CN107121374A - Formation condition relative permeability determines device - Google Patents

Formation condition relative permeability determines device Download PDF

Info

Publication number
CN107121374A
CN107121374A CN201710375176.9A CN201710375176A CN107121374A CN 107121374 A CN107121374 A CN 107121374A CN 201710375176 A CN201710375176 A CN 201710375176A CN 107121374 A CN107121374 A CN 107121374A
Authority
CN
China
Prior art keywords
module
pressure
display module
ring
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710375176.9A
Other languages
Chinese (zh)
Inventor
温源昌
方洋
李培春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Ruilaibo Petroleum Technology Co Ltd
Beijing Yong Ruida Scientific & Trading Co Ltd
Original Assignee
Beijing Ruilaibo Petroleum Technology Co Ltd
Beijing Yong Ruida Scientific & Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Ruilaibo Petroleum Technology Co Ltd, Beijing Yong Ruida Scientific & Trading Co Ltd filed Critical Beijing Ruilaibo Petroleum Technology Co Ltd
Priority to CN201710375176.9A priority Critical patent/CN107121374A/en
Publication of CN107121374A publication Critical patent/CN107121374A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

The present invention proposes a kind of formation condition relative permeability and determines device, including:Rock core vacuumizing saturation block, gas boosting module, flow operations module, container module, gripper module, Homothermal Proof Box, metering module;The rock core vacuumizing saturation block is arranged in constant speed and constant pressure pump mobile cabinet, the rock core vacuumizing saturation block is tracked pump and is connected respectively with flow operations module by the constant speed and constant pressure pump, the confined pressure, the gas boosting module is connected with flow operations module, the container module, gripper module are all arranged in Homothermal Proof Box, the metering module is arranged in chamber mobile cabinet, and is arranged on metering module mobile cabinet.The present invention is made simple to operate and quick, automaticity height, the flow in metering system can be read automatically, the workload of experimenter is reduced using the method automatically and manually combined together.

Description

Formation condition relative permeability determines device
Technical field
The present invention relates to relative permeability determination techniques field, more particularly to a kind of formation condition relative permeability determines dress Put.
Background technology
Relative permeability determines the device that device is multiphase flow relative permeability in a set of multi-functional research formation rock, Can establishing criteria SYT 5345-2007《Two-phase fluid relative permeability assay method in rock》Carry out steady state method/cold store enclosure Oil-water relative permeability is determined, liquid phase is tested to permeability determination, can also be carried out startup piezometry, oil-water displacement efficiency and be determined And the experiment such as reservoir sensitivity evaluation.
Wherein steady state method oil/water, it is theoretical for one-dimensional darcy flow that gas water surveys the main theoretical basis of the reform of Chinese economic structure of relative permeability, And it is to ignore capillary pressure and Action of Gravity Field, it is assumed that two phase flow is immiscible and incompressible.In total flow during experiment Under conditions of constant, constant speed is injected in rock core simultaneously by a certain percentage for oil, water, when import and export pressure and oil, water-carrying capacity are stable When, rock core water containing saturability no longer changes, and now oil, distribution of the water in rock core space are uniform, reach stable state, Oil, the effective permeability of water are constants.Therefore using rock core import and export pressure and oil, water-carrying capacity is determined, by Darcy's law Oil, water effective permeability and the steady-state permeation rate value in rock core are calculated, rock core is calculated with weight method average accordingly aqueous Saturation degree.Pass through and change oil, water and inject ratio, it is possible to obtain a series of oil under different water cut saturation degrees, water penetration rate value, And thus draw out the oil of rock core, water permeability saturation curve figure.
Wherein cold store enclosure oil/water, gas water, it is with Buckley-Leverett one-dimensional two that gas/oil relative permeability, which is determined, Phase oil-water displacement front is promoted based on theory, and is to ignore capillary pressure and Action of Gravity Field.Assuming that two phase flow is can not be mutual Molten and incompressible, oil, water saturation are uniform in any section of rock core.By a kind of saturated with fluid of rock core during experiment, use One other fluid carries out displacement, during water drive oil, and oil, distribution of the water saturation in porous media are away from discrete time Function, this process claims unstable process.According to the requirement of simulated conditions, constant-pressure drop or constant speedpump water are carried out in reservoir cores Oil displacement experiment, measures the quality of every kind of fluid in the rock core port of export and the pressure difference at rock core two ends changes with time value, with " JBN " Method calculates and obtains oil/water, gas water, gas/oil relative permeability, and draws oil/water, gas water, and gas/oil relative permeability is with containing The graph of relation of water saturation.
It is general by injected system, model system, vacuum saturation system, acquisition system, metering that relative permeability determines device System, temperature and pressure control system and accessory system etc. are constituted.Conventional relative permeability measurement apparatus has the following disadvantages:
(1) conventional relative permeability measurement apparatus automaticity is not high, and metering system is often using human metering Method enters promoting the circulation of qi, oil, water metering;
(2) differential pressure measurement precision is not high, and traditional relative permeability measurement apparatus typically only has a kind of larger pressure of range Force snesor, when the pressure difference in experimentation is smaller, the sensitivity of differential pressure pickup measurement is not high;
(3) metering system is disposed in the interior environment, does not account for error caused by temperature.
The content of the invention
The purpose of the present invention is intended at least solve one of described technological deficiency.
Therefore, it is an object of the invention to propose that a kind of formation condition relative permeability determines device, by container module, folder Holder module, metering module and corresponding pipe valve are arranged in Homothermal Proof Box, make them under the conditions of constant air bath Simulated formation temperature conditionss carry out various experiments, reduce influence of the temperature to metering system.
To achieve these goals, the present invention provides a kind of formation condition relative permeability and determines device, including:Rock core is taken out Vacuum saturation block, constant speed and constant pressure pump mobile cabinet, computer module, constant speed and constant pressure pump, confined pressure tracking pump, gas boosting module, Flow operations module, container module, gripper module, Homothermal Proof Box, metering module, metering module mobile cabinet, chamber are moved Dynamic cabinet;
The rock core vacuumizing saturation block is arranged in constant speed and constant pressure pump mobile cabinet, the rock core vacuumizing saturation block Track pump by the constant speed and constant pressure pump, the confined pressure and be connected respectively with flow operations module, the gas boosting module and stream Journey operation module is connected, and the flow operations module is arranged at beside Homothermal Proof Box, the flow operations module and the perseverance Temperature test box is arranged on chamber mobile cabinet, and the container module, gripper module are all arranged in Homothermal Proof Box, described Metering module is arranged in chamber mobile cabinet, and is arranged on metering module mobile cabinet,
The gas boosting module includes nitrogen source device, booster pump, air silent pump, the changeable pressure regulator valve of three-level, institute Stating container module includes tank, oil vessel, humidifier vessel, water filling port, pouring orifice, gas injection port, emptying/Butterworth Hatch;Institute State one end connection water filling port of tank, its other end connection gripper module, one end connection oiling of the oil vessel Mouthful, its other end connection gripper module, one end of the humidifier vessel connects gas injection port, its other end by gas flowmeter Emptying/Butterworth Hatch, gripper module are connected respectively, and the gas injection port connects the output end of the changeable pressure regulator valve of three-level, described three The input connection booster pump of the changeable pressure regulator valve of level, the input connection nitrogen source device of the booster pump, the air is quiet Sound pump connects the input of booster pump, and the gripper module connects metering module, constant speed and constant pressure pump, confined pressure tracking pump respectively;
The computer module includes computer, multiple pressure sensors, multiple differential pressure pickups and temperature sensor, institute Computer installation is stated on the constant speed and constant pressure pump mobile cabinet, the computer respectively with each pressure sensor, each pressure difference Sensor and temperature sensor connection, each acquisition port of the gripper module be designed with multiple different pressure sensors, Differential pressure pickup, the temperature sensor is arranged in Homothermal Proof Box.
Further, the rock core vacuumizing saturation block includes vavuum pump, drying bottle, saturation bottle, vacuum meter, control pipe Valve member, the vavuum pump is by controlling pipe valve to connect between one end of saturation bottle, and one end of the vavuum pump and saturation bottle Provided with vacuum meter, the other end of the saturation bottle connects one end of drying bottle, and the other end of the drying bottle is provided with another control Pipe valve.
Further, the metering module includes two-phase laminated flow pipe, jigger, separation day chessboard, metering day chessboard, the separation Its chessboard is provided with two-phase laminated flow pipe, and the metering day chessboard is provided with jigger.
Further, when carrying out gas-liquid separation metering, the gas outlet of the two-phase laminated flow pipe passes through gas mass flow The air inlet of meter connection jigger.
Further, when carrying out oil-water separation metering, the gas outlet of the two-phase laminated flow pipe is blocked using rubber stopper, is gone out The mouth of a river connects the air inlet of jigger.
Further, the gripper module includes left conehead pressure cap, left plug pressure cap, left plug, left conehead, left conehead Seal assembly, model cylinder, rock core sleeve, rock core, right conehead, right conehead seal assembly, right conehead tense set, ring pressure chamber group Part, the first ring hydraulic plunger seal assembly, the second ring hydraulic plunger seal assembly, ring hydraulic plunger, right plug regulation ring, right plug are carved Ring, right plug, ring pressure chamber, confined pressure chamber;Rock core is housed, the two ends of the rock core sleeve pass through left plug inside the rock core sleeve Blocked with right plug, the rock core sleeve is put into confined pressure intracavitary, the outside of the confined pressure chamber is provided with model cylinder, the left conehead Insert on the inside of left plug, and fixed by left conehead seal assembly and left conehead pressure cap, the left plug is fixed by left plug pressure cap, The right conehead is inserted on the inside of right plug, and tenses set fixation by right conehead seal assembly and right conehead, and the right plug is by the right side Plug regulation ring and right plug are carved ring and fixed, and the right plug regulation ring and right conehead tense between covering and press chamber component provided with ring, The ring pressure chamber component internal presses chamber provided with ring, and the ring pressure chamber component passes through the first ring hydraulic plunger seal assembly and the second ring pressure Plunger seal component tenses set sealing with right plug regulation ring and right conehead.
Further, the gripper module also includes support, and the support is arranged at the bottom of model cylinder.
Further, the gripper module is also connected with handlance.
Further, the flow operations module also includes pressure display module, upstream in upstream high display module, upstream Low pressure display module, confined pressure display module, ring pressure display module, downstream pressure display module, High Pressure Difference display module, middle pressure difference Display module, low voltage difference display module;Display module, upstream low-pressure is pressed to show mould in the upstream high display module, upstream Block all connects the upstream end of the gripper module, and the downstream pressure display module connects the downstream of the gripper module End, the confined pressure display module connects the confined pressure tracking pump incoming end of the gripper module, the ring pressure display module connection The constant speed and constant pressure pump incoming end of the gripper module, the High Pressure Difference display module is connected to upstream high display module and institute State between downstream pressure display module, pressure display module shows with the downstream pressure in medium pressure difference display module connection upstream Show between module, the low voltage difference display module is connected between upstream low-pressure display module and the downstream pressure display module.
Further, in addition to safety control system and servicing unit, the safety control system at least includes SMC electromagnetism Valve, pneumatic operated valve, air switch;The servicing unit at least includes flow pipeline, valve, threeway four-way, mobile support, full diameter Clamper lift truck, full diameter clamper heating and thermal insulation set.
The formation condition relative permeability of the present invention determines device and had the advantages that:
1st, the present invention, can be according to displacement pressure to ensure measurement accuracy using the switching of the pressure sensor of different ranges Size selects the pressure sensor of different ranges to measure.
2nd, because gas dosing precision needs to reach 0.1ml, therefore influence of the temperature to liquid volume be can not ignore.This hair It is bright that container module, gripper module, metering module and corresponding pipe valve are arranged in Homothermal Proof Box, make them constant Air bath under the conditions of simulated formation temperature conditionss carry out various experiments, influence of the reduction temperature to metering module.
3rd, the present invention makes simple to operate and quick, automaticity height using the method automatically and manually combined together, can The automatic flow read in metering system, reduces the workload of experimenter.
4th, the described formation condition relative permeability of we's invention determines the core holding unit model integrated stand in device Structure design comparison is novel, and dismounting is easy to maintenance, and different length rock core is adapted to by it, and the dismounting of rock core is very easy to.
The additional aspect of the present invention and advantage will be set forth in part in the description, and will partly become from the following description Obtain substantially, or recognized by the practice of the present invention.
Brief description of the drawings
The above-mentioned and/or additional aspect and advantage of the present invention will become from description of the accompanying drawings below to embodiment is combined Substantially and be readily appreciated that, wherein:
Fig. 1 is structure chart of the invention;
Fig. 2 is connection diagram of the invention;
Fig. 3 is the structural representation of the rock core vacuumizing saturation block of the present invention;
Fig. 4 is flow operations modular structure schematic diagram of the invention;
Metering module connection diagram when Fig. 5 is carry out gas-liquid separation metering of the invention;
Metering module connection diagram when Fig. 6 is carry out oil-water separation metering of the invention;
Fig. 7 is the structure chart of the gripper module of the present invention.
Embodiment
Embodiments of the invention are described below in detail, the example of the embodiment is shown in the drawings, wherein from beginning to end Same or similar label represents same or similar element or the element with same or like function.Below with reference to attached The embodiment of figure description is exemplary, it is intended to for explaining the present invention, and be not considered as limiting the invention.
The present invention provides a kind of formation condition relative permeability and determines device, shown in refer to the attached drawing 1-2, including:Rock core is taken out Vacuum saturation block 1, constant speed and constant pressure pump mobile cabinet 2, computer module 3, constant speed and constant pressure pump 41, confined pressure tracking pump 42, gas increase Die block 5, flow operations module 6, container module 7, gripper module 8, Homothermal Proof Box 9, metering module 10, metering module are moved Dynamic cabinet 11, chamber mobile cabinet 12.
Rock core vacuumizing saturation block 1 is arranged in constant speed and constant pressure pump mobile cabinet 2, and rock core vacuumizing saturation block 1 passes through Constant speed and constant pressure pump 41, confined pressure tracking pump 42 are connected with flow operations module 6 respectively, gas boosting module 5 and flow operations module 6 Connection, flow operations module 6 is arranged at the side of Homothermal Proof Box 9, and flow operations module 6 and Homothermal Proof Box 9 are arranged at experiment On case mobile cabinet 12, container module 7, gripper module 8 are all arranged in Homothermal Proof Box 9, and metering module 10 is arranged at experiment In case mobile cabinet 9, and it is arranged on metering module mobile cabinet 11.
The operation principle of rock core vacuumizing saturation block is, main that rock core is carried out using vacuum system to vacuumize at saturation Reason, carries out vacuumize process to rock core first, removes the miscellaneous gas inside rock core, and certain specification is then added under vacuum conditions Liquid is soaked, and allows rock core to fully absorb, in order to accelerate absorption rate, in immersion process, and one is applied to rock core and liquid Fixed external pressure, its external pressure can according to rock core is loose and compactness extent depending on.
Wherein, gas boosting module 5 includes the changeable tune of nitrogen source device 51, booster pump 52, air silent pump 53, three-level Pressure valve 54, container module 7 includes tank 71, oil vessel 72, humidifier vessel 73, water filling port 75, pouring orifice 76, gas injection port 79th, emptying/Butterworth Hatch 74;One end connection water filling port 75 of tank 71, its other end connection gripper module 8, oil storage is held One end connection pouring orifice 76 of device 72, its other end connection gripper module 8, one end of humidifier vessel 73 passes through gas flowmeter 710 connection gas injection ports 79, its other end connects emptying/Butterworth Hatch 74, gripper module 8 respectively, and the connection three-level of gas injection port 79 can Switch the output end of pressure regulator valve 54, the input connection booster pump 52 of the changeable pressure regulator valve 54 of three-level, the input of booster pump 52 Nitrogen source device 51 is connected, air silent pump 53 connects the input of booster pump 52, and gripper module 8 connects metering module 10, Gripper module 8 connects constant speed and constant pressure pump 41 by ring pressure injection entrance 77, and connecing confined pressure by confined pressure inlet 78 tracks pump 42.Clamping Device module 8 is also connected with handlance 43.
Computer module 3 includes computer, multiple pressure sensors 31, multiple differential pressure pickups 32 and temperature sensor, Computer installation on constant speed and constant pressure pump mobile cabinet 2, computer respectively with each pressure sensor 31, each differential pressure pickup 32 With temperature sensor connection, each acquisition port of gripper module 8 is designed with multiple different pressure sensors 31, pressure difference sensing Device 32, temperature sensor is arranged in Homothermal Proof Box 9.
Because displacement system is carried out under conditions of without back pressure, so model downstream pressure may be considered constant air Pressure.The oil-water relative permeability of conventional core is commonly used to measure in view of the displacement system simultaneously.Conventional profit is relative During permeability survey, the displacement pressure at two ends may very little.Therefore the present invention is mutually tied using upstream pressure collection with pressure difference collection The pressure difference acquisition scheme of conjunction.As shown in Figure 2,4.
Upstream pressure gathers the collection pressure for being divided into 25Mpa, 16Mpa, 5MPa Three Estate, and pressure difference collection is divided into The collection of tri- pressure precisions of 6.6Mpa, 1.4Mpa, 0.14Mpa.That treats back pressure to be conducive to user's extension to carry out mutually oozes reality Test, the present invention devises 5Mpa pressure sensor in case using in the downstream of gripper module 8.
Pressure differential metering system, can be according to displacement to ensure measurement accuracy using the switching of the pressure sensor of different ranges Pressure size selects the pressure sensor of different ranges to measure.
As shown in figure 3, rock core vacuumizing saturation block includes vavuum pump 101, drying bottle 104, saturation bottle 103, vacuum meter 102nd, control pipe valve 105, vavuum pump 101 by control pipe valve 105 connect saturation bottle 103 one end, and vavuum pump 101 with Vacuum meter 102 is provided between one end of saturation bottle 103, the other end of saturation bottle 103 connects one end of drying bottle 104, drying bottle 104 other end is provided with another control pipe valve.
As shown in figure 4, flow operations module also include upstream high display module 61, upstream in pressure display module 62, on Trip low pressure display module 63, confined pressure display module 64, ring pressure display module 65, downstream pressure display module 66, High Pressure Difference are shown Module 67, middle pressure difference display module 68, low voltage difference display module 69;Display module is pressed in upstream high display module 61, upstream 62nd, upstream low-pressure display module 63 all connects the upstream end of gripper module 8, the connection clamper mould of downstream pressure display module 66 The downstream of block 8, the confined pressure tracking pump incoming end of the connection gripper module 8 of confined pressure display module 64, ring pressure display module 65 connects The constant speed and constant pressure pump incoming end of gripper module 8 is connect, High Pressure Difference display module 67 is connected to upstream high display module 61 with Swim between pressure display module 66, display module 62 and downstream pressure display module are pressed in the middle connection of pressure difference display module 67 upstream Between 66, between the connection upstream low-pressure of low voltage difference display module 69 display module 63 and downstream pressure display module 66.
In order in unstable state permeability survey, accurately measure fuel-displaced, gas and water accumulative gas, the present invention is using close The poor method of degree realizes the separation and metering of oil gas, profit, air water.
Metering module includes two-phase laminated flow pipe 1103, jigger 1104, separation day chessboard 1101, metering day chessboard 1102, separation Its chessboard 1101 is provided with two-phase laminated flow pipe 1103, and metering day chessboard 1102 is provided with jigger 1104.
1) when carrying out gas-liquid separation metering, as shown in figure 5, the gas outlet of two-phase laminated flow pipe 1103 passes through gas mass flow Gauge 1105 connects the air inlet of jigger 1104.
When liquid vapour mixture enters separation day chessboard, gas floats, liquid sinks.By separating the quality readings of day chessboard just The volume of liquid can be calculated, calculation formula is as follows:
Vl=M/ ρl, (1);
Wherein, VlFor liquid volume, M is the reading of separation day chessboard, ρlFor the density of liquid.
The pressure change very little of gas in whole metering system, it is believed that the density of gas is in whole metering system Definite value.When the flow very little of gas, gas-liquid just can be calculated by measuring the volume for the liquid that gas in day chessboard is discharged and is mixed The volume V of gas in compoundg
Vg=(M2-M)/ρl
Wherein, M2To measure the quality of day chessboard.
2) when carrying out oil-water separation metering, as shown in fig. 6, the gas outlet of two-phase laminated flow pipe 1103 utilizes rubber stopper 1106 Block, delivery port connects the air inlet of jigger 1104.
The density of usually used crude oil is general in experiment and water has obvious density variation.Present invention design passes through density contrast Carry out the design of water-oil separating.
When carrying out water-oil separating, the gas outlet of two phases were separated pipe is blocked using rubber stopper.Two phases were separated in advance manages In be full of experimental water.After oil water mixture enters two-phase laminated flow pipe from import, because the density difference of profit is larger, on oil It is floating.But both cumulative volumes keep constant in two-phase laminated flow pipe.Profit volume V just can be calculated by the change of qualityo。 Calculation formula is as follows:
It can draw:
Vo=(M1-M)/(ρwo)
Wherein, M1For separation day chessboard initial reading, M is separation day chessboard real time readouts, ρwFor aqueous phase densities, ρoIt is close for oil phase Degree.
The reading of day chessboard is measured with reference to aqueous phase, the volume of exit port water just can be calculated:
Vw=(Mw-M2)/ρw-Vo
Wherein MwFor metering day chessboard real time readouts, M2To measure the initial reading of day chessboard.
As shown in fig. 7, the structure to gripper module is described in detail as follows:
The global design material of gripper module uses 316 stainless steels, and material is corrosion-resistant, resistance to 180 DEG C of high temperature, resistance to 70MPa High pressure;Rock core sleeve is using 75 ° of fluorubber, material high temperature resistant, the corrosion of oil resistant chemicals-resistant;All seal forms use O-ring Plus PEEK back-up rings, O-ring material selection fluorubber, back-up ring material is PEEK, and PEEK scientific name polyether-ether-ketones are material high temperature resistant, resistance to Burn into intensity high abrasion.
Gripper module overall architecture design comparison is novel, and dismounting is easy to maintenance, and different length rock core is adapted to by it, The dismounting of rock core is very easy to.
Gripper module 8 includes left conehead pressure cap 82, left plug pressure cap 83, left plug 84, left conehead 85, the sealing of left conehead Component 86, model cylinder 87, rock core sleeve 88, rock core 89, right conehead 810, right conehead seal assembly 811, right conehead tense set 812nd, ring pressure chamber component 813, the first ring hydraulic plunger seal assembly 814, the second ring hydraulic plunger seal assembly 815, ring hydraulic plunger 816th, right plug regulation ring 817, right plug carve ring 818, right plug 819, ring pressure chamber 820, confined pressure chamber 821;In rock core sleeve 88 Portion is equipped with rock core 89, and the two ends of rock core sleeve 88 are blocked by left plug 84 and right plug 819, and rock core sleeve 88 is put into confined pressure chamber In 820, the outside of confined pressure chamber 820 is provided with model cylinder 87, and left conehead 85 inserts the left inner side of plug 84, and by left conehead sealing group Part 86 and left conehead pressure cap 82 are fixed, and left plug 84 is fixed by left plug pressure cap 83, and right conehead 810 inserts the right inner side of plug 819, And the fixation of set 812 is tensed by right conehead seal assembly 811 and right conehead, right plug 819 is by right plug regulation ring 817 and right plug Carve ring 818 to fix, right plug regulation ring 817 and right conehead are tensed between covering 812 provided with ring pressure chamber component 813, ring pressure chamber component Chamber 820 is pressed in 813 inside provided with ring, and ring pressure chamber component 813 is close by the first ring hydraulic plunger seal assembly 814 and the second ring hydraulic plunger Sealing assembly 815 tenses set 812 with right plug regulation ring 817 and right conehead and sealed.In addition, gripper module 8 also includes support 81, Support 81 is arranged at the bottom of model cylinder 87.
During using gripper module, rock core is put into inside rock core sleeve, two ends are blocked with plug, is integrally put into confined pressure chamber In.Experimentation injects fluid into rock core by the end part plug of side, while injecting high-pressure fluid into confined pressure chamber, to protect Firmly the pressure outside rock core sleeve is higher than rock core sleeve internal pressure, and this makes it possible to gum cover is squeezed on rock core, it is ensured that note Entering the fluid inside rock core sleeve can pass through inside rock core, without the gap seepage flow along chuck and rock core.
The formation condition relative permeability of the present invention, which determines device, also includes safety control system and servicing unit, safety control System processed at least includes SMC magnetic valves, pneumatic operated valve, air switch;Servicing unit at least includes flow pipeline, valve, threeway four Logical, mobile support, full diameter clamper lift truck, full diameter clamper heating and thermal insulation set.
All parts are connected by the pipelines of Φ 3 in the overall flow of the present invention, coordinate valve and threeway to complete whole flow process Control, take in flow manually and automatically control to be combined with each other and realize its operating function, meet customer need, injected in flow The switching of system is by controlling to complete manually due to being insulating box peripheral operation;The switching of different experiments sample injection It is, in insulating box built-in function, therefore to take automatic switchover;Automatic switchover is taken in the switching of pressure and pressure difference range.
Operation principle:Vacuumize process is carried out to rock core first with rock core vacuumizing saturation block, removed inside rock core Miscellaneous gas, then rock core is put into inside rock core sleeve, two ends are blocked with plug, is integrally put into confined pressure intracavitary, now opens Homothermal Proof Box simulated formation temperature, then controls gas boosting module, flow operations module, container module, from clamper mould The end part plug of block side injects fluid into rock core, in immersion process, applies certain external pressure to rock core and liquid, simultaneously High-pressure fluid is injected into confined pressure chamber, the pressure outside rock core sleeve is kept and is higher than rock core sleeve internal pressure;Specific experiment is walked Suddenly standard SYT 5345-2007 be can refer to《Two-phase fluid relative permeability assay method in rock》, it is sequentially completed saturation water, satisfies With oil, set up irreducible water saturation and measure oil phase effective permeability, ageing oil, pipeline emptying etc. after process, according to experiment side Case test and record data, and output object is incorporated into metering module and measured, and is calculated and is obtained testing displacement fluid Relative permeability, and draw the relative permeability of experiment displacement fluid and the graph of relation of water saturation.After the completion of experiment, Clear up and maintain instrument.
The formation condition relative permeability of the present invention determines device and had the advantages that:
1st, the present invention, can be according to displacement pressure to ensure measurement accuracy using the switching of the pressure sensor of different ranges Size selects the pressure sensor of different ranges to measure.
2nd, because gas dosing precision needs to reach 0.1ml, therefore influence of the temperature to liquid volume be can not ignore.This hair It is bright that container module, gripper module, metering module and corresponding pipe valve are arranged in Homothermal Proof Box, make them constant Air bath under the conditions of simulated formation temperature conditionss carry out various experiments, influence of the reduction temperature to metering module.
3rd, the present invention makes simple to operate and quick, automaticity height using the method automatically and manually combined together, can The automatic flow read in metering system, reduces the workload of experimenter.
4th, the described formation condition relative permeability of we's invention determines the core holding unit model integrated stand in device Structure design comparison is novel, and dismounting is easy to maintenance, and different length rock core is adapted to by it, and the dismounting of rock core is very easy to.
Although embodiments of the invention have been shown and described above, it is to be understood that above-described embodiment is example Property, it is impossible to limitation of the present invention is interpreted as, one of ordinary skill in the art is not departing from the principle and objective of the present invention In the case of above-described embodiment can be changed within the scope of the invention, change, replace and modification.The scope of the present invention Extremely equally limited by appended claims.

Claims (10)

1. a kind of formation condition relative permeability determines device, it is characterised in that including:Rock core vacuumizing saturation block, constant speed Constant pressure pump mobile cabinet, computer module, constant speed and constant pressure pump, confined pressure tracking pump, gas boosting module, flow operations module, container Module, gripper module, Homothermal Proof Box, metering module, metering module mobile cabinet, chamber mobile cabinet;
The rock core vacuumizing saturation block is arranged in constant speed and constant pressure pump mobile cabinet, and the rock core vacuumizing saturation block passes through The constant speed and constant pressure pump, confined pressure tracking pump are connected with flow operations module respectively, and the gas boosting module is grasped with flow Make module connection, the flow operations module is arranged at beside Homothermal Proof Box, the flow operations module and constant temperature examination Tryoff is arranged on chamber mobile cabinet, and the container module, gripper module are all arranged in Homothermal Proof Box, the metering Module is arranged in chamber mobile cabinet, and is arranged on metering module mobile cabinet,
The gas boosting module includes nitrogen source device, booster pump, air silent pump, the changeable pressure regulator valve of three-level, the appearance Device module includes tank, oil vessel, humidifier vessel, water filling port, pouring orifice, gas injection port, emptying/Butterworth Hatch;The storage One end connection water filling port of water receptacle, its other end connection gripper module, one end connection pouring orifice of the oil vessel, its The other end connects gripper module, and one end of the humidifier vessel connects gas injection port, its other end difference by gas flowmeter Emptying/Butterworth Hatch, gripper module are connected, the gas injection port connects the output end of the changeable pressure regulator valve of three-level, and the three-level can Switch the input connection booster pump of pressure regulator valve, the input connection nitrogen source device of the booster pump, the air silent pump The input of booster pump is connected, the gripper module connects metering module, constant speed and constant pressure pump, confined pressure tracking pump respectively;
The computer module includes computer, multiple pressure sensors, multiple differential pressure pickups and temperature sensor, the meter Calculation machine is arranged on the constant speed and constant pressure pump mobile cabinet, the computer respectively with each pressure sensor, each pressure difference sensing Device and temperature sensor connection, each acquisition port of the gripper module are designed with multiple different pressure sensors, pressure difference Sensor, the temperature sensor is arranged in Homothermal Proof Box.
2. formation condition relative permeability as claimed in claim 1 determines device, it is characterised in that:The rock core vacuumizing saturation Module includes vavuum pump, drying bottle, saturation bottle, vacuum meter, control pipe valve, and the vavuum pump is by controlling pipe valve connection full Vacuum meter is provided between one end of bottle, and one end of the vavuum pump and saturation bottle, the other end connection of the saturation bottle is dry One end of dry bottle, the other end of the drying bottle is provided with another control pipe valve.
3. formation condition relative permeability as claimed in claim 1 determines device, it is characterised in that:The metering module includes two Be separated pipe, jigger, separation day chessboard, metering day chessboard, and the separation day chessboard is provided with two-phase laminated flow pipe, the metering day chessboard Provided with jigger.
4. formation condition relative permeability as claimed in claim 3 determines device, it is characterised in that:Carrying out gas-liquid separation metering When, the gas outlet of the two-phase laminated flow pipe connects the air inlet of jigger by gas mass flow gauge.
5. formation condition relative permeability as claimed in claim 3 determines device, it is characterised in that:Carrying out oil-water separation metering When, the gas outlet of the two-phase laminated flow pipe is blocked using rubber stopper, and delivery port connects the air inlet of jigger.
6. formation condition relative permeability as claimed in claim 1 determines device, it is characterised in that:The gripper module includes Left conehead pressure cap, left plug pressure cap, left plug, left conehead, left conehead seal assembly, model cylinder, rock core sleeve, rock core, the right side Conehead, right conehead seal assembly, right conehead tense set, ring pressure chamber component, the first ring hydraulic plunger seal assembly, the second ring hydraulic plunger Seal assembly, ring hydraulic plunger, right plug regulation ring, right plug carve ring, right plug, ring pressure chamber, confined pressure chamber;In the rock core sleeve Portion is equipped with rock core, and the two ends of the rock core sleeve are blocked by left plug and right plug, and the rock core sleeve is put into confined pressure intracavitary, The outside of the confined pressure chamber is provided with model cylinder, and the left conehead is inserted on the inside of left plug, and by left conehead seal assembly and a left side Conehead pressure cap is fixed, and the left plug is fixed by left plug pressure cap, and the right conehead is inserted on the inside of right plug, and close by right conehead Sealing assembly and right conehead tense set and fixed, and the right plug is carved ring by right plug regulation ring and right plug and fixed, the right plug Regulation ring and right conehead press chamber component between tensing set provided with ring, and the ring pressure chamber component internal presses chamber, the ring pressure provided with ring Chamber component is drawn by the first ring hydraulic plunger seal assembly and the second ring hydraulic plunger seal assembly with right plug regulation ring and right conehead Tight set sealing.
7. formation condition relative permeability as claimed in claim 6 determines device, it is characterised in that:The gripper module is also wrapped Support is included, the support is arranged at the bottom of model cylinder.
8. formation condition relative permeability as claimed in claim 1 determines device, it is characterised in that:The gripper module also with Handlance is connected.
9. formation condition relative permeability as claimed in claim 1 determines device, it is characterised in that:The flow operations module is also Including pressing display module, upstream low-pressure display module, confined pressure display module, ring pressure display in upstream high display module, upstream Module, downstream pressure display module, High Pressure Difference display module, middle pressure difference display module, low voltage difference display module;The upstream is high Pressure display module, upstream low-pressure display module all connect the upstream end of the gripper module in pressure display module, upstream, described Downstream pressure display module connects the downstream of the gripper module, and the confined pressure display module connects the gripper module Confined pressure tracking pump incoming end, ring pressure display module connects the constant speed and constant pressure pump incoming end of the gripper module, described High Pressure Difference display module is connected between upstream high display module and the downstream pressure display module, medium pressure difference display In module connection upstream between pressure display module and the downstream pressure display module, the low voltage difference display module connects upstream Between low pressure display module and the downstream pressure display module.
10. formation condition relative permeability as claimed in claim 1 determines device, it is characterised in that:Also include security control system System and servicing unit, the safety control system at least include SMC magnetic valves, pneumatic operated valve, air switch;The servicing unit is extremely Include flow pipeline, valve, threeway four-way, mobile support, full diameter clamper lift truck, full diameter clamper heating and thermal insulation less Set.
CN201710375176.9A 2017-05-24 2017-05-24 Formation condition relative permeability determines device Pending CN107121374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710375176.9A CN107121374A (en) 2017-05-24 2017-05-24 Formation condition relative permeability determines device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710375176.9A CN107121374A (en) 2017-05-24 2017-05-24 Formation condition relative permeability determines device

Publications (1)

Publication Number Publication Date
CN107121374A true CN107121374A (en) 2017-09-01

Family

ID=59730098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710375176.9A Pending CN107121374A (en) 2017-05-24 2017-05-24 Formation condition relative permeability determines device

Country Status (1)

Country Link
CN (1) CN107121374A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181223A (en) * 2017-12-26 2018-06-19 北京航空航天大学 A kind of measuring device and measuring method for porous biomaterial permeability
CN108225462A (en) * 2017-12-19 2018-06-29 成都理工大学 Forward and reverse row drives method two-phase fluid micro-measurement device and method
CN108225436A (en) * 2018-01-26 2018-06-29 北京永瑞达科技有限公司 A kind of gas-liquid two-phase real time measure device of normal pressure state
CN109029620A (en) * 2018-04-27 2018-12-18 成都理工大学 The High Precision Automatic metering device of two-phase fluid and method in emulsion
CN109060634A (en) * 2018-09-14 2018-12-21 重庆科技学院 Based on gas permeability evaluation slippery water to the method for shale permeability impact effect
CN110161216A (en) * 2019-06-18 2019-08-23 西南石油大学 A kind of device and method measuring rock core irreducible water saturation
CN110793901A (en) * 2019-12-13 2020-02-14 西南石油大学 High-temperature high-pressure gas reservoir permeability flow rate sensitivity test method considering bound water
CN111693433A (en) * 2020-06-08 2020-09-22 中国石油天然气股份有限公司 Core vacuumizing and pressurizing saturated water device and method
CN114577699A (en) * 2022-03-07 2022-06-03 河北工业大学 Test system and method for simulating fractured rock mass seepage in marine environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323394A (en) * 2011-08-23 2012-01-18 中国地质大学(武汉) Experimental apparatus and method for researching response characteristic of natural gas hydrate stratum to drilling fluid intrusion
CN102435537A (en) * 2011-11-21 2012-05-02 中国石油大学(华东) Measuring device for gas permeability of coal rock core
US20130144533A1 (en) * 2011-12-05 2013-06-06 Korea Institute Of Geoscience And Mineral Resources Apparatus and method of measuring porosity and permeability of dioxide carbon underground storage medium
CN104568678A (en) * 2015-01-13 2015-04-29 西南石油大学 Device and method for testing gas-liquid sulfur phase permeation curve of high-temperature high-pressure high-sulfur-content gas reservoir
CN206095886U (en) * 2016-10-11 2017-04-12 西南石油大学 Multi -functional high temperature high pressure rock core formation water damage experiment evaluation device
CN206920291U (en) * 2017-05-24 2018-01-23 北京永瑞达科贸有限公司 Formation condition relative permeability determines device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323394A (en) * 2011-08-23 2012-01-18 中国地质大学(武汉) Experimental apparatus and method for researching response characteristic of natural gas hydrate stratum to drilling fluid intrusion
CN102435537A (en) * 2011-11-21 2012-05-02 中国石油大学(华东) Measuring device for gas permeability of coal rock core
US20130144533A1 (en) * 2011-12-05 2013-06-06 Korea Institute Of Geoscience And Mineral Resources Apparatus and method of measuring porosity and permeability of dioxide carbon underground storage medium
CN104568678A (en) * 2015-01-13 2015-04-29 西南石油大学 Device and method for testing gas-liquid sulfur phase permeation curve of high-temperature high-pressure high-sulfur-content gas reservoir
CN206095886U (en) * 2016-10-11 2017-04-12 西南石油大学 Multi -functional high temperature high pressure rock core formation water damage experiment evaluation device
CN206920291U (en) * 2017-05-24 2018-01-23 北京永瑞达科贸有限公司 Formation condition relative permeability determines device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225462A (en) * 2017-12-19 2018-06-29 成都理工大学 Forward and reverse row drives method two-phase fluid micro-measurement device and method
CN108225462B (en) * 2017-12-19 2020-05-01 成都理工大学 Two-phase fluid micro-metering device and method by positive and negative displacement method
CN108181223A (en) * 2017-12-26 2018-06-19 北京航空航天大学 A kind of measuring device and measuring method for porous biomaterial permeability
CN108225436A (en) * 2018-01-26 2018-06-29 北京永瑞达科技有限公司 A kind of gas-liquid two-phase real time measure device of normal pressure state
CN109029620A (en) * 2018-04-27 2018-12-18 成都理工大学 The High Precision Automatic metering device of two-phase fluid and method in emulsion
CN109029620B (en) * 2018-04-27 2020-06-05 成都理工大学 High-precision automatic metering device and method for two-phase fluid in emulsion
CN109060634A (en) * 2018-09-14 2018-12-21 重庆科技学院 Based on gas permeability evaluation slippery water to the method for shale permeability impact effect
CN110161216A (en) * 2019-06-18 2019-08-23 西南石油大学 A kind of device and method measuring rock core irreducible water saturation
CN110793901A (en) * 2019-12-13 2020-02-14 西南石油大学 High-temperature high-pressure gas reservoir permeability flow rate sensitivity test method considering bound water
CN110793901B (en) * 2019-12-13 2022-02-11 西南石油大学 High-temperature high-pressure gas reservoir permeability flow rate sensitivity test method considering bound water
CN111693433A (en) * 2020-06-08 2020-09-22 中国石油天然气股份有限公司 Core vacuumizing and pressurizing saturated water device and method
CN114577699A (en) * 2022-03-07 2022-06-03 河北工业大学 Test system and method for simulating fractured rock mass seepage in marine environment

Similar Documents

Publication Publication Date Title
CN107121374A (en) Formation condition relative permeability determines device
CN206920291U (en) Formation condition relative permeability determines device
CN103645126B (en) Stratum high-temperature high-pressure air-water phase percolation curve assay method
CN105606517B (en) Instrument for measuring relative permeability of low permeability reservoir using nuclear magnetic resonance
CN103954544B (en) A kind of polymer control water increases experimental provision and the experimental technique of gas effect assessment
CN110907334B (en) Device and method for measuring radial flow oil-water relative permeability of conglomerate full-diameter core
CN104897543A (en) Multi-phase permeameter and rock permeability determination method
CN104749652B (en) Real-time online Quantitative Physical Simulation oil migration path device and method
CN202882901U (en) Experimental device for evaluating damage of rock core
CN106814018A (en) A kind of tight rock gas phase relative permeability measurement apparatus and method
CN105388254B (en) HTHP foam fracturing fluid leak-off damage experiment system
CN105203705B (en) A kind of heavy component deposition causes the method for testing of reservoir damage
CN104775809B (en) Water-soluble gas reservoir development simulation experiment system and method
CN210264648U (en) Multifunctional rock core displacement device
CN106525655A (en) A gas-liquid injection simulated oil displacement and fluid performance measuring device and method
CN109883894A (en) A kind of superhigh temperature super-pressure stable state air water mutually seeps test device and test method
CN109269962A (en) The experimental provision and method of a kind of supercritical carbon dioxide high temperature and pressure PVT test and displacement methane integral
CN113431537B (en) Unsteady variable-flow-rate large-scale rock core water flooding gas relative permeability testing method
CN107121373A (en) A kind of permeability test device for testing gas-liquid mixed media
CN108444890B (en) Unsteady state titration device and method for testing medium and high permeability core liquid permeability
CN204649586U (en) A kind of Oil in Super-low Permeability rock core leads to nitrogen water two-phase relative permeability determinator
CN206114618U (en) Ration simulation of unconventional tight sand oil and testing experiment device
CN103278430A (en) Low-permeability rock core start-up pressure gradient testing device
CN204694867U (en) Real-time online Quantitative Physical Simulation oil migration path device
CN206177373U (en) Oil -gas -water three -phase separates metering device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination