CN1071058C - 用于永磁发电机的电压调节装置 - Google Patents

用于永磁发电机的电压调节装置 Download PDF

Info

Publication number
CN1071058C
CN1071058C CN96114448A CN96114448A CN1071058C CN 1071058 C CN1071058 C CN 1071058C CN 96114448 A CN96114448 A CN 96114448A CN 96114448 A CN96114448 A CN 96114448A CN 1071058 C CN1071058 C CN 1071058C
Authority
CN
China
Prior art keywords
voltage
charging
terminal
capacitor
permanent magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96114448A
Other languages
English (en)
Other versions
CN1156916A (zh
Inventor
梁濑淳志
铃木卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Electric Manufacturing Co Ltd filed Critical Mitsuba Electric Manufacturing Co Ltd
Publication of CN1156916A publication Critical patent/CN1156916A/zh
Application granted granted Critical
Publication of CN1071058C publication Critical patent/CN1071058C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

一种用于永磁机的电压调节装置,包括:第一电容(C1),用于当由所述永磁机释放正输出时存储电荷以给电池充电;第二电容(C3),由于所述第一电容(C1)的充电电压和负输出的输出电压和永磁机的正输出相反极性,存储电荷;闸流管(SCR1)用于当所述第二电容(C3)充电电压等于预定电压时对所述的永磁极的输出进行短路控制。

Description

用于永磁发电机的电压调节装置
本发明涉及永磁发电机的电压调节装置(磁电机),它用于小型两轮电动车或类似物。
一种用于由小型两轮电动车的发动机驱动的永磁发动机的电压调节装置的一个例子,由日本专利申请,公开号6-67131给出。图2表示在本公开文件中的传统的永磁发电机、电压调节装置和外部电路。在图2中,永磁机的绕组1受由永久磁铁产生的旋转磁场的影响,该永久磁铁由图中未示的发动机驱动,从而在端子CH,中间抽头端子LA和接地端子E两端产生交变电压。头灯2连接于端子LA和接地端子E之间,来自绕组1的AC电压提供给其两端。永磁机的电压调节装置3(简称为调压器)包括一个灯控制电路31,用于控制提供给头灯2的电压;一个充电控制电路32,用于控制提供给DC电流负载5,例如停止灯的电压,该负载通过电池4和开关6连接。
灯控制电路31包括四个二极管D10,D11,D12,D13,用于给绕组1的端子LA和接地端子E之间的AC输出整流;一个滤波电路S10,由电容器C10和电阻R10组成,用于给全波整流电路RE10的输出电压滤波;根据电容器C10的端电压接通/断开的一个PNP三极管Q10;一个闸流管SCR10;和一个栅极电阻R11。另外,对于闸流管SCR10,其阴极端子和端子LA相连,其阳极端子和地端子E相连,栅极和三极管Q10的集电极相连。
由于这种结构,通过使用全波整流电路RE10和滤波电路S10及短路控制(接通)闸流管检测基于提供给头灯2的AC电压的幅值的一个值,当检测的值超过由三极管Q10的基极-发射极电压所确定的预定电压(对于头灯2的端电压约为13V)时,灯控制电路31控制头灯2的端电压在一个恒定值。
电池充电控制电路32包括一个闸流管SCR20,其阳极端子和端子CH相连,阴极端子和电池4的正端子(B端)相连;一个电阻R20,其一端和闸流管SCR20的阳极端相连;一个二极管D20,其阳极端子和电阻R20的另一端相连;一个电阻R21和一个电容C20,连接于闸流管SCR20的栅极和阴极之间;一个齐纳二极管ZD20,其阴极连接到二极管D20的阳极。另外,二极管D20的阴极端子连接到闸流管SCR20的栅极端子,齐纳二极管ZD20的阳极接地。
由于这种结构,当提供给电池4和DC电负载5的DC电压超过由齐纳二极管ZD20的齐纳电压、二极管20的正向电压等所确定的预定值,电池充电控制电路32的作用是通过降低闸流管SCR20的导通率控制DC电压到预定值。
参考图2,由于闸流管SCR10的阳极在灯控制电路中接地,闸流管SCR10只有当端子LA的输出为负极性时才工作,在端子LA和地之间进行短路控制。另一方面,由于闸流管SCR20的阳极在电池充电控制电路32中连接到端子CH上,闸流管SCR20只有当端子CH的输出为正极性时才工作,进行导通率控制。即,灯控制电路31和电池充电控制电路32分别控制用于多个相互不同极性的AC波形的每个半波的闸流管SCR10和SCR20的触发角。
如前所述,来自端子LA的AC输出提供给头灯2,而不管是什么极性,并且通过灯控制电路31对来自端子LA的负输出进行短路控制。因此,为了将提供给头灯2的电压有效值控制到预定值,需要检测正极和负极所提供的电压,然后,根据检测的电压值短路控制闸流管SCR10。为此,如图2所示的灯控制电路31由全波整流电路RE10确定端子LA的AC电压的绝对值,然后,使用滤波电路S10进行平均以产生基准参考电压。
在这种情况下,滤波电路S10的电路常数必须这种选择以具有足够的交流消除特性以保证期望的控制精度和在一个周期中从正极性和负极性的电压波形转换到同样极性的波形求平均值。为了获得这种类型的电路常数,通常由图2所示的滤波电路S10中的电容C10和电阻R10确定的时间常数值应该设计成交流波形的一个周期长度的几倍。
尽管使用整流电路和滤波电路,如上所述,在灯控制电路31中进行端子LA的电压检测,在稳定状态下可以获得某种程度的检测精度,但是,在暂态期间,电压检测响应和交流波形的一个周期相比非常短,从而保持这种特性是困难的。
参考图2,当电池4完全充满且电池4的端电压超过一个预定的电压,开始进行闸流管SCR20的导通率控制。当闸流管SCR20开始通/断操作时,端子CH的输出根据闸流管以阶梯的方式改变,并在端子LA出现类似的输出脉动。然而,如果在滤波电路S10滤波后电压检测的响应比交流周期的一个周期短,那么,响应于输出脉动的每个周期不可能进行闸流管的短路控制。
此外,即使通过使用这种类型常规电路,使电压检测精度增加,检测产生的延迟,发动机转动速度,电池4的状况和电子负载5的工作状况的组合将可以想象地可能引起来自绕组1的输出脉动的周期性和电压检测响应,以在电压控制下产生振荡状态,它可能引起间歇输出脉动。如果这种类型的间歇脉动产生,闸流管SCR10常时间停留在导通,从而使头灯闪烁。
此外,如果发动机转速高时,来自绕组1的交流输出频率将变高,在这种情况下,在滤波电路S10中对于交流成分的衰减率变大。其结果,在电容C10两端检测的电压变化减小。因此,出现在闸流管SCRl0的通/断状态间的电势差减小,因此,有这种危险出现:即使由如噪声引起的微小的电压脉动也会影响闸流管的SCR10的通/断。
基于这个背景技术,产生了本发明。本发明的一个目的是为永磁机提供一个电压调节装置,它和常规装置相比增加了提供给头灯的电压控制能力。
为了解决上述问题,本发明的电压调节装置,调节电池充电电压和永磁机的交流负荷驱动电压,所述永磁机的一个线圈的一端作为蓄电池的一个输出端和线圈的一个抽头作为一个交流负荷的驱动端,所述电压调节装置包括第一充电装置;第二充电装置,与第一充电装置电连接;短路装置,与第一充电装置和第二充电装置电连接;所述第一充电装置当所述永磁机产生正输出时被充电以便给蓄电池充电;而第二充电装置当永磁机产生负输出时由第一充电装置提供充电电压和永磁机的输出电压来充电;短路装置当第二充电装置的充电电压达到预定电压值时短接永磁机的输出端。
此外,根据本发明的用于永磁机的电压调节装置的另一个实施例进一步包括:偏移电压产生装置和第二充电装置,偏移电压产生装置通过使所述第二充电装置的放电电流量与第二充电装置的充电电流量不同而给第二充电装置提供预定的偏移电压。
而在本发明的另一方面,第二充电装置的放电电流和充电电流之间的关系是:充电电流>放电电流。
根据本发明,响应于第二充电装置的电压,永磁机的输出被短路,该第二充电装置在和正输出相反极性的负输出产生期间由输出电压进行充电,并且第一充电装置中充电电压由正输出充电,从而不需要提供整流电路或对输出滤波的电路,因此,使永磁机的电压控制和常规的装置相比具有更好的响应。另外,在控制电压的脉动方面可以在低转速区内相对负载变化抑制到更小,从而和传统的装置相比抑制了头灯的闪烁。
进一步,根据另一个实施例,第二充电装置可以给出一个预定偏移电压,从而使用于永磁机的输出短路的短路装置结构更简单。
图1是根据本发明的一个实施例的永磁机的电压调节装置的结构框图;
图2是永磁机的常规电压调节装置的结构框图;
图3是一个波形图,用于解释图1所示的电压调节装置70的操作;
图4是一个波形图,用于解释图2所示的常规电压调节装置3的操作;
图5是图1中所述的永磁机DC-CDI和停止灯用来作为负载的情况下的结构框图;
图6是一个波形图,用于解释图5所示结构的操作;
图7是在图5所示结构下提供给头灯的电压VL的转速特性图;
图8A,8B和8C是波形图,用于控制提供给图5所示结构的头灯2的电压VL,它分别对应于图7所示的发动机转速(1),(2)和(3)。
图9A,9B和9C是波形图,用于控制提供给常规结构的头灯2的电压VL,它分别对应于图7所示的发动机转速(1),(2)和(3)。
下面,参考附图解释本发明的一个实施例。图1根据本发明的一个实施例的永磁机的电压调节装置的结构框图,在图中,与图2中相应的部件具有相同的标号,其解释省略。
在图1中,电压调节装置包括一个灯控制装置71和电池充电控制装置32。如图2所示的电池充电装置32的内部结构从图1中省略。灯控制电路71包括一个闸流管SCR1和一个用于闸流管SCR1的栅控制电路80,它是本发明的特征部分。尽管该灯控制电路71和图2所示的灯电路31具有相同功能,在这种情况下对应于图2所示的闸流管SCR10的SCR1的阴极端子连接到端子CH而不是端子LA,对应于电阻R11(图2)的电阻R7具有和端子CH而不是和端子LA连接的端子。
在这种情况下,当闸流管SCR1导通时,端子CH和接地端子E短路。当绕组1的端子CH和端子E短路时,端子LA的输出也接地,从而,使端子CH短路的工作状态和使端子LA短路的工作状态基本相同。然而,当端子CH短路时,流过闸流管SCR1的短路电流的暂态变化可以比在端子LA短路的情况下更平滑,因此,在来自端子LA的输出电流和电压的变化可以更平滑。另外,由图2所示的电路也可以适于本
实施例。
栅极控制电路80包括一个电容C1,一个电阻R1和一个二极管D1,它们串联连接于端子LA和接地端子E之间;电阻R3,电阻R4,电容C2和电容C3,它们也同样串联;电阻R2将电阻R1和二极管D1的连接点和电容C2和电容C3的连接点相连接;PNP三极管Q1,其发射极端子接地;齐纳二极管ZD1,其阳极和电容C2和C3的连接点相连,阴极和三极管Q1的基极相连;一个电阻R5连接在三极管Q1的基极和发射极之间;电阻R6,其一端连接于三极管Q1的集电极;一个二极管D2连接到电阻R6的另一端和闸流管SCR1的栅极之间;以及电阻R7。二极管D1的阴极接地,二极管D2的阴极接到闸流管SCR1的栅极,电容C1和电阻R1的连接点和电阻R3和R4的连接点相连接。
下面,将解释栅极控制电路80的工作。
当齐纳二极管ZD1处于截止状态,端子LA的交流电压通过两条路径施加到电容C3(通过电阻R2的路径和通过R4的路径)。因此,电容C3的充电和放电根据端子LA的电压以交替的方式完成。在这种情况下,电容C3的充电和放电电流按附图所示的方向流动。另外,在本实施例中在端子LA的交流电压的每个周期出现一次放电和充电。这一点体现了本发明的操作和图2所示的常规电路的根本不同,在图2中,每个周期电容C10充电两次。
如果和电容C1、C2和C3相关的电路结构假设在端子LA和地端子E之间是对称的,不是图中所示结构,那么电容C3的端子电压Vc将相对于以地电位为中心的正和负极对称振荡。然而,在本实施例中,电容C1-C3,二极管D1和电阻R1-R3之间的连接在端子LA和地端子E之间实际上是不对称的,从而根据正/负方向性而变得导通或截止的电路由二极管D1形成。二极管D1的作用是使电容C3的端子电压Vc向负侧偏移。
这种情况的出现是由于电容C3放电期间的电流比充电期间的电流小的缘故。即,电容C3不是通过电阻R4和电容C2充电和放电,在那样一种情况下电流在正和负方向上的变化是近似相等的,与端子LA的极性无关。与上述情况不同,电容C3通过电阻R2放电的电流减小(即,充电电流>放电电流),其减小量对应于放电期间由二极管D1钳位的电压,因此在充电和放电期间电流便不相等了。这个电容C3通过电阻R2的放电电流对于端子电压Vc产生一个负的电压偏移。结果,电容C3两端的电压由于充电/放电的不平衡而变成负的偏移电压,和周期的充电和放电引起的交流加起来。
为了产生由单二极管D1的正向电压引起的充电和放电电流间的充分不平衡,电阻R2的阻值必须选择为某一值使放电电流流过电阻R2的电压降为某一值(例如,约为齐纳二极管ZD1的齐纳电压的电压值)。为此,这个偏移电压随着由电阻R2的值和电容C3的值所确定的延迟特性而变化。然而,由于这个延迟特性不是用于滤波,与图2所示的滤波电路S10引起的延迟时间相比它们可以被抑制到一个特别小的值。
当端子LA是负的时,因端子LA为负,电容C3由图1所示的极性充电。因此,电容C3的端电压Vc随着由于交流分量的作用对电容C3的充电逐渐减少偏移电压值。当端子电压Vc变成Vc=-(VZD1+VBE(Q1)),其中VZD1是齐纳二极管ZD1的齐纳电压和VBE(Q1)是基极-发射极/导通电压,基极电流流过三极管Q1,三极管Q1的集电极-发射极导通。当三极管Q1导通,闸流管SCR1触发。当闸流管SCR1触发,端子LA和端子E短路,从而电流停止流过头灯2。因此,在波形图中端子LA处的负电压的绝对值(有效值)增加,并且当电容C3的负电压的大小超过设计值时,闸流管SCR1进行短路控制,其结果灯2的电压可以控制到一个恒定值。
另一方面,如果端子LA的电压是正,那么电容C1由一个如图所示的方向流过电阻R1和二极管D1的电流充电。在这种情况下,流过二极管D1的充电电流不流过电阻R2等,从而电容C1的充电电压以比电容C3的时间周期短的时间周期变化。因此,电容C1以基于每周正半周的电压充电。然后,当下一个负电压在端子LA产生时,电容C1的充电电压加到端子LA的电压上,因此,产生一个电压,加到由其他电容形成的电路上。
例如,当端子LA的电压是正的时,如果交流波形的正电压值是从一个稳定状态减小,那么流过电容C1、电阻R1和二极管D1的电流值下降。即,电容C1的充电电流将减小。由于这将引起电容C1的端电压减小,当端子LA下次变负时,提供给电容C3的电压值将减小。其结果,电容C3上的电荷量将减小,负偏移电压的大小也变小。由于这将引起闸流管SCR1的触发时间的延迟,所以提供给头灯2的负电压将增加,从而提供给灯2的电压被控制,变为恒定值。
在上述操作过程中,电容C3的端电压Vc的变化,作为一个电压,它包括交流分量,其值是由电路常量将端子LA的交流电压分压得到。换句话说,端电压Vc以交流方式工作,从而即使发动机转速变化和频率浮动,上述基本操作也不会受影响,从而在上述类似的操作期间可以获得稳定的控制特性。
下面,将详细解释图1所示的本发明的实施例的电路操作。图3表示端子LA和E两端电压VLA的暂态变化,和图1所示的本发明的实施例下的电容C3的端电压Vc的暂态变化。当端子LA和E的电压VLA是负的时,由通过电阻R2和C2的电路,电子负载被充电到电容C3的电压。随着电压VLA的增加,电容C3的端电压Vc的正比例变化也变大,从而,随着电压VLA增加,端电压Vc达到导通齐纳二极管ZD1和三极管Q1的电压-(VZD1+VBE(Q1))所要求的时间变短。当电容C3的端电压Vc达到值-(VZD1+VBE(Q1)),闸流管SCR1导通,电压VLA变成由闸流管SCR1导通电压所确定的值(为简单起见在图3中假设为0V)。这时,电容C3的端电压Vc钳位到由三极管Q1的基极和发射极之间的二极管和齐纳二极管ZD1确定的电压-(VZD1+VBE(Q1))(在图中为-8.5V)。如图3所示,当电压VLA在实线表示的电压和虚线表示的较大电压之间进行比较时,电容C3的端电压Vc在提供由虚线所示的较大电压的情况下,在较短时间达到闸流管SCR1导通的电压值。
当闸流管导通时,由电容C3充电的电子负载由电容C2放电,并且三极管Q1的端电压Vc的绝对值降低由电容C3和电容C2的静电容量比所确定的一个电压值。然后,齐纳二极管ZD1和三极管Q1截止。接着,电容C3上的电子负载通过电阻R2放电,从而电压Vc的绝对值逐渐减少。
下面,当电压VLA变成正值时,电容C3上的电子负载通过电阻R2进一步放电,电压Vc的绝对值进一步减小。然而,当电压VLA为正时,由于在电容C3上的电压由二极管D1的正向电压所限制,所以电容C3的电子负载以近似恒定率放电(在图3中降到-6.5V),而不取决于端电压VLA的大小。以这种方式,当电压VLA是正时,电容C3的放电率不取决于电压VLA的波形或闸流管SCR1导通的时间,并且保持一个近似的常量。
以上述方式,电容C3的端电压Vc在充电期间其绝对值具有一个恒定的峰值,并且在放电期间电子负载的放电率是近似恒定而没有任何大的波形变化,因此,在充电前消除了电压值中大的变化出现。其结果,有可能使闸流管SCR1的通/断控制几乎不受每个波形的影响。
另一方面,在一个常规电路中,例如附图2所示,由在端子LA和E之间电压VLA全波整流获得的电压波形由滤波电路S10进行滤波,该滤波电路由电容C10和电阻R10构成,其时间常数比交流波形的周期大几倍,并且其结果被用来作为检测电压。为此,电压检测伴随着滤波电路S10引起的延迟。图4表示电容C10的端电压VC1的暂态变化相对于端子电压VLA的变化的例子。当由端电压VLA全波整流获得波形直接提供给图2所示的电路的三极管Q10的基极和发射极两端和电容C10两端,在这种情况下,和加到灯2上的相同大小的直流电压被直接加到三极管Q10的基极和发射极两端。
图4考虑了这些情况,表示假设在三极管Q10的基极和发射极两端有一个电阻和电容C10的情况下,电容C10的端电压VC1的工作波形。如果当三极管Q10导通,电容C10的端电压VC1取阈值VTH,那么当一个具有如实线所示的较小变化的波形提供给端子LA和E两端时,电容VC1的电压波形在电压VTH的附近,从而三极管Q10将在波形的每个周期导通和截止。然而,当提供具有大幅值的波形,例如虚线所示,电容的端电压VC1的绝对值大大增加,如虚线的曲线表示,然后,根据由电容C10和电阻R10所确定的时间常数逐渐降低。在这种情况下,三极管Q将保持接通,而不取决于后续波形的幅值,从而闸流管SCR10将继续导通。因此,常规的装置对每周有时不能继续独立控制,从而,控制电压在短的时间周期内浮动。另一方面,本发明的实施例可以控制波形每一周的导通率,从而和常规装置相比可以改善控制能力。
如上所述,在本实施例中,根据端子LA的输入交流电压,积累检测电压的电容C3对该电压充电和放电。另外,电容C3的电压被充电和放电,而不使用整流电路或滤波电路,使提供给灯2的电压相对交流波形的每周具有良好响应来加以控制。
另外,由于闸流管SCR1的触发时间被调节,从而使提供给灯的电压根据交流波形的每一周期变为预定值,所以,不会出现这种情况:例如灯2在几倍周期长的时间间隔后截止,并且灯2可以防止闪烁。
另外,由于出现大的电容C3的端电压波形的变化,而不会受转数的影响,所以即使高速转动期间,也能在无噪声引起的误操作的情况下进行稳定的电压检测。
下面,下面将结合在小型两轮电动车中实际使用的外部电路,根据本发明的电压调节装置的控制特性进行描述。图5是一个表示如图1所示的直流电子负载5的电路图,它是根据实际电路所作的图。在图5中,从图1中新加入的部件有停止灯51,刹闸开关52,一个DC-CDI(DC电容/放电/点火器)53,升压绕组54,和火花塞55。DC-CDI53将电池4的直流端电压升压并且给一个内部电容中的电压充电,然后以预定的点火时间释放电子电荷以将它提供给升压绕组54。升压绕组54将从DC-CDI53来的电流提供给初级绕组,从次级绕组输出一个升压电压。然后,火花塞55由升压绕组54的次级绕组输出的电压在发动机(在图中未示)的内部点火。
图6是一个波形图,表示端子电压VLA(V)和DC-CDI53的输入电流(A)的暂态变化,表明图5中DC-CDI53的输入电流和在端子LA和E两端的电压VLA之间的关系。在这种情况下,发动机转动速度Ne是比较低的并且电压VLA不够高,表明随着负波形,闸流管SCR1的导通率的控制还没有触发。此外,具有绕组1的永磁机具有八个磁极,表明从绕组1输出的交流电压频率四倍于发动机的转速。如图6所示,DC-CDI53的输入电流在发动机转动一周里是不恒定的,并且随着转动一周中的一个峰变化。相反,从永磁机的绕组1输出的电流直接提供给DC-CDI53并且消耗掉,同时,代替提供给DC-CDI53的电流,从电池4输出的电流提供给DC-CDI53。从此,转动一周内的绕组1的输出电压波形每个周期相互不同。
图7表示当发动机转动速度Ne在图5所示的电路中变化时,提供给灯2的电压VL的变化。由实线表示的电压表示正常工作,即当唯一的负载为DC-CDI53时,并且虚线表示的电压是当刹闸开关接通和停止灯51点亮时的情况。通常,如图所示,接通停止灯51使绕组1的输出电压下降,并且降低提供给灯2的电压。为了便于比较,在使用图2所示的常规电路的情况下正常特性由单点划线表示。如图6所示,当发动机转动速度低和闸流管SCR1(或闸流管SCR10)的导通率控制还没有触发时,根据本发明和常规的装置3,提供给在电压调节装置70间的灯的电压VL的控制能力没有区别。
下面,假设在四周期波形的一个周期波形在点(1)超过控制电压,在点(1)发动机转动速度稍有增加。然而,在这种情况下,假设的四个周期中有效电压的平均值没有超过控制电压。在这一点,用常规的例子,由于灯电压VL的平均值还没有达到预定控制电压,导通率控制还没有触发,从而电压VL根据转速的升高而升高。相反,当本发明的电压调节装置70检测到超过控制电压的一个电压,它即使在一个周期的波形中,导通率控制在该周期的波形中被触发,其结果与常规例子的电压相比,因本实施例的导通率控制,灯2的端电压VL减小到正常的电压。
图8A和9A是表示在图7中,由(1)所示发动机的转速下,提供给灯2的电压VL的一个控制波形的例子,用于本发明的电压调节装置70(图8A)和一个常规的电压调节装置(图9A)。由于本发明的电压调节装置70控制每个波形周期的导通率,闸流管SCR1的短路控制相应于超过预定控制电压波形来进行,在这种情况下这个波形为图8A所示的波形的第一周期。其结果,第一周期的电压的有效值控制到13.2V,同时,闸流管SCR1对其他没有达到13.2V的波形不进行短路控制,从而,它们变为小于13.2V。因此,在图8A所示的一周转动期间灯2的平均端电压VL是12.7Vrms。另一方面,由于常规装置的控制波形如图9A所示,从而第一周期的电压是13.5Vrms,超过13.2Vrms,但是,由于平均电压小于13.2Vrms,对于所有四个周期不进行导通率控制。
下面将解释如图7所示的转速是(2)的情况。在这个转速下,四个周期有效电压的平均值超过控制电压。该转速是这样的,从而本发明的电压调节装置70控制超过13.2Vrms的波形第一和第四周期并且不控制其他两个波形,如图8B所示。其结果,平均电压变为12.9Vrms。相反,由于由常规装置在相同转速(2)所引起的控制波形,其整个平均电压超过控制电压13.2Vrms,如图9B所示,从而相对于第一、第二和第四周期的波形,包括有效电压值小于控制电压的第二周期波形,进行控制。从而,平均电压控制在13.2Vrms。
另外,在图7所示的转速(3),本发明的电压调节装置70对所有四个超过13.2Vrms的波形进行控制,如图8C所示,从而每个周期波形的电压值被控制到13.2Vrms。相反,常规装置的控制波形对每周进行控制从而整个平均电压等于控制电压13.2Vrms,如图9B所示。然而,每一周期波形的导通率是由平均值确定的,从而,波形的平均电压值是相互不同的。
以这种方式,本发明的电压调节装置基于预定控制电压的周期独立地控制不同波形的电压,从而,停止灯51的导通周期和截止周期之间的电势差小。在图7所示的例子中,当发动机转速在低范围内时(当停止灯导通时控制电压不能维持的转速区),在常规例子中停止灯的截止周期和导通周期间的电势差最大约为2.5V,而本发明的电压调节装置的最大电势差小于2.0V。根据本发明,当停止灯51导通和截止时,提供给灯2的电压差可以小,从而减少当停止灯51导通/截止时灯2的闪烁。

Claims (3)

1.一种用于永磁机的电压调节装置,供调节蓄电池的充电电压和永磁机的交流负荷驱动电压,所述永磁机一个线圈的一端用作给蓄电池充电的输出端,所述线圈的一个抽头用作交流负荷驱动端,所述电压调节装置包括:
第一充电装置;
第二充电装置,与所述第一充电装置电连接;和
短路装置,与所述第一和第二充电装置电连接;其特征在于:
所述第一充电装置当所述永磁机产生正输出时处于充电状态,以便给蓄电池充电;
所述第二充电装置当所述永磁机产生负输出时由所述第一充电装置提供的充电电压和所述永磁机的输出电压充电;且
所述短路装置当所述第二充电装置的充电电压达预定的电压值时短接所述永磁机的输出端。
2.如权利要求1所述的永磁机电压调节装置,其特征在于,它还包括偏移电压发生装置,配备有所述第二充电装置,所述偏移电压发生装置通过使所述第二充电装置的放电电流量与所述第二充电装置的充电电流不同给所述第二充电装置提供预定的偏移电压。
3.如权利要求2所述的永磁机电压调节装置,其特征在于,所述第二充电装置的放电电流与充电电流之间具有以下关系:充电电流>放电电流。
CN96114448A 1995-11-09 1996-11-09 用于永磁发电机的电压调节装置 Expired - Fee Related CN1071058C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP29146795 1995-11-09
JP291467/95 1995-11-09
JP291467/1995 1995-11-09
JP274919/1996 1996-10-17
JP274919/96 1996-10-17
JP27491996A JP3866803B2 (ja) 1995-11-09 1996-10-17 磁石式発電機の電圧調整装置

Publications (2)

Publication Number Publication Date
CN1156916A CN1156916A (zh) 1997-08-13
CN1071058C true CN1071058C (zh) 2001-09-12

Family

ID=26551247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96114448A Expired - Fee Related CN1071058C (zh) 1995-11-09 1996-11-09 用于永磁发电机的电压调节装置

Country Status (4)

Country Link
JP (1) JP3866803B2 (zh)
CN (1) CN1071058C (zh)
FR (1) FR2742278B1 (zh)
IT (1) IT1287146B1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936720B1 (en) * 1998-02-12 2007-04-18 Mitsuba Corporation Co., Ltd. Lamp lighting and battery charging control system for a vehicle
IT1301761B1 (it) * 1998-06-19 2000-07-07 Ducati Energia Spa Regolatore di tensione tipo serie a controllo di fase
JP4480817B2 (ja) * 1999-09-22 2010-06-16 株式会社ミツバ ランプ点灯制御回路
CN1255918C (zh) * 2000-06-06 2006-05-10 株式会社美姿把 灯照明和电池充电控制系统
JP6899484B2 (ja) * 2018-03-29 2021-07-07 株式会社ミツバ 車両用ランプ駆動装置及びその制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168296A (en) * 1974-12-11 1976-06-12 Nippon Oils & Fats Co Ltd Shintotanshozaiyohomatsusenjoeki
JPH02159933A (ja) * 1988-12-08 1990-06-20 Matsushita Electric Ind Co Ltd 二輪車用バッテリィ充電装置
JPH04229029A (ja) * 1991-04-12 1992-08-18 Suzuki Motor Corp 発電機の電圧調整方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674382B1 (fr) * 1991-03-18 1993-12-24 Mitsuba Electric Manufacturing Dispositif de regulation de tension de sortie pour alternateur.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168296A (en) * 1974-12-11 1976-06-12 Nippon Oils & Fats Co Ltd Shintotanshozaiyohomatsusenjoeki
JPH02159933A (ja) * 1988-12-08 1990-06-20 Matsushita Electric Ind Co Ltd 二輪車用バッテリィ充電装置
JPH04229029A (ja) * 1991-04-12 1992-08-18 Suzuki Motor Corp 発電機の電圧調整方法

Also Published As

Publication number Publication date
ITMI962322A0 (it) 1996-11-08
FR2742278A1 (fr) 1997-06-13
ITMI962322A1 (it) 1998-05-08
FR2742278B1 (fr) 1999-05-14
CN1156916A (zh) 1997-08-13
JP3866803B2 (ja) 2007-01-10
JPH09191696A (ja) 1997-07-22
IT1287146B1 (it) 1998-08-04

Similar Documents

Publication Publication Date Title
CN1071951C (zh) 车辆用发电机的控制装置
US20060021607A1 (en) Engine ignition system
CN1521928A (zh) 具有保持时间的单转换电源转换器
CN1466808A (zh) 包括开关式控制的交替供电变换器
CN1112752C (zh) 车辆交流发电机的控制装置
CN1059766C (zh) 用于转换式磁阻电机的控制回路和系统及其操作方法
US5243270A (en) Charging control apparatus for vehicle generators
US3911886A (en) Ignition system for an internal combustion engine
CN1071058C (zh) 用于永磁发电机的电压调节装置
JPH08214599A (ja) 磁石式発電機の電圧制御装置
CN1199266A (zh) 机车蓄电池充电和车灯控制电路
CN1244981C (zh) 三相半波可控整流稳压式电子调节器
JP2569844B2 (ja) コンデンサ放電式内燃機関用点火装置
JP2823962B2 (ja) 直流モータの速度制御回路
CN1021779C (zh) 一种摩托车用恒高能电子点火装置
WO2023275934A1 (ja) バッテリ充電装置、及び電流制御装置
CN1043676C (zh) 磁铁发电机输出模拟装置和点火装置的试验装置
JPH0633709Y2 (ja) パルス高電圧発生装置
JPH0526960Y2 (zh)
JP2021151128A (ja) バッテリ充電装置、及び電流制御装置
JPS5918271A (ja) コンデンサ充放電式点火装置
JPH0545823Y2 (zh)
SU476642A1 (ru) Устройство дл формировани импульсов управлени
SU1132333A1 (ru) Автономный инвертор (его варианты)
JPH0318696Y2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010912

Termination date: 20121109