CN107084663A - 位置确定方法、测量装置及测量系统 - Google Patents
位置确定方法、测量装置及测量系统 Download PDFInfo
- Publication number
- CN107084663A CN107084663A CN201611025024.8A CN201611025024A CN107084663A CN 107084663 A CN107084663 A CN 107084663A CN 201611025024 A CN201611025024 A CN 201611025024A CN 107084663 A CN107084663 A CN 107084663A
- Authority
- CN
- China
- Prior art keywords
- auxiliary
- pixel
- camera
- measuring instrument
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C1/00—Measuring angles
- G01C1/02—Theodolites
- G01C1/04—Theodolites combined with cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/16—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/16—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
- G01S5/163—Determination of attitude
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30244—Camera pose
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
Abstract
本发明涉及位置确定方法、测量装置及测量系统。在确定方法中,辅助点标记的相机图像利用相机被连续地记录,该相机具有区域传感器,区域传感器包括多个像素,并且读取过程连续地进行,其中像素关于各自当前的曝光值被读取。此外,成像的辅助点标记在各自的当前的相机图像中的图像位置被确定,并且基于该图像位置推导出辅助测量仪器的当前的空间位置。根据本发明,根据在至少一个之前记录的相机图像中确定的图像位置的集合,在区域传感器上连续地设定各自的当前的感兴趣区域。当前的图像位置则仅至多考虑由位于当前设定的感兴趣区域内的区域传感器的像素接收的那些当前的曝光值进行确定。
Description
本申请是申请号为201280039245.4(国际申请号:PCT/EP2012/064962)、发明名称为“位置确定方法、测量装置和测量系统”、申请日为2012年7月31日的发明专利的分案申请。
技术领域
本发明涉及用于连续地确定辅助测量仪器的空间位置的方法,尤其是借助激光追踪器进行的方法,相应的测量装置,以及测量系统。
背景技术
设计用于连续追踪目标点并且与之合作确定所述点的位置的测量装置通常可以合并为术语激光追踪器。在这种情况下,目标点可以通过反光单元(例如立方棱镜)表现,其通过测量装置的光学测量光束,尤其是激光束被瞄准。该激光束以平行的方式反射回测量装置,被反射的光束由该装置的检测单元检测。在这种情况下,首先查明光束的发射方向和各自的接收方向,例如借助用于角度测量的装置,该装置被配置给系统的偏转镜或瞄准单元。此外,借助对光束的检测查明从测量装置至目标点的距离,例如,借助传播时间或相位差测量,并且越来越多的现代化系统以标准化的方式,在传感器上查明接收到的光束相对零位的偏移。通过可以以这种方式测量的该偏移,可以确定回射器的中心和激光束在反射器上的入射点之间的位置差,并且可以根据该偏差来更正和重新调整激光束的对齐,从而减小在传感器上的偏移,尤其使其为“0”,该光束因此沿反射器中心的方向对齐。作为对激光束的对齐进行重新调整的结果,可以执行对目标点的连续的目标追踪,并且可以相对于测量装置连续确定目标点的距离和位置。在这种情况下,可以通过对偏转镜的对齐的改变来实现重新调整,该偏转镜设置用于偏转激光束,所述偏转镜可以以机动的方式移动,和/或通过具有光束导向激光光学单元的目标单元的枢转进行移动。
根据现有技术的激光追踪器还可以通过光学图像检测单元进行实施,光学图像检测单元具有二维的光敏阵列,例如CCD或CID相机或基于CMOS阵列的相机,或借助像素阵列传感器以及图像处理单元。在这种情况下,激光追踪器和相机尤其以以下方式被安装成一个在另一个的顶部,即它们的位置不能相对于彼此进行更改。例如相机布置成与激光追踪器一起可以围绕其大致垂直的轴线转动,但是独立于激光追踪器向上和向下枢转,因此具体来说与用于激光束的光学单元分离。具体地,相机可以具有鱼眼光学单元,并且因此可以避免相机的枢转,或者由于相机的图像检测范围非常大,至少可以减少其必要性。此外,相机例如可以根据相应的应用被实施成仅可以围绕一个轴线枢转。在另选的实施方式中,相机可以在一体设计中与激光光学单元一起被安装在同一个壳体中。
借助所谓的辅助测量仪器的图像检测和图像处理单元对图像进行检测和评测,辅助测量仪器具有彼此的相对位置已知的标记,因此可以推断布置在辅助测量仪器上的物体(例如探头)的空间取向。结合目标点的已确定的空间位置还可以精确地确定物体在空间中的绝对位置和取向,和/或相对于激光追踪器的位置和取向。
借助上述测量装置进行测量其位置和取向的目标因此无需是测量探头本身,而可以是辅助测量仪器。该辅助测量仪器作为测量系统的一部分,出于测量目的被带入相对于目标物体以机械的方式限定的位置,或可以在测量过程中确定的位置,其中借助所述仪器的测量的位置和取向,例如可以推断测量探头的位置,如果合适的话,推断测量探头的取向。
这样的辅助测量仪器可以通过所谓的接触传感工具进行实施,该接触传感工具借助其接触点定位在目标点的一个点上。接触传感工具具有例如光点的标记,以及反射器,该反射器代表位于接触传感工具上的目标点,并且可以通过追踪器的激光束瞄准,标记和反射器相对于接触传感工具的接触点的位置精确地已知。辅助测量仪器还可以是本领域技术人员已知的方式,例如手持设备,配备用于无接触表面测量的距离测量的扫描仪,用于相对于光点和布置在扫描仪上的反射器的距离测量的扫描仪测量光束的方向和位置已精确已知。例如已在EP 0 553 266中对此类型的扫描仪进行了描述。
为了确定辅助测量仪器的取向,相机的检测方向连续地对齐,从而可以在激光追踪器的追踪光束的方向上检测图像。相机还可以具有缩放功能,其中可以根据激光追踪器和目标点或辅助测量仪器之间确定的距离来设定放大级别。借助这两个适配功能(对齐和放大),相机因此可以连续地检测图像,辅助测量仪器和具体地辅助测量仪器的光点在该图像中成像。光点的空间布置的可电子评测的二维图像作为结果呈现出来。
图像处理单元设置用于评测图像。可以用于识别成像的光点,确定成像光点的矩心,确定所述矩心的图像坐标,由此可以计算出例如传感器的光学轴线,具体地为检测方向与从传感器至相应的光点的方向之间的立体角。
例如在US 5,973,788中描述了这种类型的测量装置,其包括激光追踪器和用于确定目标在空间中的位置和取向的图像检测单元,光点和反射器布置在图像检测单元上。
使用这种测量仪器时,例如可以由图像检测单元记录的三个光点,以及例如反射激光追踪器的测量光束的一个反射器可以被布置在物体上在相对于物体的已知的位置中,其该物体的位置和取向待被确定。通过图像检测单元记录的光点可以是主动光源(例如发光二极管)或进行照明的反射器,其中光点可以附加地配置或布置成使得它们彼此明确区分。另选地,如也在EP 2 008 120B1和EP 2 010 941B中描述的,还已知(根据所需的精确性)仅借助相机图像和对图像中所记录的光点的图像位置的评测来确定这种具有光点的辅助测量仪器的位置和取向,即,没有具有激光单元的距离测量的附加的辅助。
一般来说,这些系统可达到的最大化的速度,除了追踪器或相机的结构特征外,还主要由图像分析的处理速度确定。图像分析的速度性能以及因此在图像中对光点位置的确定主要由图像处理效率和可以在预定的时间间隔内处理的数据容量限定。
因此在现有技术中,图像数据处理速度构成具有相机的激光追踪器的主要瓶颈。在这种情况下,图像数据被逐个像素地读取并且每个像素的亮度或颜色数值被确定。在相对于在图像中检测到的光点来计算相应的图像矩心时,则每个超出预定的阈值的像素被加以考虑。在传统的系统中,在读取出图像传感器(例如CMOS)的所有像素或者至少属于一个成像的光点的所有像素之后开始在图像中检测光点,并且例如各自检测出的相机图像作为整体进行处理或者图像的连续部分作为整体进行处理。此外,在这些系统中,作为标准,传感器的所有像素关于各自的曝光情况被检查。针对读取信号高于阈值,并且因此被辅助测量装置的相同的光点照亮的像素的每次收集,矩心被以数学的方式查明,其中,矩心在图像中的位置代表相应的光点的位置。由于在正常情况下确定光点的矩心仅在读取出整个面积传感器之后开始,并且该评测需要相对高水平的计算完整性,并且因此还需要更多的时间消耗,在检测图像和通过评测图像获得结果之间分布潜在因素,其还关心可达到用于连续记录图像,并且,基于连续记录的图像连续确定辅助测量设备的位置以及调整相机的对齐的最大重复率。因此可以极大地影响对接触传感工具(作为辅助测量仪器)的取向的确定和追踪,具体地关于连续的位置和取向确定。作为结果,由于在评测空间光点布置中的拖延,例如在确定接触传感工具的接触点的精确位置过程中可能发生错误。
发明内容
相应地,本发明的一般目标在于提供一种用于改善地,更快速地以及更可靠地确定辅助测量仪器的空间取向的测量装置和测量方法。
本发明的特定目标在于,针对借助区域传感器检测图像,从区域传感器读取图像信息以及确定辅助测量仪器的检测到的标记的图像位置,提供一种用于借助区域传感器检测的图像的改善的和更快速的图像评测方法。
这些目标通过实现独立权利要求的特定特征来完成。以另选的或有利的方式改进本发明的特征可以从从属权利要求收集。
本发明涉及一种位置确定方法,尤其是借助激光追踪器进行的位置确定方法,该方法用于连续地确定具有至少一个辅助点标记的辅助测量仪器的空间位置,尤其是其中辅助测量仪器具有多个相对于彼此处于固定的已知空间分布的辅助点标记。这种方法涉及借助包括具有多个像素的区域传感器的相机来连续地检测至少一个辅助点标记的相机图像,以及连续执行读取操作,至少一些像素关于各自当前的曝光值被读取。此外,该方法涉及根据在各自当前的读取操作背景下获得的曝光值,连续地确定至少一个成像的辅助点标记在各自当前的相机图像中的至少一个图像位置,以及附加地基于至少一个当前的图像位置,尤其是基于辅助点标记相对于彼此的固定的已知空间分布,推导出辅助测量仪器的各自当前的空间位置。
根据本发明,在这种情况下,根据至少一个之前检测到的相机图像中的至少一个已确定的图像位置的集合,在区域传感器上连续地设定至少一个各自当前的感兴趣区域。在这种情况下,至少一个感兴趣区域在每种情况从区域传感器的整个像素划分连续的相邻的像素的子集。最多额外地考虑那些从位于至少一个当前设定的感兴趣区域内的传感器的像素获得的当前曝光值,来确定至少一个当前图像位置。
通过示例的方式,光点(即,其自身例如在光谱或红外行范围中发光),诸如反射膜点或小猫眼,或仅其他布置在辅助测量仪器上的预定图案的反射的(具体地为回射的)物体可以适合作为辅助点标记。如本领域技术人员本身已知的,在这种情况下,辅助点标记因此必须在原则上被设计成它们可以通过图像处理在所记录的图像中被可靠地识别,并且可以针对图像中的位置明确地评测。
与本发明相关联,图像位置因此通常被理解为表示在所记录的图像中的位置,相应的辅助点标记在该位置处成像。图像位置因此也代表已检测到的并且在图像中被识别到的辅助点标记的位置。
感兴趣区域在传感器上构成在图像检测过程中曝光在其中的像素被考虑用于评测和确定相应的图像位置的区域。也就是说,根据本发明,仅考虑成像在这些相关区域内的辅助点标记。相应的感兴趣区域的位置、形式和尺寸可以在每种情况下单独适用于测量条件,例如适用于希望在其中被检测的辅助点标记的位置、形式和尺寸。
具体地,本发明涉及用于连续地确定具有多个彼此呈固定的已知空间分布的辅助点标记的辅助测量仪器的相应的位置确定方法,其中,连续的确定因此涉及分别将多个辅助点标记成像,然后在相机图像中确定多个图像位置(即分别用于每个辅助点标记)。随后基于相应确定的当前图像位置以及辅助点标记的彼此固定的已知空间分布推导出辅助测量仪器的空间位置。根据本发明,在这种情况下,根据在至少一个之前检测到的相机图像中确定的图像位置的集合,在区域传感器上连续地设定相应的当前感兴趣区域。
在对多个辅助点标记的检测过程中,感兴趣区域可以如此形成和设定,即感兴趣区域将被设定用于待被成像于此的多个辅助点标记,或者相应的感兴趣区域被设定用于相应的辅助点标记。
这些方法可以尤其用于工业测量中。为了确定辅助测量仪器的空间位置,由此借助相机的区域传感器连续检测图像,并且相应地读取出区域传感器的像素。根据本发明,辅助测量仪器的空间位置可以首先通过辅助测量仪器在空间中的位置代表,并且其次具体地通过考虑仪器的空间取向或对齐代表。
像素可以顺次地且逐行地(例如也就是说,在行内逐个像素地并且顺次地逐行地)被读取出来,在每种情况中,相对于其当前的曝光状态分析像素。在此,可以识别在图像中成像的辅助点标记,尤其是在传感器上借助所述标记的曝光状态识别多个辅助点标记,并且因此针对每个辅助点标记确定图像位置。从该信息,例如考虑辅助测量仪器上的辅助点标记的已知的相对布置和位置,可以推导出辅助测量仪器的当前空间位置。本发明涉及在区域传感器上限定至少一个感兴趣区域,尤其是多个感兴趣区域,借助确定数量的连续像素,其中这些标记在图像中的位置(图像位置)最大限度地借助位于感兴趣区域内的那些像素进行确定。至少借助已在至少一个之前记录的图像中查明的图像位置来实现在传感器上设定相应的感兴趣区域的位置,即也就是说通过使用已经存在的(并且被存储的)关于辅助测量仪器的位置(假设短时间之前)的信息。
在这种情况下,借助相机连续检测图像应该理解为表示,图像被检测并且具体地借助一频率进行评测,使得例如也根据辅助测量仪器的希望的动态范围可以借助图像分析来执行对辅助测量仪器(或者辅助点标记)的连续追踪。在这种情况下,将频率选择成使得甚至通常动态移动的辅助测量仪器的位置和/或取向的小的变化,被可靠地检测,该变化例如通过使用者引导辅助测量仪器或者机器人手臂引起的,并且可以精确地确定作为结果引起的该仪器的位置变化。出于该目的,借助示例,可以检测图像并且可以以例如至少1Hz,尤其是10至100Hz,或者高于100Hz的频率执行相应的位置确定。
这种位置确定方法的一个优点在于,对于成像的标记的位置的评测和确定不考虑传感器像素的比例,并且由于待被处理的数据的减少的容量而因此提高可实现的评测速度。根据对无需被考虑用于评测的区域的尺寸的限定,与感兴趣区域相比,所述比例可以大很多,并且因此数据减少可以显现为很明显。
具体地,由于相应的当前的读取操作已经以如此的方式执行使得在各种情况下确切地说仅位于至少一个当前感兴趣区域内的像素被读取,可以根据本发明实现。
在这种情况下,由于与读取传感器的所有像素相比读取操作已经以减少的时间消耗和在此生成的减少的数据容量来进行的事实,整个过程已经被缩短。
因此作为结果,可以提高用于连续执行整个方法的重复率(在此具体地,用于执行相应的读取操作的重复率以及因此最终用于查明辅助测量装置的位置的重复率)。借助提高重复率,也可以作为副作用显著减少当设定感兴趣区域时的不确定性,由此更快速地重新限定至少一个感兴趣区域并且因此在辅助测量仪器的移动过程中,对感兴趣区域的设定可以更快速地适应于辅助点标记的位置变化(或适应于最近的已知位置状态)。也就是说,因此可以已经减少当设定感兴趣区域时的不确定性,并且因此例如可以以高重复率将感兴趣区域设定成更小尺寸并且因此具有容量减少的待被处理的数据。
根据本发明的一个改进,在这种情况下,为了设定感兴趣区域,可以查明用于当前图像位置的期望值,该值例如从在多个之前(具体地为之前相继地)检测到的相机图像中确定的图像位置的集合推导出来。具体地,分别在多个之前检测到的相机图像中确定的图像位置可以在这种情况下用于供给卡尔曼滤波器(Kalman filter),则其可以用于查明辅助点标记的当前的(下一个)图像位置的期望值。通过使用以这种方式之前记录的图像并且通过相对于图像位置评测图像,可以从用于检测到的标记的图像序列例如来计算标记在图像中的移动以及因此预估(或者预测)当前待被记录的图像的标记的当前位置。对在图像中待被预期的当前位置的这种估算可以如上所述有利地通过卡尔曼滤波器来执行。该滤波器被供以大量的图像信息,例如检测到的标记的位置、数量和尺寸,并且数学模型用于执行对图像位置的期望值的计算。就此而言,可以如此在传感器上精确地设定感兴趣区域,即所有在传感器上成像的辅助点标记预计位于感兴趣区域中,或者(以其他方式)相应的感兴趣区域可以被放置在或者在每种情况下设定在例如围绕当前希望的图像位置的中心处。
本发明此外还涉及一种测量装置,具体地为激光追踪器,其用于连续地确定具有至少一个辅助点标记的辅助测量仪器的空间位置,尤其是,其中辅助测量仪器具有多个相对于彼此处于固定的已知空间分布的辅助点标记。该测量装置包括用于连续地检测至少一个辅助点标记的相机图像的包括具有多个像素的区域传感器的相机,以及评测和控制单元。评测和控制单元在这种情况下被设计用于控制读取操作,该读取操作可以连续地执行并且其中至少一些像素关于各自当前的曝光值被读取,用于根据在各自当前的读取操作中获得的曝光值来连续地确定至少一个成像的辅助点标记在各自当前的相机图像中的至少一个图像位置,并且用于基于至少一个当前图像位置以及尤其基于辅助点标记的相对于彼此的固定的已知空间分布来推导辅助测量仪器的各自当前的空间位置。
此外,评测和控制单元被设计用于根据在至少一个之前检测到的相机图像中确定的至少一个图像位置的集合在传感器上连续地设定至少一个当前的感兴趣区域,其中该至少一个感兴趣区域在各种情况下从区域传感器的整个像素中划分连续的相邻像素的子集。此外,评测和控制单元最多额外地考虑那些通过位于至少一个当前设定的感兴趣区域内的区域传感器的像素获得的当前的曝光值,来确定各自的至少一个当前图像位置。
这样的根据本发明的测量装置可以用于非常快速地查明空间位置,尤其是例如具有接触传感器的接触传感工具的辅助测量仪器的位置信息(例如相对于辅助点标记或相对于辅助测量仪器的立体角)和/或取向。这样的测量装置借助相应的辅助测量仪器尤其用于工业测量中,该工业测量用于测量部件或者用于在例如单独的制造步骤之间的制造过程中的质量控制。出于该目的,评测和控制单元可以用于根据之前检测到的图像信息来从区域传感器限定感兴趣区域,使得感兴趣区域内的一定数量的像素用于确定辅助点标记的图像位置。因此对图像位置的确定可以仅借助由此位于被限定的感兴趣区域中的像素来完成,并且一部分传感器数据无需被考虑。这导致待被处理的数据的减少以及因此导致的更快速的数据评测和位置确定。辅助测量仪器的取向可以借助图像中的多个辅助点标记的已被确定的位置被推导出来,多个辅助点标记具体地为至少三个,尤其是五至八个标记,考虑辅助点标记在辅助测量仪器上的固定的已知空间分布。
尤其是根据本发明,评测和控制单元可以被设计用于控制读取操作,使得在各种情况下只有位于各自当前的感兴趣区域内的像素被读取。通过另选地考虑在感兴趣区域内的所有像素,例如可以实现关于确定图像位置的准确性。
此外,根据本发明,为了借助评测和控制单元来设定感兴趣区域,用于当前的图像位置的期望值可以在各种情况下通过在多个之前相继检测到的相机图像中确定的图像位置的集合查明,尤其是借助卡尔曼滤波器查明。在这种情况下,通过图像集合,例如图像位置的位置变化可以被追踪,以及从位置变化的轮廓,当前待被检测的位置可以被推导并且感兴趣区域可以在区域传感器上被限定,从而使得待被检测的标记成像在该区域中。这样的基于模型的计算可以例如借助卡尔曼滤波器进行。
此外,根据本发明的测量装置可以具有基部、用于以机动的方式改变相机相对于基部的对齐的调节装置,以及用于连续地检测相机的各自当前的对齐的角度测量装置。评测和控制单元可以被设计用于连续地控制相机的对齐的改变,从而使得相机连续地与辅助测量仪器对齐。测量装置的这种设计因此可以用于沿辅助测量仪器的方向连续地检测图像,并且执行对至少一个图像位置的确定,以及后续对辅助测量仪器的空间位置的确定。出于该目的,为了对齐,例如可以执行与激光追踪器的信息交换,该激光追踪器瞄准和追踪辅助测量仪器上的反射器并且确定其空间中的位置,并且可以根据追踪器对齐来设定相机的对齐。
此外,根据本发明,相机可以具有带有可变焦距的镜头,其中焦距(以及因此相机的成像范围)以通过评测和控制单元进行自动控制的方式连续可变,使得辅助测量仪器与距离无关地基本上以恒定的范围成像在区域传感器上。为了设定焦距,可以再次使用借助激光追踪器查明的追踪器与相机之间的距离(如果相机布置在追踪器处或者具有已知的相对位置)并且设定放大倍数,使得辅助测量仪器假定在区域传感器上的预定的范围。在这种情况下,焦距可以例如借助马达以自动的方式进行设定。具体地,在此,相机可以具有平焦距或变焦距的镜头,其中在设计为变焦距镜头的情况下,缩放光学组件可以以与聚焦光学组件合作的方式移位,并且因此焦距和相应地聚焦可以临时调整为是平行的。
尤其是,根据本发明,测量装置可以被设计为激光追踪器,并且此外具有至少一个光学距离测量装置,该光学距离测量装置沿目标轴线的方向进行测量,并且用于测量与设置在辅助测量仪器上的回射器的距离。此外,该测量装置可以具有:调节装置,其用于以机动的方式改变目标轴线相对于基部的对齐;角度测量装置,其用于连续检测目标轴线的各自当前的对齐;以及测量和控制电路,其用于追踪具有目标轴线的辅助测量仪器的回射器,使得目标轴线连续地与回射器对齐。
在本发明的背景下的回射器可以在此例如通过棱镜或反射膜进行实施,其中入射到棱镜或者薄膜的辐射沿平行方向或同轴方向被反射回来。
既可以看作是独立的,又可以是依赖于上述本发明的本发明的其他方面涉及一种根据相同的前序部分的位置确定方法,尤其是借助激光追踪器,用于连续地确定具有至少一个辅助点标记的辅助测量仪器的空间位置,尤其是其中辅助测量仪器具有相对于彼此处于固定的已知空间分布的多个辅助点标记。该位置确定方法涉及通过包括具有多个像素的区域传感器的相机来连续地检测至少一个辅助点标记的相机图像,以及连续地执行读取操作,其中至少一些像素关于各自当前的曝光值被读取。附加地,该方法涉及根据在各自当前的读取操作背景下获得的曝光值来连续地确定至少一个成像的辅助点标记在相应的当前相机图像中的至少一个图像位置,以及基于至少一个当前的图像位置,尤其是基于辅助点标记相对于彼此的固定的已知空间分布,连续地推导辅助测量仪器的相应的当前的空间位置。
此外,根据本发明的第二方面,通过下列步骤确定至少一个图像位置:
●过滤像素,这些像素的在读取过程中获得的曝光值满足阈值标准,尤其是曝光值高于阈值,
●在各种情况下,将过滤的像素联接在一起以形成像素片,过滤的像素形成在区域传感器的行中连贯的行区域,
●查明每个像素片的各自的矩心部分(子矩心),
●将像素片分组成使得属于至少一个成像的辅助点标记的像素片在各种情况下被分配给彼此,以及
●借助在各种情况下被分配给彼此的像素片的相应的各自的矩心部分推导至少一个辅助点标记的至少一个图像位置。
具体地,根据本发明,在读取操作的背景下,区域传感器可以以预定的像素读取速率逐个像素地并且逐行地被读取,并且最后在完成读取相应的一行之后,针对该行,已经开始并执行过滤、联接在一起以及查明各自的矩心部分的步骤,这些步骤在确定至少一个图像位置尤其是多个图像位置的背景下执行。
尤其是根据本发明,过滤、联接在一起以形成像素片以及查明矩心部分(子矩心)的步骤可以以特别对应于像素读取速率的较高的第一速率进行计时,并且分组和确定图像位置的步骤以较低的第二速率计时。
因此借助这样的程序,也就是说,满足照明标准并形成连贯的行区域的那些像素(例如可以彼此排成一行)可以立即被联接在一起以形成像素片或行片段(尤其是在传感器的下一行被读取之前或传感器的下一行被读取时),其中在连贯的行区域中在像素之间可能存在由于有缺陷的单独的像素引起的间隙,其中为每个行片段计算矩心部分。以这种方式确定的片和矩心部分被按顺序地分组,使得那些属于一个辅助点标记的像素片形成一组。可以从所述组推导出辅助点标记在图像中的位置,例如通过计算相对于像素片的整个矩心。
这种方法的一个优点在于,早期评测步骤,即确定像素片和计算各个像素片的矩心部分,可以独立于属于辅助点标记的整个图像信息来执行。因此,为了能够开始对稍后可以被进一步用于图像位置的最终确定的部分信息进行部分地评测和确定,不一定读取所有包含相应的辅助点标记的图像信息的行。也就是说,已经可以开始进行评测,从而生成关于辅助点标记的图像位置的部分信息,并且因此容量减少的数据可以被传递用于在最终评测的背景下的进一步处理。对行片和矩心部分的确定可以非常快速地执行(具有相对较低的计算复杂度)。由于稍后仍需处理的数据容量在传输后显著地减少,因此利用作为部分评测的结果已经存在的部分信息,分组和辅助点标记的图像位置的最终确定则可以被快速地执行,并且具有比较低的剩余的计算复杂度,其在完成对供辅助点标记成像的其他行的读取之后仍需立即执行。
因此根据本发明,在完成对其上的至少一个像素仍被所述辅助点标记照亮的最后(最底层的)一行的读取之后,成像在传感器上的辅助点标记的图像位置的确定结果可以相应地更快速地被呈现,因为确定所述图像位置所需的计算复杂度的重要部分已经可以在逐行读取那些由相应的辅助点标记点检测的行的过程中执行。
根据本发明的测量装置的其他的实施方式在从属权利要求中进行描述或者作为根据本发明的位置确定方法的改进已经在前面相类似地进行了描述,尤其是其中位置确定方法的单独的步骤可以根据本发明的测量装置通过相应的预编程的FPGA或ASIC自动执行。
FPGA(现场可编程阵列)和ASIC(专用集成电路)是设计为集成电路的可编程的电子部件。如本领域技术人员本身已知的,通过它们的特定的程序,例如诸如上述的确定图像位置的过程可以快速且有效地完成。
本发明附加地涉及一种包括根据本发明的测量装置以及具有至少一个尤其是光点的辅助点标记的辅助测量仪器的测量系统,尤其是其中辅助测量仪器具有多个相对于彼此处于固定的已知空间分布的辅助点标记,尤其是其中除了至少一个辅助点标记之外,辅助测量仪器还具有回射器。
本发明的其他主题是具有存储在机器可读载体上的程序代码的计算机程序产品,用于控制或者执行根据本发明的位置确定方法或者用于执行按照本发明的第二方面的本发明的位置确定方法的下列步骤(在确定至少一个图像位置的背景下执行),尤其是当程序在FPGA或ASIC上执行时:
●过滤像素,
●在各种情况下,将过滤的像素联接在一起以形成像素片,过滤的像素形成在区域传感器的行中连贯的行区域,
●查明各自的矩心部分,
●分组,以及
●借助在各种情况下被分配给彼此的像素片的相应的各自的矩心部分,推导至少一个辅助点标记的至少一个图像位置。
根据本发明的方法和/或计算机程序产品可以尤其在工业测量中使用(即针对通常设计用于追踪具有多个光点和一个反射器的辅助测量仪器的激光追踪器[其同样地在本发明的装置内构成辅助点标记])。根据本发明的方法则可以在这样的激光追踪器中使用,不仅关于在现有技术中通常被指定为6dof相机的相机(即特别地设计用于检测辅助测量仪器的多个光点的相机,相机最终用于极其精确地确定辅助测量仪器的当前的取向)的区域传感器,而且另选地或者附加地,关于在现有技术中经常设计为追踪传感器或者ATR传感器的区域传感器(特别用于检测反射回来的激光束从传感器中心位置的偏移)在各种情况下用于控制读取操作和评测由相应的两种类型的区域传感器检测的图像。
作为传统追踪(ATR)的备选方案,其中在辅助测量设备上的回射点借助例如红外激光束被照亮,并且返回的反射的位置在借助平面检测器记录的图像中确定,该平面检测器尤其只在相应的波长范围中是敏感的,或者作为设置在用于6dof确定的辅助测量仪器上的光点的传统使用的备选方案,还可以使一个或多个简洁的图案(例如色点)用作辅助点标记,并且可以设置在可见光谱范围内操作的数码相机,借助该数码相机可以记录相机图像,由此确定被识别为辅助点标记的图案在图像中的位置,并且这可以用作辅助测量仪器的位置确定的基础(如类似地例如在申请号为EP 10168771.3的欧洲专利申请所描述的)。根据本发明的用于控制平面传感器的连续的读取过程或者对在此背景下检测到的图像的连续的评测的方面还可以用于该情况,即在这种情况下在辅助测量仪器上利用简洁的图案作为辅助点标记,并且利用具有平面传感器的在可见光谱范围内操作的数码相机。
附图说明
下面仅通过示例的方式在特定的示例性的实施方式的基础上更具体地描述根据本发明的方法以及根据本发明的装置,这些实施方式在附图中被示意性地示出,也对本发明的优点进行了讨论。在附图中,具体地为:
图1示出了根据本发明的测量系统,该测量系统包括激光追踪器、图像检测单元和辅助测量仪器;
图2示出了根据本发明的用于图像分析方法的图像检测传感器;
图3示出了根据本发明的用于在图像中定位光点的图像评测的第一实施方式;
图4a至图4c示出了根据本发明的用于在图像中定位光点的图像评测的第二实施方式;
图5示出了根据本发明的根据第一和/或第二实施方式的图像检测和评测的顺序的框图;
图6a至图6c示出了根据本发明的用于在图像中定位光点的图像评测的其他实施方式;
图7示出了根据本发明的其他图像检测和图像评测的顺序的其他框图;
图8a至图8b示出了根据现有技术从图像检测直至对已评测的图像信息的进一步处理的图像评测的顺序的其他框图;
图9a至图9b示出了根据本发明的针对图像评测的顺序的两个其他框图;
图10a至图10b示出了根据本发明的针对其他图像评测的顺序的两个其他框图。
具体实施方式
图1示出了根据本发明的测量系统10,该测量系统包括激光追踪器11、图像检测单元12和辅助测量仪器20,例如接触传感工具。为了确定传感器曝光在传感器上或者在检测到的图像中的位置,图像检测单元12可以具有CMOS,或者图像检测单元12尤其可以设计为CCD或像素传感器阵列相机。这样的传感器允许对检测到的曝光进行位置敏感的检测。此外,辅助测量仪器20具有传感器,该传感器的接触点23可以与待被测量的目标物体接触。当该接触存在于接触传感工具和目标物体之间时,可以精确地确定接触点23在空间中的位置以及因此该点在目标物体上的坐标。借助接触点23相对于反射器21以及相对于布置在辅助测量仪器20上的标记22的限定的相对定位进行确定,标记例如可以被设计为发光二极管。另选地,标记22还可以被设计成使得在其照明时,例如对于限定波长的光线,它们反射入射光线(辅助点标记22被设计为回射器),尤其表现出特定的发光特性,或者它们具有限定的图案或颜色编码。为此首先必须知道反射器21的位置或接触传感工具的位置,其次必须知道它们的空间取向。
为了确定位置,激光追踪器11沿布置在辅助测量仪器20上的反射器21的方向发出激光束15,该激光束以平行的方式从那里反射回追踪器11,并且借助追踪器11上的接收单元进行检测。激光追踪器11附加地具有用于确定追踪器11和反射器21之间的距离的距离测量单元和测角器,测角器可以确定偏转镜的位置,由此可以以限定的方式来对齐和引导激光束15,并且由此确定激光束15的传播方向。激光束15尤其可以通过瞄准单元的枢转来对齐,光束引导光学单元以及尤其是辐射源可以安装在该瞄准单元中。所描述的布置使得可以精准地查明相对于反射器21或者相对于接触传感工具的距离和方向。
辅助测量仪器20的空间取向通过设置的发光二极管的限定的相对位置和布置来查明。为此,具有发光二极管的辅助测量仪器20的图像由相机12检测并且根据本发明由图像处理单元进行分析。尤其是可以以可选择波长的方式来检测图像,即由发光二极管发出的光的波长由相机的传感器进行检测,或者通过配置给相机12的滤波器传输给传感器。然后,根据本发明的图像分析由传感器以逐行读取的方式执行,其中在每一行中,那些发光特性高于特定的阈值的像素被识别为相关像素。在对这些排成一行的相关像素进行检测之后,针对每个像素集合,查明具有相应的矩心部分的线片段(片),并且随后检查下一个传感器行。借助这样的系统化的图像或传感器信号分析,所有由发光二极管生成的发光点可以被快速地检测并且在图像中定位。通过这些点在图像中的布置,则可以确定接触传感工具的取向,并且结合反射器21的位置,可以确定具有6个自由度(6-DoF)的接触传感工具的精确的空间位置和取向。因此通过接触点23相对于标记22和反射器21的限定的位置也可以精确地确定接触点位置。
图2示出了用于根据本发明的图像分析方法的图像检测传感器30。在这种情况下,例如为CMOS的传感器30由具有限定数量的像素42的传感器行41构造而成。通过示例的方式,CMOS可以具有1024个行41,每行具有1024个像素42。在借助该传感器30记录图像时,每个单独的像素42检测可以通过传感器30被逐个像素地读取的图像信息。此外,由传感器30检测并且尤其通过位于接触传感工具上的发光二极管生成的光点的光点位置32被呈现在传感器30上。
图3示出了用于在图像中定位光点32的根据本发明的图像评测的第一实施方式。在这种情况下,作为在传感器上限定感兴趣区域、ROI、35a、35b的结果,只有位于区域35a、35b内的像素的那些图像信息被用于图像处理。剩余的传感器区域34的图像信息在这种情况下不作进一步考虑。借助该技术,待被分析的数据容量可以被显著减少,并且图像处理过程的速度因此可以提高。感兴趣区域35a、35b的确定在该实施方式中如此进行,即大面积的连续的传感器区域在图像分析中仍然被省除,并且待被检测的光点32位于感兴趣区域35a、35b内。传感器上的所述感兴趣区域35a、35b的尺寸和位置可以连续地更新,其中例如接触传感工具的移动可以借助数学分析进行估计。为此,以示例的方式,诸如例如光点数量,光点32关于最后两个被检测到的图像的位置变化,以及与反射器的距离的测量信息可以提供给卡尔曼滤波器,并且期望值,尤其是用于相应的光点位置的进一步更改的期望值因此可以针对每个待被检测的光点32被确定。即使在传感器仍被感兴趣区域35a、35b以及因此较大的待被评测的传感器区域高度覆盖的情况下,也可以实现分析过程的增强。通过示例的方式,仅一个相对于整个传感器面积的大区域覆盖的感兴趣区域就已经可以导致更快的读取速率。尤其是,在10个待被检测的辅助点的情况下,在每个考虑相对较小的面积的情况下,可以设定例如10个感兴趣区域(多个感兴趣区域=MROI),并且因此覆盖区域可以进一步减小,并且可以进一步加速分析过程。在这种情况下,由于用于检测图像和用于设定区域的高重复率,为了仍然以较高的概率实现在相应区域中对标记的检测,区域可以被设定为更小。因此在速率较低时,在感兴趣区域被设定为更大的情况下可以实现这些高概率。
图4a至图4c示出了用于在图像中定位光点32a以及根据光点32a的位置变化改变感兴趣区域(ROI)36a、36b、36c的根据本发明的图像评测的第二实施方式。在该实施方式中,传感器的检测区域的主要部分34不被用于识别和确定光点32a的位置。图4a通过示例的方式示出了光点32a和围绕光点32a的感兴趣区域36a。位于该感兴趣区域36a内的像素的图像信息被传输给图像处理算法用于检测光点32a,并且被考虑用于进一步的评测。由于未被考虑的区域34与被考虑的区域36a的有利的比率,可以非常快速地执行图像处理以及因此对接触传感工具的取向的确定。图4b示出了光点的改变的布局,其中图4a中检测到的接触传感工具在此以改变的取向检测。取向的更改由双箭头31a指示。因此接触传感工具围绕竖向轴线与其在图4a中的对齐相反地转动,从而使得在各种情况下在传感器上检测到的光点沿水平方向(参照箭头)移动靠拢在一起。此外,传感器的感兴趣区域36b发生移位,例如基于卡尔曼滤波器的计算,使得当接触传感工具围绕竖向轴线进一步转动,并且与之相关地光点随之进一步移动时,光点以高概率位于相应的ROI中,尤其是光点32a以高概率位于感兴趣区域36b中。借助对感兴趣区域36b的位置的预先设定,可以在对光点32a进行检测和评测的过程中考虑接触传感工具的取向或者对齐的希望的变化。在图4c中示出了对取向的变化进行估计的另一个示例,其中在这种情况下对齐如箭头31b指示的一样,围绕水平轴线被影响,并且感兴趣区域36c的位置变化发生在竖直方向上(参照箭头)。
图5以框图的方式示出了根据第一和/或第二实施方式的根据本发明的图像检测和评测的顺序。首先借助CMOS传感器50对图像进行检测。通过传感器50,像素数据被读取并且被反馈给光点评测55。在此生成的诸如点的位置或尺寸的光点数据被传递至光点追踪单元56,其中,借助感兴趣区域计算单元57,生成关于CMOS传感器的构造的信息并且与后者连通。借助根据本发明的这样的感兴趣区域控制单元58,其包括光点追踪56和ROI计算57,因此可以优化CMOS传感器50和光点评测55之间的数据流并且获得更快的数据评测。
在这种情况下,首先只有在ROI内的相关的传感器数据被读取,然后对光点进行检测,并且借助点追踪算法来确定感兴趣区域(ROI)的优化尺寸,位置和数量。此外,尤其是为了改善处理有效性,可以将一些点进行组合以形成一组点。此外,通过相应构成的传感器可以借助在点追踪过程中生成的信息来实时地调整传感器上的感兴趣区域,其中每个点可以被单独地追踪并且每个感兴趣区域可以相应地被单独地更新。而且借助点追踪算法,点的移动可以如此计算,使得单独的点的位置还可以在传感器或者相机的视野外确定。
图6a至图6c示出了用于在图像中定位光点32、32b的根据本发明的图像评测的其他实施方式。图6a再次示出了以行的方式构成的传感器30,并带有检测到的光点32、32b的位置。传感器区域A被额外地加以标记。图6b示出了区域A的放大的视图,区域A由4个具有光点32b的传感器行组成。图6c通过进一步放大示出了区域A,传感器30的行37a至37d在后面被单独考虑用于描述图像评测方法。
逐行地对由传感器30检测的图像进行评测。借助由传感器30检测到的光点32b,传感器根据光点32b的位置生成图像信息。特别是,与光点32b的位置相对应的传感器的像素38a至38d检测图像信息的相应项,尤其是,其中该信息由相应的像素信号代表。在读取示出的第一传感器行37a的过程中,像素38a因此被识别为这样的像素38a,即由于这些像素被照亮为部分光点32b,因此其曝光状态高于特定的阈值。根据本发明,这些像素38a则被分配给行片段39a,该行片段首先具有像素38a在传感器30上的位置或者在行37a中的位置,其次具有包含在行片段39a中的像素38a的数量,并且因此具有行片段39a的尺寸。此外,针对每个位于行37a中的行片段39a,通过像素38a的位置和数量计算出像素矩心部分。该矩心计算可以非常快速地进行,尤其是实时地进行,即与像素读取速度相关联。一旦第一行37a已经被完全搜索完,继续在后续行37b至37d中对曝光状态高于阈值数值上方的其他像素38b至38d进行搜索。这同样涉及行片段39b至39d的提取和对各自的矩心部分的相应确定。根据本发明的该类型的图像或者传感器信号评测使得检测到的信息可以连续地被快速读取和传递。在根据现有技术的评测方法中,图像信息的全部项目被读取并且只有在此之后,所述信息才能被进一步处理。在这种情况下,行片段39a至39d构成连贯的行区域,该连贯的行区域可以在行片段39a至39d内具有间隙。所述间隙可以例如作为所谓的“热像素”(=在传感器上检测)的结果出现,其中单个的或者多个,尤其是固定的像素可以是“盲的”,并且因此不起作用。这样的有缺陷的像素的位置对于图像检测传感器(或者在图像检测传感器上)可以预先已知,或者例如通过在检测到的图像中之前确定的图像位置的比较被识别为传感器上的缺陷。因此连贯的行区域可以由曝光值高于预定的阈值的像素来确定,考虑这样的有缺陷的像素。为了找到那些在各种情况下属于相同的检测到的点的行片段39a至39d,通常在传感器上以列的形式重叠的那些行片段39a至39d被分配给彼此(分组)。此外,在特殊情况下还可能出现,为了分别将属于相同的点的行片段39a至39d分配给彼此,以彼此对角线相邻的方式布置的行片段39a至39d需要彼此进行连接。
行片段处理51以更广泛的范围在图7中以用于根据本发明的图像检测和图像探测的顺序的框图示出,其中示出了与光点相关联的行片段51a。在这种情况下,点识别由通过CMOS传感器50对图像50a进行检测开始。通过光片段处理51查明的矩心信息52a还被传递至其他的评测单元52,该评测单元根据FIFO原则(先进/先出)处理输入数据。在这种情况下,数据以较高的时钟速率和较低的时钟时间进入FIFO存储器,并且数据以较低的时钟速率和较高的时钟时间输出。因此,每个行片段39a至39d可以由较少数量的参数来代表,并且可以在早期的数据处理阶段实现第一次有效数据减少。在后续的将这些行片段联接在一起53的过程中,待被分配给点的那些行片段39a至39d可以被联接在一起并且被布置。当行片段39a至39d以这种方式联接在一起时,借助相应的矩心部分信息则可以执行重新的(交叉行)矩心计算,并且可以查明用于大量行片段39a至39d的总矩心或总矩心信息53a,其代表被分别检测的光点的位置。由于计算复杂度较高,联接在一起53和重新的矩心计算可以以较低的处理速度(与用于读取像素的速度相比)执行。由于前面提到的数据减少,处理有效性在此仍不被限制。行片段处理51,FIFO评测单元52和联接在一起53在此可以组合成点识别和矩心确定54。
图8a至图8b示出了其他的框图,该框图示出了根据现有技术从图像检测61直至对评测的图像信息的其他处理的顺序。图8a详细示出了评测过程,而图8b以简化的方式示出了该过程并且将作为下面描述的参考。
第一步涉及图像检测,尤其是对具有以限定的方式布置的标记的辅助测量仪器的图像检测。该检测可以以通过同步和触发单元63控制的方式执行,或者以临时限定的方式启动。然后图像被传递至用于图像分析62的图像处理单元,图像关于在图像检测过程中生成的传感器像素的曝光值进行评测。在图像分析62的背景下,附加地针对在图像中检测到的辅助测量仪器的每个标记,图像中的矩心以及因此矩心的图像位置以数学的方式被查明。因此生成的信息的总量则可提供给其他的处理器单元64,例如用于通过查明的图像位置来确定辅助测量仪器的取向。在处理器单元64和用于图像检测61的单元(CMOS)之间存在连接65,借助该连接可以通过处理器单元64执行对区域传感器的控制。
图9a至图9b示出了其他的框图,该框图示出了根据本发明的图像评测的顺序。图9a具体示出了该评测过程,而图9b则以简化的方式示出了该过程并且将作为下面描述的参考。
在该实施方式中,原则上根据按照图8a至图8b的评测顺序来执行图像评测,根据本发明通过点识别和矩心确定功能54来调整和改善图像分析62。在图像检测61过程中检测到的图像信息经由传感器界面被传递给图像分析62,根据本发明图像的评测借助功能54执行,该功能例如通过改写的算法实现。在功能54的背景下,传感器的像素关于各自当前的曝光值被依次读取,并且相应的行片段基于曝光值高于阈值的那些像素被提取。随后为每个行片段计算矩心,并且对属于接触传感工具的相同的成像标记的片段进行分组。随后通过分别分组的行片段的矩心,相对于标记推导图像位置(参照关于图7的描述),并且由此生成的位置信息被传递至处理区单元64。借助根据本发明的点识别和矩心确定功能54,可以更快速地执行图像分析62,并且因此可以获得图像处理速率的提高。因此可分析的图像比率可以提高6倍,尤其是与按照图8a至图8b的现有技术的方法相比。
图10a至图10b示出了两个其他的框图,这两个框图示出了根据本发明的其他的图像评测的顺序。图10a再次详细地示出了该评测过程,而图10b则以简化的方式示出了该过程并且将作为下面描述的参考。
在该实施方式的背景下,原则上根据按照图8a至图8b的评测顺序来执行图像评测,首先根据本发明通过点识别和矩心确定功能54来调整和改善图像分析62,其次处理器单元64根据本发明具有感兴趣区域控制单元58。在这种情况下,感兴趣区域控制单元58根据本发明具有用于在相机的区域传感器上确定限定的感兴趣区域(多个感兴趣区域=MROI)的功能,每个感兴趣区域均具有从全部的区域传感器的像素划分的连续的相邻像素的子集。在这种情况下,根据在至少一个之前检测到的相机图像中确定的图像位置的集合,借助该功能连续地设定感兴趣区域。也就是说,因此区域被预定在CMOS上,在这些区域中,待被检测的标记在记录下一个图像的过程中如所希望的一样被检测。在这种情况下,相应的区域的位置和尺寸可以尤其通过借助卡尔曼滤波器的计算来确定。在这种情况下,该滤波器可以被供给大量的测量相关信息,诸如例如相对于标记的距离,标记的尺寸,标记在辅助测量仪器上的数量和位置,或者在测量环境中的亮度分布。对这些区域的限定和调整可以例如在如下情况下执行,即通过围绕其竖向轴线的旋转来改变辅助测量仪器的取向,使得传感器区域中的感兴趣区域(ROI)水平地移位,从而使所希望的标记的水平地靠拢移动作为转动的结果被预估,并且标记在转动过程中连续地位于相应的更新的感兴趣区域(ROI)中。为了确保在各种情况中,只有位于ROI内的传感器的像素在各自的读取操作过程中被读取,区域传感器可以被设计为使得它可以实时地关于各自的读取操作进行重新构造,也就是说影响读取操作的对感兴趣区域在传感器上的设定和限定可以实时地执行(即,如此速率,也用于执行图像检测和/或读取操作的)。由此,在每次对相机图像进行检测之前可以重新限定感兴趣区域,并且适于测量情况的具有感兴趣区域的图像可以在各种情况下被检测(或者只有那些位于这些ROI中的像素可以在这种情况下被分别读取)。
图像检测单元61可以借助位于图像检测单元61和处理器单元64之间的连接65来控制。在这种情况下,用于区域传感器(CMOS)的感兴趣区域(所述感兴趣区域借助感兴趣区域控制单元58的功能被分别地确定和更新)可以被传递给图像检测单元61,并且以依赖于此的方式,在各种情况下只有在以这种方式确定的感兴趣区域内被检测到的图像信息被向前传递给图像分析62,该图像分析用于借助点识别和矩心确定功能54来处理图像。该进一步的处理则导致(如上所述)用于检测到的图像的图像位置,辅助测量仪器的取向可以从该图像位置推导出来。
借助根据本发明的点识别和矩心确定功能54与感兴趣区域控制单元58的功能的组合,图像处理和评测的有效性可以被进一步改善,并且可以获得图像处理速率的进一步提高。与按照图8a至图8b的现有技术的方法相比,可分析的图像的速率在此尤其可以被提高12倍。
毫无疑问,这些示出的附图仅示意性地示出了可能的示例性的实施方式。不同的方法根据本发明也可以彼此组合,并且与用于确定物体的空间位置的方法,用于图像评测的方法以及与现有技术测量装置组合。就此而言,根据本发明的方面也可以用于控制大地测量装置的区域传感器的连续的读取过程,诸如总站和视距仪(尤其是在这种情况下针对用于反射器棱镜的目标追踪的区域传感器),或者用于连续地评测在这种情况下检测到的图像。
Claims (7)
1.一种位置确定方法,尤其是借助激光追踪器(11)进行的位置确定方法,该方法用于连续地确定具有至少一个辅助点标记(22,32,32a,32b)的辅助测量仪器(20)的空间位置,尤其是,其中所述辅助测量仪器(20)具有多个相对于彼此处于固定的已知空间分布的辅助点标记(22,32,32a,32b),该方法包括:
●借助带有区域传感器(30,50)的相机(12,61),连续地检测所述至少一个辅助点标记(22,32,32a,32b)的相机图像(50a),所述区域传感器具有多个像素(38a-38d,42),
●连续地执行读取操作,在该读取操作中,所述像素(38a-38d,42)中的至少一些像素关于各自当前的曝光值被读取,
●根据在各自当前的读取操作背景下获得的曝光值,连续地确定至少一个成像的辅助点标记(22,32,32a,32b)在各自当前的相机图像(50a)中的至少一个图像位置,以及
●基于至少一个当前的图像位置,并且尤其是基于所述辅助点标记(22,32,32a,32b)相对于彼此的固定的已知空间分布,连续地推导所述辅助测量仪器(20)的相应的当前的空间位置,
其特征在于,所述至少一个图像位置通过下列步骤确定:
●过滤在读取操作中获得的所述曝光值满足阈值标准尤其是高于阈值的像素(38a-38d,42),
●在各种情况下,将在所述区域传感器(30,50)的行(37a-37d,41)中形成连贯的行区域的过滤出的像素(38a-38d,42)联接在一起(53),以形成像素片(39a-39d,51a),
●为每个所述像素片(39a-39d,51a)查明各自的矩心部分,
●将所述像素片(39a-39d,51a)分组成使得属于所述至少一个成像的辅助点标记(22,32,32a,32b)的像素片(39a-39d,51a)在各种情况下被分配给彼此,以及
●借助在各种情况下被分配给彼此的所述像素片(39a-39d,51a)的相应的各自的矩心部分,推导所述至少一个辅助点标记(22,32,32a,32b)的所述至少一个图像位置。
2.根据权利要求1所述的位置确定方法,其特征在于,
●在所述读取操作的背景下,所述区域传感器(30,50)以预定的像素读取速率被逐像素(38a-38d,42)地并且逐行(37a-37d,41)地读取,并且
●最迟在刚刚完成相应的一行(37a-37d,41)的读取之后,针对该行(37a-37d,41),已经开始并执行过滤、联接在一起(53)以及查明各自的矩心部分的所述步骤,这些步骤在确定所述至少一个图像位置的背景下执行,
尤其是,其中过滤、联接在一起(53)以形成像素片(39a-39d,51a)以及查明矩心部分的所述步骤以具体地对应于像素读取速率的较高的第一速率计时,并且分组和确定图像位置的所述步骤以较低的第二速率计时。
3.一种测量装置,尤其是激光追踪器(11),其用于连续地确定具有至少一个辅助点标记(22,32,32a,32b)的辅助测量仪器(20)的空间位置,尤其是,其中所述测量仪器(20)具有多个相对于彼此处于固定的已知空间分布的辅助点标记(22,32,32a,32b),该测量装置包括:
●相机(12,61),该相机用于连续地检测具有多个像素(38a-38d,42)的区域传感器(30,50)上的所述至少一个辅助点标记(22,32,32a,32b)的相机图像(50a),以及
●评测和控制单元,该评测和控制单元被设计用于:
□控制读取操作,该读取操作能被连续地执行,并且在该读取操作中,所述区域传感器(30,50)的所述像素(38a-38d,42)中的至少一些像素关于各自当前的曝光值被读取,
□根据在各自当前的读取操作背景下获得的曝光值,连续地确定至少一个成像的辅助点标记(22,32,32a,32b)在各自当前的相机图像(50a)中的至少一个图像位置,以及
□基于至少一个当前的图像位置,并且尤其是基于所述辅助点标记(22,32,32a,32b)相对于彼此的固定的已知空间分布,连续地推导所述辅助测量仪器(20)的相应的当前的空间位置,
其特征在于,所述评测和控制单元被设计用于在确定所述至少一个图像位置的背景下自动执行下列步骤:
●过滤在读取操作中获得的所述曝光值满足阈值标准尤其是高于阈值的像素(38a-38d,42),
●在各种情况下,将在所述区域传感器(30,50)的行(37a-37d,41)中形成连贯的行区域的过滤出的像素(38a-38d,42)联接在一起(53),以形成像素片(39a-39d,51a),
●为每个所述像素片(39a-39d,51a)查明各自的矩心部分,
●将所述像素片(39a-39d,51a)分组成使得属于所述至少一个成像的辅助点标记(22,32,32a,32b)的像素片(39a-39d,51a)在各种情况下被分配给彼此,以及
●借助在各种情况下被分配给彼此的所述像素片(39a-39d,51a)的相应的各自的矩心部分,推导所述至少一个辅助点标记(22,32,32a,32b)的所述至少一个图像位置,
尤其是,其中这些步骤借助于相应地被编程的FPGA或ASIC自动执行。
4.如权利要求3所述的测量装置,其特征在于,所述相机(12,61)包括具有可变焦距的镜头,其中所述焦距(以及因此所述相机(12,61)的成像范围)以由所述评测和控制单元自动控制的方式连续可变,使得所述辅助测量仪器(20)与距离无关地基本上以恒定的范围在所述区域传感器(30,50)上成像,尤其是其中所述相机(12,61)具有平焦距或变焦距的镜头,该变焦距的镜头具有可变的焦距和聚焦。
5.如权利要求3或4所述的测量装置,其特征在于,所述测量装置还具有:
●基部;
●调节装置,该调节装置用于以机动的方式来改变所述相机(12,61)相对于所述基部的对齐;以及
●角度测量装置,该角度测量装置用于连续地检测所述相机(12,61)的各自当前的对齐,
并且其中所述评测和控制单元被设计用于连续地控制所述相机(12,61)的所述对齐的改变,使得所述相机连续地与所述辅助测量仪器(20)对齐。
6.如权利要求5所述的测量装置,其中所述测量装置被设计为激光追踪器(11)并且还具有:
●至少一个光学距离测量装置,该光学距离测量装置沿目标轴线的方向进行测量,并且用于测量至设置在所述辅助测量仪器(20)上的回射器(21)的距离;
●调节装置,该调节装置用于以机动的方式来改变所述目标轴线相对于所述基部的对齐;
●角度测量装置,该角度测量装置用于连续地检测所述目标轴线的各自当前的对齐;以及
●测量和控制电路,该测量和控制电路用于追踪具有所述目标轴线的所述辅助测量仪器(20)的所述回射器(21),从而使得所述目标轴线连续地与所述回射器(21)对齐。
7.一种测量系统,该测量系统包括:
●如权利要求3至6中的任一项所述的测量装置;以及
●具有至少一个辅助点标记(22,32,32a,32b)尤其是光点的辅助测量仪器(20),尤其是,其中所述辅助测量仪器(20)具有多个相对于彼此处于固定的已知空间分布的辅助点标记(22,32,32a,32b),尤其是,其中除了所述至少一个辅助点标记(22,32,32a,32b)外,所述辅助测量仪器(20)还具有回射器(21)。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11177500.3 | 2011-08-12 | ||
EP11177500A EP2557391A1 (de) | 2011-08-12 | 2011-08-12 | Messgerät zur Bestimmung der räumlichen Lage eines Messhilfsinstruments |
CN201280039245.4A CN103797328B (zh) | 2011-08-12 | 2012-07-31 | 位置确定方法、测量装置和测量系统 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280039245.4A Division CN103797328B (zh) | 2011-08-12 | 2012-07-31 | 位置确定方法、测量装置和测量系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107084663A true CN107084663A (zh) | 2017-08-22 |
CN107084663B CN107084663B (zh) | 2019-12-24 |
Family
ID=46584051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611025024.8A Active CN107084663B (zh) | 2011-08-12 | 2012-07-31 | 位置确定方法、测量装置及测量系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9401024B2 (zh) |
EP (3) | EP2557391A1 (zh) |
JP (1) | JP2014527630A (zh) |
KR (2) | KR101632245B1 (zh) |
CN (1) | CN107084663B (zh) |
WO (1) | WO2013023904A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108398728A (zh) * | 2018-05-07 | 2018-08-14 | 广东工业大学 | 一种设备之间配合误差的辅助标记装置 |
CN110455183A (zh) * | 2019-07-26 | 2019-11-15 | 国营芜湖机械厂 | 一种战场抢修用航空导管测绘系统及方法 |
CN111738180A (zh) * | 2020-06-28 | 2020-10-02 | 浙江大华技术股份有限公司 | 关键点的标注方法、装置、存储介质及电子装置 |
CN112567230A (zh) * | 2018-05-15 | 2021-03-26 | 克朗斯股份公司 | 用于借助位置确定来检查容器的方法 |
CN112866552A (zh) * | 2019-11-12 | 2021-05-28 | Oppo广东移动通信有限公司 | 对焦方法和装置、电子设备、计算机可读存储介质 |
CN113671514A (zh) * | 2020-05-15 | 2021-11-19 | 西克股份公司 | 运动对象的检测 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6181925B2 (ja) * | 2012-12-12 | 2017-08-16 | キヤノン株式会社 | 画像処理装置、画像処理装置の制御方法およびプログラム |
KR102233319B1 (ko) * | 2014-01-20 | 2021-03-29 | 삼성전자주식회사 | 관심 영역 추적 방법, 방사선 촬영 장치, 방사선 촬영 장치의 제어 방법 및 방사선 촬영 방법 |
EP2980526B1 (de) | 2014-07-30 | 2019-01-16 | Leica Geosystems AG | Koordinatenmessgerät und Verfahren zum Messen von Koordinaten |
EP3032277B1 (de) | 2014-12-12 | 2021-04-07 | Leica Geosystems AG | Lasertracker |
CN105823471B (zh) * | 2015-01-28 | 2020-03-17 | 株式会社拓普康 | 三维位置计测系统 |
JP6433342B2 (ja) | 2015-01-28 | 2018-12-05 | 株式会社トプコン | 三次元位置計測システム |
JP6433343B2 (ja) * | 2015-01-28 | 2018-12-05 | 株式会社トプコン | 三次元位置計測システム |
JP6533691B2 (ja) * | 2015-04-28 | 2019-06-19 | 株式会社トプコン | 三次元位置計測システム |
JP6533690B2 (ja) * | 2015-04-28 | 2019-06-19 | 株式会社トプコン | 三次元位置計測システム |
EP3220163B1 (de) | 2016-03-15 | 2021-07-07 | Leica Geosystems AG | Lasertracker mit zwei messfunktionalitäten |
US11013562B2 (en) * | 2017-02-14 | 2021-05-25 | Atracsys Sarl | High-speed optical tracking with compression and/or CMOS windowing |
WO2018151760A1 (en) | 2017-02-20 | 2018-08-23 | 3M Innovative Properties Company | Optical articles and systems interacting with the same |
EP3688662A1 (en) | 2017-09-27 | 2020-08-05 | 3M Innovative Properties Company | Personal protective equipment management system using optical patterns for equipment and safety monitoring |
CN108109176A (zh) * | 2017-12-29 | 2018-06-01 | 北京进化者机器人科技有限公司 | 物品检测定位方法、装置及机器人 |
EP3627100B1 (de) * | 2018-09-20 | 2021-12-01 | Hexagon Technology Center GmbH | Retroreflektor mit fischaugenobjektiv |
CN109969492A (zh) * | 2019-03-20 | 2019-07-05 | 合肥神马电气有限公司 | 一种用于高压电缆线盘包装的参照定位方法 |
CN111896972B (zh) * | 2020-06-16 | 2022-10-18 | 中国工程物理研究院应用电子学研究所 | 一种机载激光雷达同步控制及数码影像外方位元素列表自动创建方法 |
CN112686175A (zh) * | 2020-12-31 | 2021-04-20 | 北京澎思科技有限公司 | 人脸抓拍方法、系统及计算机可读存储介质 |
EP4027103A1 (en) * | 2021-01-12 | 2022-07-13 | Metronor AS | Method for determining a current position and/or orientation of a laser radar relative to an object to be measured |
DE202021003875U1 (de) | 2021-12-27 | 2023-03-28 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Vorrichtung zur Bestimmung von Relativlagen zweier gleichsinnig um eine Rotationsachse rotierender Objekte |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993007443A1 (en) * | 1991-10-11 | 1993-04-15 | Metronor As | Method and system for point by point measurement of spatial coordinates |
JPH0829120A (ja) * | 1994-07-12 | 1996-02-02 | Sumitomo Heavy Ind Ltd | 曲面を有する物体の位置計測方法及び曲面を有する2つの物体の位置合わせ制御装置 |
US20020131643A1 (en) * | 2001-03-13 | 2002-09-19 | Fels Sol Sidney | Local positioning system |
US20040136012A1 (en) * | 2002-11-15 | 2004-07-15 | Leica Geosystems Ag | Method and device for calibrating a measuring system |
CN1849524A (zh) * | 2003-09-12 | 2006-10-18 | 莱卡地球系统公开股份有限公司 | 用于确定到待勘测目标的方向的方法 |
CN101583841A (zh) * | 2007-01-25 | 2009-11-18 | 特林布尔公司 | 测地仪的对准 |
US20100128259A1 (en) * | 2008-11-17 | 2010-05-27 | Faro Technologies, Inc. | Device and method for measuring six degrees of freedom |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4809066A (en) * | 1987-08-03 | 1989-02-28 | Vexcel Corporation | Method of image mensuration with selectively visible and invisible reseau grid marks |
JPH0394386A (ja) * | 1989-09-07 | 1991-04-19 | Nec Corp | 円図形中心位置計測回路 |
JPH03138504A (ja) * | 1989-10-24 | 1991-06-12 | Kobe Steel Ltd | スポット位置及びスリット位置の検出方法 |
US5198877A (en) | 1990-10-15 | 1993-03-30 | Pixsys, Inc. | Method and apparatus for three-dimensional non-contact shape sensing |
US5227985A (en) * | 1991-08-19 | 1993-07-13 | University Of Maryland | Computer vision system for position monitoring in three dimensions using non-coplanar light sources attached to a monitored object |
US5734736A (en) * | 1994-06-17 | 1998-03-31 | Trw Inc. | Autonomous rendezvous and docking system and method therefor |
NO301999B1 (no) * | 1995-10-12 | 1998-01-05 | Metronor As | Kombinasjon av laser tracker og kamerabasert koordinatmåling |
US5828770A (en) * | 1996-02-20 | 1998-10-27 | Northern Digital Inc. | System for determining the spatial position and angular orientation of an object |
JPH10197230A (ja) * | 1997-01-09 | 1998-07-31 | Saginomiya Seisakusho Inc | ホイールアラインメント測定装置及びホイールアラインメント測定方法 |
US6310644B1 (en) * | 1997-03-26 | 2001-10-30 | 3Dm Devices Inc. | Camera theodolite system |
DE19859947C2 (de) | 1998-12-28 | 2001-02-01 | Anatoli Stobbe | System zur räumlichen Zuordnung wenigstens eines Transponders zu Zellen eines Detektionsgebietes, Basisstation sowie Transponder |
KR100792283B1 (ko) * | 2001-08-07 | 2008-01-07 | 삼성전자주식회사 | 이동물체 자동 추적장치 및 방법 |
ATE429779T1 (de) * | 2003-02-03 | 2009-05-15 | Goodrich Corp | Bildsensor mit wahlfreiem zugriff |
US7193608B2 (en) * | 2003-05-27 | 2007-03-20 | York University | Collaborative pointing devices |
EP2405284B1 (en) | 2003-09-05 | 2014-03-05 | Faro Technologies, Inc. | Self-compensating laser tracker |
US7184022B2 (en) * | 2004-01-16 | 2007-02-27 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Position determination and motion tracking |
EP2008120B1 (en) | 2006-04-20 | 2010-12-08 | Faro Technologies Inc. | Camera based six degree-of-freedom target measuring and target tracking device |
DE602007010753D1 (de) | 2006-04-21 | 2011-01-05 | Faro Tech Inc | Kamerabasierte vorrichtung zur zielmessung und zielverfolgung mit sechs freiheitsgraden und drehbarem spiegel |
DE102008027976A1 (de) * | 2008-06-12 | 2009-12-31 | Steinbichler Optotechnik Gmbh | Verfahren und Vorrichtung zur Ermittlung der Lage eines Sensors |
US8199194B2 (en) * | 2008-10-07 | 2012-06-12 | The Boeing Company | Method and system involving controlling a video camera to track a movable target object |
EP2405236B1 (de) | 2010-07-07 | 2012-10-31 | Leica Geosystems AG | Geodätisches Vermessungsgerät mit automatischer hochpräziser Zielpunkt-Anzielfunktionalität |
-
2011
- 2011-08-12 EP EP11177500A patent/EP2557391A1/de not_active Withdrawn
-
2012
- 2012-07-31 WO PCT/EP2012/064962 patent/WO2013023904A1/de active Application Filing
- 2012-07-31 US US14/238,700 patent/US9401024B2/en active Active
- 2012-07-31 KR KR1020147004836A patent/KR101632245B1/ko active IP Right Grant
- 2012-07-31 JP JP2014525388A patent/JP2014527630A/ja active Pending
- 2012-07-31 CN CN201611025024.8A patent/CN107084663B/zh active Active
- 2012-07-31 EP EP12740617.1A patent/EP2742319B1/de active Active
- 2012-07-31 EP EP15161383.3A patent/EP3001138B1/de active Active
- 2012-07-31 KR KR1020157017577A patent/KR101686054B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993007443A1 (en) * | 1991-10-11 | 1993-04-15 | Metronor As | Method and system for point by point measurement of spatial coordinates |
JPH0829120A (ja) * | 1994-07-12 | 1996-02-02 | Sumitomo Heavy Ind Ltd | 曲面を有する物体の位置計測方法及び曲面を有する2つの物体の位置合わせ制御装置 |
US20020131643A1 (en) * | 2001-03-13 | 2002-09-19 | Fels Sol Sidney | Local positioning system |
US20040136012A1 (en) * | 2002-11-15 | 2004-07-15 | Leica Geosystems Ag | Method and device for calibrating a measuring system |
CN1849524A (zh) * | 2003-09-12 | 2006-10-18 | 莱卡地球系统公开股份有限公司 | 用于确定到待勘测目标的方向的方法 |
CN101583841A (zh) * | 2007-01-25 | 2009-11-18 | 特林布尔公司 | 测地仪的对准 |
US20100128259A1 (en) * | 2008-11-17 | 2010-05-27 | Faro Technologies, Inc. | Device and method for measuring six degrees of freedom |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108398728A (zh) * | 2018-05-07 | 2018-08-14 | 广东工业大学 | 一种设备之间配合误差的辅助标记装置 |
CN112567230A (zh) * | 2018-05-15 | 2021-03-26 | 克朗斯股份公司 | 用于借助位置确定来检查容器的方法 |
CN110455183A (zh) * | 2019-07-26 | 2019-11-15 | 国营芜湖机械厂 | 一种战场抢修用航空导管测绘系统及方法 |
CN112866552A (zh) * | 2019-11-12 | 2021-05-28 | Oppo广东移动通信有限公司 | 对焦方法和装置、电子设备、计算机可读存储介质 |
CN113671514A (zh) * | 2020-05-15 | 2021-11-19 | 西克股份公司 | 运动对象的检测 |
CN113671514B (zh) * | 2020-05-15 | 2024-08-13 | 西克股份公司 | 运动对象的检测 |
CN111738180A (zh) * | 2020-06-28 | 2020-10-02 | 浙江大华技术股份有限公司 | 关键点的标注方法、装置、存储介质及电子装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2742319A1 (de) | 2014-06-18 |
US20140211999A1 (en) | 2014-07-31 |
EP3001138B1 (de) | 2020-10-14 |
KR20150082695A (ko) | 2015-07-15 |
EP3001138A1 (de) | 2016-03-30 |
EP2557391A1 (de) | 2013-02-13 |
KR101632245B1 (ko) | 2016-07-01 |
KR101686054B1 (ko) | 2016-12-13 |
JP2014527630A (ja) | 2014-10-16 |
CN103797328A (zh) | 2014-05-14 |
US9401024B2 (en) | 2016-07-26 |
WO2013023904A1 (de) | 2013-02-21 |
KR20140043941A (ko) | 2014-04-11 |
EP2742319B1 (de) | 2019-05-22 |
CN107084663B (zh) | 2019-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107084663A (zh) | 位置确定方法、测量装置及测量系统 | |
EP1739391B1 (en) | Image obtaining apparatus | |
Lindner et al. | Lateral and depth calibration of PMD-distance sensors | |
US9528828B2 (en) | Method and system for determining position and orientation of a measuring instrument | |
US20040247157A1 (en) | Method for preparing image information | |
JPH11510600A (ja) | 標的マークの位置を敏速に検出するための方法及び装置 | |
CN104903680B (zh) | 控制三维物体的线性尺寸的方法 | |
JP2007206797A (ja) | 画像処理方法および画像処理装置 | |
CN104769454A (zh) | 用于确定对象的取向的方法和装置 | |
CN104583904B (zh) | 用于输入对机动车部件的控制命令的方法 | |
KR101342523B1 (ko) | 위치 측정 장치 및 위치 측정 방법 | |
EP1459035B1 (en) | Method for determining corresponding points in stereoscopic three-dimensional measurements | |
CN107683401A (zh) | 形状测定装置和形状测定方法 | |
US11966811B2 (en) | Machine vision system and method with on-axis aimer and distance measurement assembly | |
JP7259660B2 (ja) | イメージレジストレーション装置、画像生成システム及びイメージレジストレーションプログラム | |
Langmann | Wide area 2D/3D imaging: development, analysis and applications | |
Liu et al. | Outdoor camera calibration method for a GPS & camera based surveillance system | |
CN103797328B (zh) | 位置确定方法、测量装置和测量系统 | |
CN110476080B (zh) | 用于对扫描角进行扫描并且用于分析处理探测器的激光雷达设备和方法 | |
JP2002277548A (ja) | 高精度測距レーザレーダ装置 | |
JP7442752B1 (ja) | 被検査体の形状検査方法 | |
Shojaeipour et al. | Laser-pointer rangefinder between mobile robot and obstacles via webcam based | |
CN118103696A (zh) | 用于确定体液中分析物浓度的增强的方法 | |
Ley et al. | Intelligent multisensor system for high-speed and high-precision 3D metrology | |
CN118189913A (zh) | 用于改进的目标分类的勘测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |