CN107099688A - 大体积分数laves高温黏结硬质合金的制备方法 - Google Patents

大体积分数laves高温黏结硬质合金的制备方法 Download PDF

Info

Publication number
CN107099688A
CN107099688A CN201710289294.8A CN201710289294A CN107099688A CN 107099688 A CN107099688 A CN 107099688A CN 201710289294 A CN201710289294 A CN 201710289294A CN 107099688 A CN107099688 A CN 107099688A
Authority
CN
China
Prior art keywords
powder
laves
high temperature
volume fraction
large volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710289294.8A
Other languages
English (en)
Other versions
CN107099688B (zh
Inventor
董洪峰
炊鹏飞
李文虎
艾桃桃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Zhejiang Jienaier New Material Co ltd
Original Assignee
Shaanxi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Technology filed Critical Shaanxi University of Technology
Priority to CN201710289294.8A priority Critical patent/CN107099688B/zh
Publication of CN107099688A publication Critical patent/CN107099688A/zh
Application granted granted Critical
Publication of CN107099688B publication Critical patent/CN107099688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种大体积分数laves高温黏结硬质合金的制备方法,将纯镍粉、纯铝粉按质量比6.2~7.3:1称量,在氢气管式炉中进行预合金化;再将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比4.8~5.3:88.4~90.5:4.8~5.3:0.7~1.2配料,在搅拌球磨机中进行机械合金化,所得球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制成形;成形坯体送入气氛热处理炉进行laves成相处理,最终得到大体积分数laves高温黏结硬质合金材料。

Description

大体积分数laves高温黏结硬质合金的制备方法
技术领域
本发明涉及一种大体积分数laves高温黏结硬质合金的制备方法。
背景技术
钴基合金是传统硬质合金材料的常用黏结剂,赋予硬质合金的强韧性。但在高温(>1000℃)条件下,钴金属易受力蠕变,导致硬质合金破坏或失效。因此,发展一种耐高温黏结相,用于提高硬质合金的高温强韧性至关重要。
Laves相具有拓扑密排结构γ′-Co3(Al,W),>1250℃条件下仍保持很高强度,是一种理想的高温黏结剂。
发明内容
本发明是针对常用钴基黏结剂高温蠕变,弱化硬质合金高温强度的研发领域现状,提供一种大体积分数laves高温黏结硬质合金的制备方法。
为达到以上目的,本发明是采取如下技术方案予以实现的,
一种大体积分数laves高温黏结硬质合金的制备方法,包括以下步骤:
1)将纯镍粉、纯铝粉按质量比(6.2~7.3):1置于氢气管式炉中,进行预合金化处理得到镍铝预合金粉;
2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比(4.8~5.3):(88.4~90.5):(4.8~5.3):(0.7~1.2)配料,在搅拌球磨机中进行机械合金化处理得到球磨粉;
3)将球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制处理成形得到坯体;
4)将坯体送入气氛热处理炉进行laves成相处理,最终得到大体积分数laves高温黏结硬质合金材料。
步骤1)中,预合金化处理的加热速率7℃/min,合金化温度620~655℃,保温时间6小时,氢气流量7.2×10-3Nm3/h。
步骤2)中,机械合金化处理的球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时。
步骤3)中,烧结处理的升温速率为11℃/分,温度1360℃,保温45min。
步骤4)中,laves成相处理的设备充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分。
与现有技术相比,本发明具有以下特点和优势:
本发明先预合金化处理得到镍铝预合金粉,再将将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉进行机械合金化处理,在真空热压烧结炉中烧制处理,最后在气氛热处理炉进行laves成相处理;其中用laves成相处理方法可将钴固溶到镍铝化合物晶格,置换Ni原子,为拓扑密排结构γ′-Co3(Al,W)形成提供晶体核心;且快速冷却可抑制γ′相转化,实现大体积分数laves成相。在制备大体积分数laves高温黏结硬质合金材料过程中,本发明完全改变了已有方法中单纯采用钴基合金作为黏结剂的思路,而是采用一种具有拓扑密排晶体结构、高温高强的laves相作为硬质合金黏结剂,并研究镍/铝元素质量比、碳化钨/钴/镍铝预合金粉配比、烧结预合金工艺参数、laves成相处理工艺和硬质合金高温强度的关系,即:对于laves高温黏结硬质合金,高温(>1250℃)条件下保持较高强度和耐磨性能的最佳镍/铝元素质量比、碳化钨/钴/镍铝预合金粉配比、烧结预合金工艺参数和laves成相处理工艺。此方法具有成分控制精度高,工艺稳定性和重复性较强,可实现硬质合金的高温强韧化。
具体实施方式
下面具体对本发明进行进一步的说明:
本发明一种大体积分数laves高温黏结硬质合金的制备方法,包括下述步骤:
(1)将纯镍粉、纯铝粉按质量比6.2~7.3:1称量,在氢气管式炉中进行预合金化,加热速率7℃/分,合金化温度620~655℃,保温时间6小时,氢气流量7.2×10-3Nm3/h;
(2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比4.8~5.3:88.4~90.5:4.8~5.3:0.7~1.2配料,在搅拌球磨机中进行机械合金化,球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时;
(3)球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制成形,升温速率11℃/分,温度1360℃,保温45分;
(4)成形坯体送入气氛热处理炉进行laves成相处理,充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分,最终得到大体积分数laves高温黏结硬质合金材料。
以下实施例制备的大体积分数laves高温黏结硬质合金的高温强度如表1所示。
实施例1
(1)将纯镍粉、纯铝粉按质量比6.6:1称量,在氢气管式炉中进行预合金化,加热速率7℃/分,合金化温度645℃,保温时间6小时,氢气流量7.2×10-3Nm3/h;
(2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比5.1:89:5.2:0.7配料,在搅拌球磨机中进行机械合金化,球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时;
(3)球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制成形,升温速率11℃/分,温度1360℃,保温45分;
(4)成形坯体送入气氛热处理炉进行laves成相处理,充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分,最终得到大体积分数laves高温黏结硬质合金材料。
实施例2
(1)将纯镍粉、纯铝粉按质量比7.2:1称量,在氢气管式炉中进行预合金化,加热速率7℃/分,合金化温度625℃,保温时间6小时,氢气流量7.2×10-3Nm3/h;
(2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比5.1:88.4:5.3:1.2配料,在搅拌球磨机中进行机械合金化,球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时;
(3)球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制成形,升温速率11℃/分,温度1360℃,保温45分;
(4)成形坯体送入气氛热处理炉进行laves成相处理,充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分,最终得到大体积分数laves高温黏结硬质合金材料。
实施例3
(1)将纯镍粉、纯铝粉按质量比6.9:1称量,在氢气管式炉中进行预合金化,加热速率7℃/分,合金化温度630℃,保温时间6小时,氢气流量7.2×10-3Nm3/h;
(2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比5.2:88.8:4.9:1.1配料,在搅拌球磨机中进行机械合金化,球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时;
(3)球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制成形,升温速率11℃/分,温度1360℃,保温45分;
(4)成形坯体送入气氛热处理炉进行laves成相处理,充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分,最终得到大体积分数laves高温黏结硬质合金材料。
实施例4
(1)将纯镍粉、纯铝粉按质量比7.3:1称量,在氢气管式炉中进行预合金化,加热速率7℃/分,合金化温度655℃,保温时间6小时,氢气流量7.2×10-3Nm3/h;
(2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比4.8:89.7:4.8:0.7配料,在搅拌球磨机中进行机械合金化,球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时;
(3)球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制成形,升温速率11℃/分,温度1360℃,保温45分;
(4)成形坯体送入气氛热处理炉进行laves成相处理,充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分,最终得到大体积分数laves高温黏结硬质合金材料。
实施例1~4制备大体积分数laves高温黏结硬质合金的性能参数见表1所示:
表1
从上表可以得出,本发明制备的大体积分数laves高温黏结硬质合金的室温抗弯强度大于4598/Mpa,1250℃抗弯强度3827/Mpa。两个项目测试性能均良好,>1250℃条件下仍保持很高强度,是一种理想的高温黏结剂。
实施例5
(1)将纯镍粉、纯铝粉按质量比6.2:1称量,在氢气管式炉中进行预合金化,加热速率7℃/分,合金化温度620℃,保温时间6小时,氢气流量7.2×10-3Nm3/h;
(2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比4.8:90.5:4.0:0.7配料,在搅拌球磨机中进行机械合金化,球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时;
(3)球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制成形,升温速率11℃/分,温度1360℃,保温45分;
(4)成形坯体送入气氛热处理炉进行laves成相处理,充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分,最终得到大体积分数laves高温黏结硬质合金材料。
实施例6
(1)将纯镍粉、纯铝粉按质量比7.0:1称量,在氢气管式炉中进行预合金化,加热速率7℃/分,合金化温度650℃,保温时间6小时,氢气流量7.2×10-3Nm3/h;
(2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比5.3:88.5:5.0:1.2配料,在搅拌球磨机中进行机械合金化,球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时;
(3)球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制成形,升温速率11℃/分,温度1360℃,保温45分;
(4)成形坯体送入气氛热处理炉进行laves成相处理,充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分,最终得到大体积分数laves高温黏结硬质合金材料。

Claims (5)

1.一种大体积分数laves高温黏结硬质合金的制备方法,其特征在于,包括以下步骤:
1)将纯镍粉、纯铝粉按质量比(6.2~7.3):1置于氢气管式炉中,进行预合金化处理得到镍铝预合金粉;
2)将镍铝预合金粉、碳化钨粉、钴粉、碳化钽粉按质量百分比(4.8~5.3):(88.4~90.5):(4.8~5.3):(0.7~1.2)配料,在搅拌球磨机中进行机械合金化处理得到球磨粉;
3)将球磨粉装入组片式石墨模具,在真空热压烧结炉中烧制处理成形得到坯体;
4)将坯体送入气氛热处理炉进行laves成相处理,最终得到大体积分数laves高温黏结硬质合金材料。
2.如权利要求1所述的大体积分数laves高温黏结硬质合金的制备方法,其特征在于,步骤1)中,预合金化处理的加热速率7℃/min,合金化温度620~655℃,保温时间6小时,氢气流量7.2×10-3Nm3/h。
3.如权利要求1所述的大体积分数laves高温黏结硬质合金的制备方法,其特征在于,步骤2)中,机械合金化处理的球磨机主轴转速220转/分,球磨罐充入氩气保护,球料比3:1,时间18小时。
4.如权利要求1所述的大体积分数laves高温黏结硬质合金的制备方法,其特征在于,步骤3)中,烧结处理的升温速率为11℃/分,温度1360℃,保温45min。
5.如权利要求1所述的大体积分数laves高温黏结硬质合金的制备方法,其特征在于,步骤4)中,laves成相处理的设备充入氮气作为保护气氛,处理温度1250℃,保温1.5小时,降温速率85℃/分。
CN201710289294.8A 2017-04-27 2017-04-27 大体积分数laves高温黏结硬质合金的制备方法 Active CN107099688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710289294.8A CN107099688B (zh) 2017-04-27 2017-04-27 大体积分数laves高温黏结硬质合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710289294.8A CN107099688B (zh) 2017-04-27 2017-04-27 大体积分数laves高温黏结硬质合金的制备方法

Publications (2)

Publication Number Publication Date
CN107099688A true CN107099688A (zh) 2017-08-29
CN107099688B CN107099688B (zh) 2018-09-18

Family

ID=59657393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710289294.8A Active CN107099688B (zh) 2017-04-27 2017-04-27 大体积分数laves高温黏结硬质合金的制备方法

Country Status (1)

Country Link
CN (1) CN107099688B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588462A (zh) * 2018-06-14 2018-09-28 陕西理工大学 复相共强化硬质合金材料的制备方法
CN110106424A (zh) * 2019-06-13 2019-08-09 河源市全诚硬质合金有限公司 一种硬质合金棒材及其制造方法
CN115383109A (zh) * 2022-07-21 2022-11-25 杭州巨星科技股份有限公司 一种梯度硬质合金材料及其在手工具上的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592795A (zh) * 2003-01-13 2005-03-09 杰出金属实业公司 硬质合金组合物及其制备方法
CN1827817A (zh) * 2006-04-14 2006-09-06 韶关学院 高熵合金粘结剂与复合碳化物烧结的硬质合金及其制作方法
CN101104892A (zh) * 2007-08-14 2008-01-16 北京科技大学 一种超细晶WC-Co硬质合金制备方法
CN102137751A (zh) * 2008-07-02 2011-07-27 巴斯夫欧洲公司 制备氧化的几何成型体的方法
CN102978499A (zh) * 2012-12-24 2013-03-20 株洲硬质合金集团有限公司 一种抗高温磨损的硬质合金及其制备方法
CN103388097A (zh) * 2013-06-29 2013-11-13 蚌埠市鸿安精密机械有限公司 一种硬质合金刀具
CN104593626A (zh) * 2015-01-07 2015-05-06 陕西理工学院 Ni-Fe基高温黏结相硬质合金的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592795A (zh) * 2003-01-13 2005-03-09 杰出金属实业公司 硬质合金组合物及其制备方法
CN1827817A (zh) * 2006-04-14 2006-09-06 韶关学院 高熵合金粘结剂与复合碳化物烧结的硬质合金及其制作方法
CN101104892A (zh) * 2007-08-14 2008-01-16 北京科技大学 一种超细晶WC-Co硬质合金制备方法
CN102137751A (zh) * 2008-07-02 2011-07-27 巴斯夫欧洲公司 制备氧化的几何成型体的方法
CN102978499A (zh) * 2012-12-24 2013-03-20 株洲硬质合金集团有限公司 一种抗高温磨损的硬质合金及其制备方法
CN103388097A (zh) * 2013-06-29 2013-11-13 蚌埠市鸿安精密机械有限公司 一种硬质合金刀具
CN104593626A (zh) * 2015-01-07 2015-05-06 陕西理工学院 Ni-Fe基高温黏结相硬质合金的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588462A (zh) * 2018-06-14 2018-09-28 陕西理工大学 复相共强化硬质合金材料的制备方法
CN110106424A (zh) * 2019-06-13 2019-08-09 河源市全诚硬质合金有限公司 一种硬质合金棒材及其制造方法
CN115383109A (zh) * 2022-07-21 2022-11-25 杭州巨星科技股份有限公司 一种梯度硬质合金材料及其在手工具上的应用
CN115383109B (zh) * 2022-07-21 2023-11-17 杭州巨星科技股份有限公司 一种梯度硬质合金材料及其在手工具上的应用

Also Published As

Publication number Publication date
CN107099688B (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
CN108315600B (zh) 一种γ'相强化钴基高温合金及其制备方法
CN106636759B (zh) 一种铂族元素强化的高热稳定性高强度镍基单晶高温合金
JP2022500557A (ja) ニッケル基超合金
CN110484776A (zh) 一种增材制造用的镍基高温合金粉末及使用方法
CN107099688B (zh) 大体积分数laves高温黏结硬质合金的制备方法
WO2022222225A1 (zh) 低层错能的高温合金、结构件及其应用
CN109897991B (zh) 一种高熵晶界修饰的纳米晶合金粉末及其制备方法
Yang et al. Status and development of powder metallurgy nickel-based disk superalloys
CN106521244A (zh) 一种稀土改性的高Mo的Ni3Al基单晶高温合金及其制备方法
JP4994843B2 (ja) ニッケル含有合金、その製造方法、およびそれから得られる物品
Yang et al. Improvement of stress-rupture life of GTD-111 by second solution heat treatment
Lei et al. Effect of sintering temperature and heat treatment on microstructure and properties of nickel-based superalloy
CN112853156B (zh) 一种高组织稳定性镍基高温合金及其制备方法
CN106011574B (zh) 一种无铪高抗氧化性的Nb-Si基合金及其制备方法
JP2018162522A (ja) 酸化物粒子分散強化型Ni基超合金
CN110449580B (zh) 一种粉末冶金高强韧性含硼高熵合金材料及其制备方法和应用
Svetlov et al. Temperature dependence of the ultimate strength of in situ multicomponent Nb–Si–X (X= Ti, Hf, W, Cr, Al, Mo) composites
CN114929912A (zh) 镍基超合金
CN107475566A (zh) 一种高温钛合金及其制备方法
CN114855049B (zh) 一种TaNbHfZrTi系难熔高熵合金及其制备方法和应用
CN114959425A (zh) 一种基于高熵硼化物析出强化钢及其制备方法
CN112481562B (zh) 一种激光选区熔化成形镍基高温合金的热处理方法
Kazantseva et al. Analysis of phase transformations in Inconel 738C alloy after regenerative heat treatment
CN115161517B (zh) 一种含铼抗高温氧化γ′相强化钴基高温合金及其制备方法
Salwan et al. Analysis on the Suitability of Powder Metallurgy Technique for Making Nickel Based Superalloys

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230726

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 723000 Chaoyang Road, Hantai District, Shaanxi, Hanzhoung

Patentee before: Shaanxi University of Technology

Effective date of registration: 20230726

Address after: 314000 Room 301, third floor, No. 1101, Hongye Road, Gaozhao street, Xiuzhou District, Jiaxing City, Zhejiang Province

Patentee after: ZHEJIANG JIENAIER NEW MATERIAL Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.