ε
(3C)全参数的自适应律如下
其中,εα和εβ分别是α轴和β轴的磁链误差,且γ12345是待设计的增益;
(4)辨识所得的转速被用于无速度传感器控制。
所述步骤(1)中矢量控制包括如下步骤:
(1A)在转子磁场定向控制中,各电量被变换到MT系下,其M轴和转子磁链矢量对齐,T轴由M轴逆时针旋转90°电角度确定;
(1B)定子电流的T轴分量即为转矩电流,而M轴分量则为励磁电流;定子电流的M轴分量可选为电机的额定励磁电流。
所述步骤(2)中,
磁链幅值给定选为
相应的励磁电流按下式确定
其中,p代表微分算子,rreq是等效转子电阻,Lμ是等效励磁电感。
本发明的有益效果:
本发明描述了一种在线辨识感应电机全参数的方法。根据本方法辨识得到的转速可以用于无速度传感器控制,而对其他参数的辨识保证了转速辨识对其他参数变化的鲁棒性。而且,因辨识所需而注入的额外激励所造成的电机转速波动也非常有限。
附图说明
图1是实现本发明的间接转子磁场定向控制系统示意图;
图2是实现本发明的算法的仿真验证图。
具体实施方式
下面结合附图和实施例对本发明作进一步的阐述。
参见图1,强电部分,三相交流电源经过不控整流得到直流母线电压Udc,供给电压源型逆变器,再得到供给异步电机的三相电源。
弱电部分,采用矢量控制方式,包含电压、电流传感器,3相/2相静止Clark坐标变换模块,2相静止/2相同步速坐标变换模块,额定励磁电流和正弦波分量给定,转子磁链电压模型和电流模型计算模块,全参数自适应律模块,速度环PI模块,电流环PI模块,2相同步速/2相静止坐标变换模块,电压空间矢量脉宽调制模块。
本发明主要涉及本发明的在线辨识感应电机全参数的方法,其他模块为感应电机间接磁场定向控制所需的功能性模块,为本领域公知常识。
下面描述整个系统的工作流程,以及介绍各模块的连接关系。
1.由传感器测得三相异步电机的各相电流与电压,输入“3相/2相静止Clark坐标变换模块”,得到定子电流is的分量i和i,定子电压us的分量u和u
2.在间接转子磁场定向控制中;
(2A)各电量被变换到MT系下,其M轴和转子磁链矢量对齐,T轴由M轴逆时针旋转90°电角度确定;
(2B)定子电流的T轴分量即为转矩电流,而M轴分量则为励磁电流;定子电流的M轴分量给定为电机的额定励磁电流。
3.在额定励磁电流的基础上,在励磁电流中还需要注入一个中频正弦波分量。本例的励磁电流按下式确定
其中,rreq是等效转子电阻,Lμ是等效励磁电感。
4.利用电压模型和电流模型之间的匹配误差来更新全参数;
(4A)按电压模型和电流模型分别构造磁链估计器
其中,顶标“^”代表估计值;上标VM和CM代表电压模型和电流模型;转子磁链估计值定子电流is和定子电压us均表示矢量;代表转子时间常数的倒数;其中,待辨识参数包含定子电阻等效漏感等效转子电阻等效励磁电感和转速
(4B)有了电压模型和电流模型的磁链估计值以后,计算模型间匹配误差ε
(4C)然后,全参数的自适应律如下
其中,εα和εβ分别是α轴和β轴的磁链误差,且γ12345是待设计的增益。
5.辨识所得的转速可以用于无速度传感器控制,依据转速环PI计算相应的电流给定。
6.电流PI环则根据电流控制误差来计算电压给定。
7.电压空间矢量脉宽调制模块以α轴电压u和β轴电压u作为输入,输出三相PWM给逆变器的门极,进而驱动电机。
8.相应的仿真结果如图2所示。电机以无速度传感器控制运行。一开始,电机给定转速为50rpm,在10秒处给定负载6Nm,在30秒处对电阻和电感进行自适应,在100秒处,电机升速至150rpm,在转速暂态过程中,全参数辨识仍然保持稳定。

Claims (3)

1.一种在线辨识感应电机全参数的方法,其特征在于:
在感应电机正常运行的前提下,通过注入额外激励,以实现包括转速在内的全参数辨识,进而实现无速度传感器控制,其实现步骤如下:
(1)对感应电机进行矢量控制;
(2)在定子励磁电流上注入中频正弦波,使得电机的磁链幅值产生中频小幅度的波动;
(3)依照参数自适应律,更新包括转速在内的五个参数的值;具体如下:
(3A)按电压模型和电流模型分别构造磁链估计器
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>p</mi> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>&amp;mu;</mi> <mrow> <mi>V</mi> <mi>M</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>u</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <msub> <mi>i</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>&amp;sigma;</mi> </msub> <mi>p</mi> <msub> <mi>i</mi> <mi>s</mi> </msub> <mo>+</mo> <msup> <mi>v</mi> <mrow> <mi>V</mi> <mi>M</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>&amp;mu;</mi> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <mo>=</mo> <mo>-</mo> <mover> <mi>&amp;alpha;</mi> <mo>^</mo> </mover> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>&amp;mu;</mi> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <msub> <mi>i</mi> <mi>s</mi> </msub> <mo>+</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mi>J</mi> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>&amp;mu;</mi> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中,顶标“^”代表估计值;上标VM和CM代表电压模型和电流模型;转子磁链估计值定子电流is和定子电压us均表示矢量;代表转子时间常数的倒数;其中,待辨识参数包含定子电阻等效漏感等效转子电阻等效励磁电感和转速
(3B)计算模型间匹配误差ε
<mrow> <mi>&amp;epsiv;</mi> <mo>=</mo> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>&amp;mu;</mi> <mrow> <mi>V</mi> <mi>M</mi> </mrow> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mi>&amp;mu;</mi> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <mo>;</mo> </mrow>
(3C)全参数的自适应律如下
<mrow> <mi>p</mi> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;alpha;</mi> </msub> <mo>+</mo> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;beta;</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>p</mi> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>&amp;sigma;</mi> </msub> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;alpha;</mi> </msub> <msub> <mi>pi</mi> <mrow> <mi>&amp;alpha;</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;beta;</mi> </msub> <msub> <mi>pi</mi> <mrow> <mi>&amp;beta;</mi> <mi>s</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>p</mi> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>3</mn> </msub> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mrow> <mi>&amp;alpha;</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>L</mi> <mi>&amp;mu;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>&amp;alpha;</mi> <mi>&amp;mu;</mi> </mrow> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;alpha;</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mrow> <mi>&amp;beta;</mi> <mi>s</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>L</mi> <mi>&amp;mu;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>&amp;beta;</mi> <mi>&amp;mu;</mi> </mrow> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;beta;</mi> </msub> <mo>&amp;rsqb;</mo> </mrow>
<mrow> <mi>p</mi> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>&amp;mu;</mi> </msub> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>&amp;alpha;</mi> <mi>&amp;mu;</mi> </mrow> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;alpha;</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>&amp;beta;</mi> <mi>&amp;mu;</mi> </mrow> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;beta;</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>p</mi> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>&amp;beta;</mi> <mi>&amp;mu;</mi> </mrow> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;alpha;</mi> </msub> <mo>+</mo> <msubsup> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mrow> <mi>&amp;alpha;</mi> <mi>&amp;mu;</mi> </mrow> <mrow> <mi>C</mi> <mi>M</mi> </mrow> </msubsup> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;beta;</mi> </msub> <mo>)</mo> </mrow> </mrow>
其中,εα和εβ分别是α轴和β轴的磁链误差,且γ12345是待设计的增益;
(4)辨识所得的转速被用于无速度传感器控制。
2.如权利要求1所述的方法,其特征在于:所述步骤(1)中矢量控制包括如下步骤:
(1A)在转子磁场定向控制中,各电量被变换到MT系下,其M轴和转子磁链矢量对齐,T轴由M轴逆时针旋转90°电角度确定;
(1B)定子电流的T轴分量即为转矩电流,而M轴分量则为励磁电流;定子电流的M轴分量可选为电机的额定励磁电流。
3.如权利要求1所述的方法,其特征在于:所述步骤(2)中,
磁链幅值给定选为
<mrow> <mo>|</mo> <msubsup> <mi>&amp;psi;</mi> <mi>&amp;mu;</mi> <mo>*</mo> </msubsup> <mo>|</mo> <mo>=</mo> <mn>1.2</mn> <mo>+</mo> <mn>0.01</mn> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mn>50</mn> <mi>&amp;pi;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
相应的励磁电流按下式确定
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>i</mi> <mrow> <mi>M</mi> <mi>s</mi> </mrow> <mo>*</mo> </msubsup> <mo>=</mo> <msubsup> <mi>r</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mi>p</mi> <mo>|</mo> <msubsup> <mi>&amp;psi;</mi> <mi>&amp;mu;</mi> <mo>*</mo> </msubsup> <mo>|</mo> <mo>+</mo> <msubsup> <mi>L</mi> <mi>&amp;mu;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>|</mo> <msubsup> <mi>&amp;psi;</mi> <mi>&amp;mu;</mi> <mo>*</mo> </msubsup> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <mn>0.01</mn> <mo>&amp;times;</mo> <mn>50</mn> <mi>&amp;pi;</mi> </mrow> <msub> <mi>r</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>q</mi> </mrow> </msub> </mfrac> <mi>cos</mi> <mrow> <mo>(</mo> <mn>50</mn> <mi>&amp;pi;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>L</mi> <mi>&amp;mu;</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mn>1.2</mn> <mo>+</mo> <mn>0.01</mn> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <mrow> <mn>50</mn> <mi>&amp;pi;</mi> <mi>t</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中,p代表微分算子,rreq是等效转子电阻,Lμ是等效励磁电感。
CN201710345153.3A 2017-05-16 2017-05-16 一种在线辨识感应电机全参数的方法 Expired - Fee Related CN107124129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710345153.3A CN107124129B (zh) 2017-05-16 2017-05-16 一种在线辨识感应电机全参数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710345153.3A CN107124129B (zh) 2017-05-16 2017-05-16 一种在线辨识感应电机全参数的方法

Publications (2)

Publication Number Publication Date
CN107124129A true CN107124129A (zh) 2017-09-01
CN107124129B CN107124129B (zh) 2019-04-16

Family

ID=59727732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710345153.3A Expired - Fee Related CN107124129B (zh) 2017-05-16 2017-05-16 一种在线辨识感应电机全参数的方法

Country Status (1)

Country Link
CN (1) CN107124129B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889119A (zh) * 2019-03-26 2019-06-14 哈尔滨工业大学 一种感应电机定子电阻与转速并行解耦辨识方法
CN110875702A (zh) * 2019-12-17 2020-03-10 湘潭电机股份有限公司 一种异步牵引电机定子电阻在线检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354557A (zh) * 2001-11-28 2002-06-19 深圳安圣电气有限公司 异步电机参数辨识方法
US20060091847A1 (en) * 2004-10-28 2006-05-04 Abb Oy Method in connection with permanent magnet synchronous machines
CN102420561A (zh) * 2011-12-01 2012-04-18 国电南京自动化股份有限公司 基于级联高压变频器无速度传感器矢量控制方法
CN103701386A (zh) * 2014-01-03 2014-04-02 哈尔滨工业大学 基于观测磁链误差的异步电机无速度传感器的全阶磁链观测器的获取方法
CN105281630A (zh) * 2015-11-08 2016-01-27 浙江大学 异步电机无速度传感器系统中在线辨识定转子电阻的方法
JP6099488B2 (ja) * 2013-06-04 2017-03-22 三菱電機株式会社 交流回転機の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354557A (zh) * 2001-11-28 2002-06-19 深圳安圣电气有限公司 异步电机参数辨识方法
US20060091847A1 (en) * 2004-10-28 2006-05-04 Abb Oy Method in connection with permanent magnet synchronous machines
CN102420561A (zh) * 2011-12-01 2012-04-18 国电南京自动化股份有限公司 基于级联高压变频器无速度传感器矢量控制方法
JP6099488B2 (ja) * 2013-06-04 2017-03-22 三菱電機株式会社 交流回転機の制御装置
CN103701386A (zh) * 2014-01-03 2014-04-02 哈尔滨工业大学 基于观测磁链误差的异步电机无速度传感器的全阶磁链观测器的获取方法
CN105281630A (zh) * 2015-11-08 2016-01-27 浙江大学 异步电机无速度传感器系统中在线辨识定转子电阻的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
程国栋: "基于自适应状态观测器的异步电机无速度传感器矢量控制系统", 《变频器世界》 *
黄进 等: "基于二阶滑模与定子电阻自适应的转子磁链观测器及其无速度传感器应用", 《电工技术学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889119A (zh) * 2019-03-26 2019-06-14 哈尔滨工业大学 一种感应电机定子电阻与转速并行解耦辨识方法
CN109889119B (zh) * 2019-03-26 2020-06-30 哈尔滨工业大学 一种感应电机定子电阻与转速并行解耦辨识方法
CN110875702A (zh) * 2019-12-17 2020-03-10 湘潭电机股份有限公司 一种异步牵引电机定子电阻在线检测方法
CN110875702B (zh) * 2019-12-17 2021-05-25 湘潭电机股份有限公司 一种异步牵引电机定子电阻在线检测方法

Also Published As

Publication number Publication date
CN107124129B (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
Lai et al. Torque ripple modeling and minimization for interior PMSM considering magnetic saturation
Ge et al. Speed range extended maximum torque per ampere control for PM drives considering inverter and motor nonlinearities
EP2555420B1 (en) Self-commissioning procedure for inductance estimation in an electrical machine
CN103185839B (zh) 永磁电机电感参数测量装置及其方法
Tang et al. IPMSMs sensorless MTPA control based on virtual q-axis inductance by using virtual high-frequency signal injection
JP5989683B2 (ja) 電力変換器で実施されて電気モータの磁気飽和に関連するパラメータを特定するための制御方法
CN101615876B (zh) 一种隐极式永磁同步电机的调速控制系统和方法
CN102326329A (zh) 交流电机的控制装置及交流电机驱动系统
CN105281630B (zh) 异步电机无速度传感器系统中在线辨识定转子电阻的方法
US9379655B2 (en) Method of field weakening control of permanent magnet motor drivers
Pucci Direct field oriented control of linear induction motors
US9722522B2 (en) Method for controlling torque in permanent magnet motor drives
JP2008141835A (ja) モータの制御方法及びそれを利用するモータ制御装置
Nie et al. Deadbeat-direct torque and flux control for wound field synchronous machines
Hiware et al. Indirect field oriented control for induction motor
Truong et al. Torque ripple minimization in non-sinusoidal synchronous reluctance motors based on artificial neural networks
Balamurali et al. Noninvasive and improved torque and efficiency calculation toward current advance angle determination for maximum efficiency control of PMSM
Omrane et al. Modeling and simulation of soft sensor design for real-time speed and position estimation of PMSM
Vasudevan et al. New direct torque control scheme of induction motor for electric vehicles
CN107124129A (zh) 一种在线辨识感应电机全参数的方法
CN107465374B (zh) 一种以反电势作为状态的感应电机全阶自适应观测方法
Wu et al. A field reconstruction technique for efficient modeling of the fields and forces within induction machines
Aktaş et al. A computer‐aided educational tool for vector control of AC motors in graduate courses
CN102955862A (zh) 一种永磁同步电机状态测量方法
Jeong et al. Parameter identification of an induction motor drive with magnetic saturation for electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190416

CF01 Termination of patent right due to non-payment of annual fee