CN107075695A - 具有提高的光电压的多结人工光合电池 - Google Patents

具有提高的光电压的多结人工光合电池 Download PDF

Info

Publication number
CN107075695A
CN107075695A CN201580026002.0A CN201580026002A CN107075695A CN 107075695 A CN107075695 A CN 107075695A CN 201580026002 A CN201580026002 A CN 201580026002A CN 107075695 A CN107075695 A CN 107075695A
Authority
CN
China
Prior art keywords
semiconductor layer
artificial photosynthetic
layer
unit
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580026002.0A
Other languages
English (en)
Other versions
CN107075695B (zh
Inventor
赛义德·穆比恩·佳瓦哈·胡赛尼
埃里克·W·麦克法兰
马丁·莫斯科维奇
李俊
蒂姆·杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hippel Solar Energy Ltd
University of California
Original Assignee
Hippel Solar Energy Ltd
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hippel Solar Energy Ltd, University of California filed Critical Hippel Solar Energy Ltd
Publication of CN107075695A publication Critical patent/CN107075695A/zh
Application granted granted Critical
Publication of CN107075695B publication Critical patent/CN107075695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

一种多结人工光合单元,包括具有多个半导体层的有源元件,其中半导体层之间沉积的金属层与相邻的半导体层的表面适当地形成肖特基势垒结或欧姆结。有源元件在由多孔氧化铝形成的保护结构内形成。有源元件的连续层可以在保护结构内形成,并且可以添加额外的层和结直到实现所需光电压。一种由太阳能的氧化还原反应驱动的用于生产燃料和化学品的光反应器,包括填充有原料溶液的袋反应器。多个多结光合单元被放置在原料溶液中以驱动氧化还原反应并生产所需的燃料和化学品。

Description

具有提高的光电压的多结人工光合电池
相关申请的交叉引用
本申请要求2014年3月21日提交的美国临时申请号61/968,598以及2015年3月16日提交的美国实用申请号14/659,243的权益。其公开内容以其整体并入本文。
技术领域
本文所公开的是光电催化装置和方法,包括多结人工光合部件及其使用和制造方法。
背景技术
开发用于水裂解和二氧化碳还原的廉价的太阳能燃料转化工艺可能会产生净零碳排放的燃料或工业化学品。基于单独的热力学要求,需要具有光子能量大于1.23电子伏特的太阳辐射以裂解水或还原CO2为燃料。然而,在光阳极的水氧化是动力学缓慢过程,同样在光阴极的CO2还原需要高的超电势,导致实际能量需求大于2.0V。因此,使用单一的光吸收器单元用于裂解水或CO2还原需要具有大带隙(Eg>2.5eV)的半导体,限制了太阳光谱的相当大部分的开发。
已经提出一些策略以增加可获得的光电压同时最大限度地吸收太阳光。一个策略是使用多结/串联光伏设计以将地球太阳光谱中的大部分转换成可被用作燃料和化学品的高自由能的材料。据估计,这些策略能够实现~18%太阳能到氢转换效率。Rocheleau,R.&Miller,E.Energy Fuels 12,3(1998)。事实上,二十世纪九十年代,John Turner和他的同事们已经证明,使用多结III-V半导体12.4%的太阳能到H2的转换效率。Khaselev,O.&Turner,J.Science 280,425(1998)。然而,与使用三结a-Si的装置制造相关的高成本和复杂性(Weber,M.&Dignam,M.J.Electrochem.Soc.131(1984))和III-V半导体已经阻止了商业实现。而且在长时间严酷电化学条件下其稳定运行仍然不足。
因此,已经并仍然需要找到仅使用太阳光作为用于燃料和化学品的太阳能驱动生产的能量输入的新颖的、碳中性能量循环的可靠的电化学装置和方法。这样的装置和方法应能提供足够的光电压,同时使太阳光吸收最大化。此外,这样的装置和方法应抵抗严酷电化学环境的腐蚀作用。
发明内容
本文所公开的是来自简单的低成本的电化学方法的具有新颖结构的多结光合单元。本文所公开的实施方案以有效和稳定的方式提供了足够的自由能以裂解水和/或还原CO2为燃料和化学品。
某些实施方案包括使用低成本的合成技术以获得具有设计的组成、尺寸和形状控制的半导体材料。某些实施方案包括含地球上丰富的元素的半导体材料。某些实施方案包括纳米多孔氧化铝模板来创建无视光腐蚀和严酷电化学活性环境的其他降解影响(degradative effects)的容错(fault-tolerant)系统。
某些实施方案包括制造高效率低成本的多结光伏装置的方法,其使用简单的电化学路径增加光电化学电池的电压,用于驱动期望的电化学过程。
某些实施方案包括多结人工光合单元,其包括保护结构和保护结构内形成的有源元件(active element),所述有源元件包括第一和第二半导体层和一个或多个布置在半导体层之间的金属层,各金属层与相邻半导体层的表面形成肖特基势垒结或欧姆结。
某些实施方案包括具有多个在保护结构(例如,多孔氧化铝结构)内形成的垂直堆叠半导体层的多结人工光合单元。多结光合单元还包括多个金属层,一个或多个金属层填隙布置在各半导体层之间并与相邻半导体层的表面配置形成肖特基势垒或欧姆结。
某些实施方案包括具有多个半导体层的多结人工光合单元,每个连续半导体层具有比前面半导体层具有更大的厚度,在每个层上产生的光生电流密度基本上相同。
某些实施方案包括具有多个半导体层的多结人工光合单元,每个连续半导体层具有不同组成并产生依次更小的能量带隙,在每个层上产生的光生电流密度基本上相同。
多结人工光合单元的某些实施方案包括一种或多种覆盖(capping)所述单元的氧化/还原电催化剂,覆盖(covering)所述电催化剂的离子选择性膜,和/或覆盖并保护所述单元的保护层。
附图说明
为了进一步阐明本发明的上述的和其他的优点和特征,本发明的更具体的描述将参照在附图中示出其具体的实施方案给出。可以理解,这些附图只描绘了本发明的图示的实施方案,并且因此不被认为是对其范围的限制。将通过使用附图对本发明的实施方式进行附加特异性和细节描述和说明,其中:
图1示出了显示光催化的氧化还原反应的示例性多结光合单元;
图2示出了一种光反应器系统,其包括多个悬浮在电解质中的多结光合单元;
图3A示出了适于接收多结光合单元的层的多孔保护结构;
图3B示出了适于在导电背层的沉积之后接收多结光合单元的层的多孔保护结构;
图3C示出了多孔保护结构内形成的多个层的有源元件;
图4示出了制备用于提供所期望的氧化还原反应的本发明的多结光合单元的方法;
图5示出了具有多个层的多结光合单元的实施方案;
图6示出了具有相同的半导体材料组成的多个层的多结光合单元的实施方案,每个连续半导体层具有比前面半导体层更大的厚度;
图7示出了具有不同的半导体材料组成的多个层的多结光合单元的实施方案,每个连续半导体层具有比前面的层更低的能量带隙;和
图8示出了具有多个层的多结光合单元的另一实施方案,其第一和第二半导体层由相同的材料形成并且具有不同厚度,并且第三半导体层由与第一和第二半导体层不同的材料形成。
具体实施方式
I.人工光合单元概观
示例性多结光合单元100在图1中示出。所示实施方案是自足的(self-contained)光催化纳米反应器单元,通过该纳米反应器单元太阳光子被转换成可被分离成电子和空穴的电子激发,这些电子和空穴将移动到该结构的催化剂/电解质界面110并转移到接收器/供体表面物质120,130。为了防止氧化清除电子(通过逆反应),对H+和H2(对于水裂解)和CO2(对于CO2还原)可渗透的涂层可被施加到该结构的阴极端140的外表面。有效地,这将在大多数水裂解系统和电解器中使用的昂贵的离子选择性膜移动到催化剂的表面。
图2示出了光反应器系统200的实施方案,其形成为包括多个悬浮在电解质230中的多结光合单元220的反应容器210。当操作时,多结光合单元220可以被悬浮在包含在光反应器容器210中的合适的电解质230中。在一些实施方案中,容器210可以是低成本的柔性塑料袋。
电解质230可以包括原料化学品,多结光合单元可以在原料化学品中完全或部分地浸没。原料可以包括在光电解上产生H2和O2的水。原料可包括至少一种废料流(例如,来自复杂的有机化学工业、制药加工、农药制造、烃精炼、洗涤剂、塑料、纸浆和造纸厂、纺织染料、农业、生物燃料、化学品制造、有毒的硫化氢、溴化氢、氯化氢、市政污水、铁和钢行业、煤炭厂和制革厂)。所述原料可以包括化学物质(如,有机分子、无机分子、纤维素、烃、非生物相容的污染物、醇、乙醇、甲醇、异丙醇、农药、葡萄糖、酚、羧酸、氰化物、氨、乙酸、染料、表面活性剂、氯酚、苯胺、草酸和酒石酸)。
这种光反应器的操作产生氧化的反应副产物。这样的氧化的副产物可以包括化学物质,例如:从非生物降解的有机废物流产生可生物降解的产品,可以在下游工艺中生物处理的生物相容的有机物,草酸,卤素,溴,硫,氯和去毒的水。氢可以在此光合反应器中与二氧化碳反应,以形成一种或多种包括甲烷和水的作为副产物的还原产物。在水是副产物的情况下,水可以循环回到用于形成氢的反应混合物中。氢也可在此光合反应器中与二氧化碳反应,以形成作为副产物的甲醇和水,或以形成作为副产物的一氧化碳和水。
II.保护结构&层沉积
图3A-3C示出了在不同形成阶段的多结光合单元300。这些单元300的基础将是通过保护结构310与支持电解质隔离的可见光吸收半导体。例如,多结光合单元可包括保护结构310,在该保护结构中可添加形成多结光合单元的有源元件320的层。在一些实施方案中,保护结构310是多孔的氧化物(例如,多孔阳极氧化铝),在其中可添加半导体材料、金属层和电催化剂层以形成保护结构310内的有源元件320。例如,有源元件320的层可以连续的方式电沉积在保护结构310的多孔结构内,以形成功能多结光合单元300。保护结构310有利地保护有源元件不受光腐蚀和电解环境的其他腐蚀作用。
在优选的实施方案中,保护结构310是多孔的氧化铝。在其他实施方案中,保护结构310可形成为径迹蚀刻聚酯或聚碳酸酯(PC)模板,介孔二氧化硅和沸石模板,和二嵌段共聚合模板。
图3B示出了接合到导电基底312的多孔保护结构310。在所示实施方案中,导电基底312形成在保护结构310的一个面上。导电基底312然后可以作为用于电沉积形成有源元件320的进一步的层的工作电极(研究的电极)起作用。
例如,进一步的分层可包括沉积的电催化层,接着是沉积一个或多个半导体层,随后沉积界面隧道结层以创建肖特基或欧姆结,并沉积另一电催化剂层覆盖整个结构。图3C示出了包括以这种方式形成的多个层322的有源元件320。
导电基底312可以由金属或导电聚合物形成。在优选的实施方案中,导电基底312由5d金属如金、铂和铱形成。在优选的实施方案中,导电基底312由4d金属如银、钯、铑、钌和钼形成。在优选的实施方案中,导电基底312由3d金属如钛、铁、镍、铜、钴和锰形成。导电基底312可使用物理气相沉积工艺如电子束沉积、溅射沉积、热蒸发和脉冲激光沉积来形成。导电基底312也可使用化学气相沉积工艺如原子层化学气相沉积、等离子体增强的化学气相沉积和微波等离子体辅助沉积工艺形成。
在其他实施方案中,有源元件(例如示出的有源元件320)可以通过不同的工艺或工艺的组合来形成。例如,有源元件320(或其部分)可使用无电沉积、化学/光化学聚合、溶胶-凝胶沉积、大气压化学气相沉积、低压化学气相沉积、高压化学气相沉积、气相外延和分子束外延来形成。
用于制备用于太阳能燃料生产的功能多结光合单元的示例性开发方法400在图4中示意性地示出。如图所示,该过程开始于制备多孔性保护结构410。在优选的实施方案中,该保护结构由氧化铝材料形成。然后,该过程将导电基底沉积420在多孔保护结构的一个侧或面上。然后当该过程在保护结构内沉积有源元件的层430时,导电基底可以用作工作电极。多个层然后可以在保护结构内以连续方式沉积(例如,通过电沉积),以形成所述单元的有源元件。例如,分层可通过沉积光吸收半导体层沉积随后一个或多个金属层,接着沉积另一光吸收半导体层,然后接着是沉积一个或多个另外的金属层来进行。
有源元件形成后,用户、计算机和/或机器可以测量多结单元的光电压参数440,并基于所测量的光电压确定光电压的关于它们是否足够驱动所需的氧化还原反应的充分性450。如果测量的光电压是可接受的,则过程将结束460。如果测量的光电压是不可接受的,则该过程可以在保护结构内沉积有源元件的额外层430直至所需的光电压实现。例如,在许多实施方案中,所需的光电压将大于或等于约1.2伏。在其他实施方案中,将需要更大的光电压,例如约1.2至约1.6伏,或约1.6至约2.0伏,或约2.0伏至约2.5伏或甚至大于2.5伏。
III.多结有源元件实施方案
图5示出了多结光合单元500的实施方案,其包括由具有相同或不同的厚度的相同或不同的材料的多个垂直堆叠的半导体层522(n型或p型)、多个肖特基金属层526和多个欧姆金属层528制成的有源元件520,所述多个肖特基金属层526的每个被布置相邻于半导体层522且每个接触相邻的半导体层522的表面以形成肖特基势垒结,所述多个欧姆金属层528的每一个被布置相邻于半导体层522且每个接触相邻的半导体层522的表面以形成欧姆接触结。
例如,有源元件520可形成具有相邻于(或者之上)导电基底512沉积的半导体层522作为底层。有源元件520的分层可包括肖特基金属层526,随后的欧姆金属层528,随后的额外半导体层522。在所示的实施方案中,有源元件520然后被另一肖特基金属层526分层。在一些实施方案中,多结光合单元还可以包括一种或多种覆盖所述单元的氧化/还原电催化剂,覆盖所述电催化剂的离子选择性膜和/或覆盖和保护所述单元的保护层560。
图6示出了多结光合单元600的另一个实施方案,其包括具有第一部分630和第二部分640的有源结构(active structure)620。第一部分630被设置在单元600中,使得第一部分630是在多结单元600上接收光670入射的第一部分。第一部分630包括具有第一掺杂类型(n-或p-型),具有第一厚度,并产生第一光产生的电流输出的第一半导体层。第二部分640被布置为相邻于第一部分630并且包括由与第一半导体层相同的半导体组分制得的第二半导体层,所述第二半导体层具有第一掺杂类型(n-或-p型),并有第二厚度,其中第二厚度大于第一厚度,选择第二厚度以产生基本上等于第一光产生的电流输出的第二光产生的电流输出。
在图6中所示的实施方案也可以包括一个或多个相邻于第二部分640的更低部分650,更低部分650由多个具有与第一和第二半导体层(n-或-p型)相同组成和相同的掺杂类型的更低带隙半导体材料体系制得,各个依次地具有更高厚度且具有至少等于上方紧邻的那个的光产生的电流密度。
此外,第一部分630和第二部分640,以及其他更低部分650(包括时)可以具有肖特基和/或欧姆金属层,每个肖特基金属层与相邻的半导体层的表面形成肖特基势垒,每个欧姆金属层与相邻的半导体层的表面形成欧姆接触。
在示出的实施方案中,例如,半导体材料可以是电沉积的碲化镉(CdTe)膜/纳米结构,电沉积的铜铟联硒化物(CuInSe2)膜/纳米结构,电沉积的硒化镉(CdSe)膜/纳米结构,电沉积的硫化镉(CdS)膜/纳米结构,或电沉积的铜氧化物(Cu2O)膜/纳米结构。
形成欧姆结的金属层可以是选自周期表第II B和第III A族(例如,锌、镉、汞、硼、铝、镓和铟)的一种或多种金属。形成肖特基势垒结的金属层可以是选自周期表的贵金属组(例如,铂、钯、铑、钌、铱、金、银和铜)的一种或多种金属。
所示的实施方案还可以包括覆盖一个或多个端部的阳极和阴极电催化剂680。阳极和阴极电催化剂可以是过渡金属、贵金属、金属氧化物、导电聚合物、钙钛矿和尖晶石型氧化物等。
图7示出了多结光合单元700的另一个实施方案,其包括具有第一部分730和第二部分740的有源结构720。第一部分730被设置在单元700中,使得第一部分730是在多结单元700上接收光770入射的第一部分。第一部分730包括第一半导体层(n-或p-型),所述第一半导体层具有第一厚度,具有第一能量带隙并产生第一光产生的电流密度。第二部分740被布置为相邻于第一部分730并且包括第二半导体层,所述第二半导体层由第二半导体材料(与第一半导体层的组成不同)制得,产生基本上等于第一光产生的电流密度的第二光产生的电流密度,并具有小于第一能量带隙的第二能量带隙。
在图7中所示的实施方案也可以包括一个或多个相邻于第二部分740的更低部分750,更低部分750由多个不同于第一和第二半导体层的更低半导体材料体系(n-或-p-型)制得,更低部分750的各个依次的更低一个具有比其上方紧邻的那个更低的能量带隙,且更低部分的各个依次的更低一个具有至少等于其上方紧邻的那个的光产生的电流密度。
此外,第一部分730和第二部分740,以及其他更低部分750(包括时)可以具有肖特基和/或欧姆金属层,每个肖特基金属层与相邻的半导体层的表面形成肖特基势垒,且每个欧姆金属层与相邻的半导体层的表面形成欧姆接触。
在所示的实施方案中,第一部分730的第一半导体层可以由电沉积宽带隙金属氧化物如Cu2O、ZnO、TiO2等形成,且第二部分740的第二半导体层可以由例如电沉积的CdSe形成。更低部分(包括时)例如可包括电沉积的CdTe和CuInSe2。实施例包括3-结Cu2O/CdSe/CdTe单元和4结Cu2O/CdSe/CdTe/CuInSe2单元。
图8示出了多结光合单元800的另一个实施方案,其包括具有第一部分830和第二部分840的有源结构820。第一部分830被设置在单元800中,使得第一部分830是在多结单元800上接收光870入射的第一部分。第一部分830包括由第一半导体组成制得的第一半导体层,所述第一半导体层具有第一厚度和第一带隙能量并产生第一光产生的电流输出。第二部分840被布置为相邻于第一部分830并且包括由与第一半导体层相同的半导体组成制得的第二半导体层,所述第二半导体层具有第二厚度,并产生基本上等于第一光产生的电流输出的第二光产生的电流输出。
示出的实施方案还包括至少一个额外部分850,其与第一半导体层830的组成具有不同的半导体组成,并且具有与第一带隙能量不同的带隙能量。
此外,第一部分830,第二部分840,以及至少一个额外部分850可以具有肖特基和/或欧姆金属层,每个肖特基金属层与相邻的半导体层的表面形成肖特基势垒,且每个欧姆金属层与相邻的半导体层的表面形成欧姆接触。
在图8中所示的实施方案的实例包括5-结Cu2O/Cu2O/CdSe/CdSe/CdTe单元,6结Cu2O/Cu2O/CdSe/CdSe/CdTe/CuInSe2单元,和7结Cu2O/Cu2O/Cu2O/CdSe/CdSe/CdTe/CuInSe2单元。
本发明可以体现在其他具体形式而不背离其精神或本质特征。所述实施方案在所有方面都认为仅是说明性的而非限制性。因此,本发明的范围由所附权利要求而不是由前面的描述指示。权利要求等价的含义和范围内的所有变化都包括在其范围之内。此外,在此公开的实施方案的元件和组分可以被组合和/或取代,并且不旨在被限制于任何特定实施方案。

Claims (20)

1.一种多结人工光合单元,包括:
有源元件,所述有源元件包括:
第一部分,其包括第一半导体层和相邻于所述半导体层的一个或多个金属层;和
第二部分,其相邻于所述第一部分且包括第二半导体层和相邻于所述半导体层的一个或多个金属层;
其中,所述第一部分的一个或多个金属层和所述第二部分的一个或多个金属层各自与相邻的半导体层的表面形成肖特基势垒结或欧姆结。
2.如权利要求1所述的多结人工光合单元,还包括保护结构,所述有源元件在所述保护结构内形成。
3.如权利要求2所述的多结人工光合单元,还包括连接到所述保护结构的一个面的导电基底,所述导电基底用作工作电极,用于在保护结构内进一步沉积层。
4.如权利要求2或3所述的多结人工光合单元,其中所述保护结构被形成为多孔氧化铝材料。
5.如权利要求1至4的任一项所述的多结人工光合单元,其中,所述第一部分的一个或多个金属层包括第一肖特基金属层和第一欧姆金属层,所述第一肖特基金属层被布置在与所述第二部分相对的所述第一半导体层表面上,且所述第一欧姆金属层被布置在靠近所述第二部分的所述第一半导体层的表面上。
6.如权利要求5所述的多结人工光合单元,其中,所述第二部分的一个或多个金属层包括被布置在靠近所述第一部分的第二半导体层的表面上的第二肖特基金属层,并且其中所述第二部分的所述第二肖特基金属层相邻于所述第一部分的第一欧姆金属层。
7.如权利要求1至6的任一项所述的多结人工光合单元,其中,所述第一半导体层和所述第二半导体层具有相同的组成,且其中所述第二半导体层具有大于所述第一半导体的厚度的厚度。
8.如权利要求7所述的多结人工光合单元,还包括一个或多个更低部分,所述更低部分的每个都具有与所述第一和第二半导体层相同组成的半导体层,每个更低部分的每个半导体层随着距离所述第一部分的距离增加具有依次更大的厚度。
9.如权利要求7或8所述的多结人工光合单元,其中,所述第一和第二半导体层由碲化镉(CdTe)、铜铟联硒化物(CuInSe2)、硒化物(CdSe)、硫化镉(CdS)和铜氧化物(Cu2O)的一种或多种形成。
10.如权利要求1至9的任一项所述的多结人工光合单元,其中,所述第一部分的一个或多个金属层的至少一个或所述第二部分的一个或多个金属层的至少一个与相邻的半导体层的表面形成欧姆结,且由一种或多种第IIB族和IIIA族金属形成。
11.如权利要求1至10的任一项所述的多结人工光合单元,其中,所述第一部分的一个或多个金属层的至少一个或所述第二部分的一个或多个金属层的至少一个与相邻的半导体层的表面形成肖特基势垒结,且由一种或多种贵金属形成。
12.如权利要求1至11的任一项所述的多结人工光合单元,还包括在所述单元的一端上的第一电催化剂帽,和在所述单元的另一端上的第二电催化剂帽。
13.如权利要求12所述的多结人工光合单元,其中所述第一和第二电催化剂由选自由过渡金属、贵金属、金属氧化物、导电聚合物、钙钛矿和尖晶石型氧化物组成的组的材料形成。
14.如权利要求1至13的任一项所述的多结人工光合单元,其中,所述第一半导体层由第一半导体材料形成并且具有第一能量带隙,且其中所述第二半导体层由第二半导体材料形成并且具有第二能量带隙,所述第二能量带隙比所述第一能带量隙小。
15.如权利要求14所述的多结人工光合单元,还包括一个或多个更低部分,每个更低部分都具有由与所述第一和第二半导体层不同的半导体材料形成的半导体层,每个更低部分的每个半导体层随着距离所述第一部分的距离增加具有依次更低的能量带隙。
16.如权利要求15所述的多结人工光合单元,其中,所述一个或多个更低部分的半导体层由CdTe和的CuInSe2的一种或多种形成。
17.如权利要求14至16的任一项所述的多结人工光合单元,其中,所述第一半导体层由Cu2O、ZnO和TiO2的一种或多种形成,并且其中所述第二半导体层是CdSe。
18.如权利要求1至17的任一项所述的多结人工光合单元,其中所述第一半导体层由第一半导体材料形成并具有第一厚度和第一能量带隙,且其中所述第二半导体层由所述第一半导体材料形成且具有第二厚度,所述第二厚度比所述第一厚度大,所述单元还包括由第二半导体材料形成且具有小于所述第一能量带隙的能量带隙的至少一个额外的更低半导体层。
19.一种多结人工光合单元,包括:
保护结构,其形成为多孔氧化铝且包括连接到所述保护结构的一个面的导电基底;和
保护结构内形成的有源元件,所述有源元件包括:
第一部分,其包括第一半导体层和相邻于所述半导体层的一个或多个金属层;和
第二部分,其相邻于所述第一部分的且包括第二半导体层和相邻于所述半导体层的一个或多个金属层;
其中,所述第一部分的一个或多个金属层和所述第二部分的一个或多个金属层各自与相邻的半导体层的表面形成肖特基势垒结或欧姆结。
20.用于从氧化还原反应产物生产太阳能燃料的光反应器系统,所述光反应器系统包括:
多个多结人工光合单元,每个多结人工光合单元包括:
多孔保护结构;
所述保护结构内形成的有源元件,所述有源元件包括第一部分和第二部分,所述第一部分和第二部分各包括半导体层和一个或多个与所述半导体层相邻的金属层,所述一个或多个金属层的每个与相邻的半导体层的表面形成肖特基势垒结或欧姆结;
容器,所述容器含有多个多结人工光合单元;和
包含在所述容器内的原料,所述多个多结人工光合单元完全或部分地浸没在原料中。
CN201580026002.0A 2014-03-21 2015-03-17 具有提高的光电压的多结人工光合电池 Active CN107075695B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461968598P 2014-03-21 2014-03-21
US61/968,598 2014-03-21
US14/659,243 US10100415B2 (en) 2014-03-21 2015-03-16 Multi-junction artificial photosynthetic cell with enhanced photovoltages
US14/659,243 2015-03-16
PCT/US2015/021059 WO2015142916A1 (en) 2014-03-21 2015-03-17 Multi-junction artificial photosynthetic cell with enhanced photovoltages

Publications (2)

Publication Number Publication Date
CN107075695A true CN107075695A (zh) 2017-08-18
CN107075695B CN107075695B (zh) 2019-03-12

Family

ID=54145234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580026002.0A Active CN107075695B (zh) 2014-03-21 2015-03-17 具有提高的光电压的多结人工光合电池

Country Status (5)

Country Link
US (1) US10100415B2 (zh)
EP (1) EP3119926B1 (zh)
CN (1) CN107075695B (zh)
AU (1) AU2015231504B2 (zh)
WO (1) WO2015142916A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111334812A (zh) * 2020-03-05 2020-06-26 桂林电子科技大学 基于水合羟基氧化铁的非晶硅薄膜光电极及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190249313A1 (en) * 2016-09-26 2019-08-15 University Of Iowa Research Foundation Integrated membrane solar fuel production assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094751A (en) * 1976-09-30 1978-06-13 Allied Chemical Corporation Photochemical diodes
US4292461A (en) * 1980-06-20 1981-09-29 International Business Machines Corporation Amorphous-crystalline tandem solar cell
US4790916A (en) * 1984-03-14 1988-12-13 The Texas A&M University System One-unit photo-activated electrolyzer
US4891074A (en) * 1980-11-13 1990-01-02 Energy Conversion Devices, Inc. Multiple cell photoresponsive amorphous alloys and devices
CN1849413A (zh) * 2003-06-27 2006-10-18 通用汽车公司 光电化学装置和电极
CN101379631A (zh) * 2005-06-13 2009-03-04 普林斯顿大学理事会 具有相反载流子激子阻挡层的有机双异质结构的光伏电池
CN102077367A (zh) * 2008-07-03 2011-05-25 Imec公司 多结光伏模块及其加工
CN102544374A (zh) * 2001-12-05 2012-07-04 株式会社半导体能源研究所 有机半导体元件
CN102844881A (zh) * 2010-04-06 2012-12-26 韩国机械研究院 具有pn结和肖特基结的多路太阳能电池及其制造方法

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2300273C3 (de) 1972-01-07 1982-05-06 Toray Industries, Inc., Tokyo Vorrichtung für Abwasserreinigung
CA1031296A (en) 1973-11-19 1978-05-16 Texas Gas Transmission Corporation Multi-step chemical and radiation process for the production of gas
US3925212A (en) 1974-01-02 1975-12-09 Dimiter I Tchernev Device for solar energy conversion by photo-electrolytic decomposition of water
US3998659A (en) 1974-01-28 1976-12-21 Texas Instruments Incorporated Solar cell with semiconductor particles and method of fabrication
JPS5328751B2 (zh) 1974-11-27 1978-08-16
US4021323A (en) 1975-07-28 1977-05-03 Texas Instruments Incorporated Solar energy conversion
US4175016A (en) 1975-09-02 1979-11-20 Texas Gas Transmission Corporation Radiolytic-chemical method for production of gases
US4011149A (en) 1975-11-17 1977-03-08 Allied Chemical Corporation Photoelectrolysis of water by solar radiation
US4069120A (en) 1976-09-21 1978-01-17 United Technologies Corporation Photo-electrolytic production of hydrogen
US4270263A (en) 1977-02-14 1981-06-02 Texas Instruments Incorporated Glass support light energy converter
US4173494A (en) 1977-02-14 1979-11-06 Jack S. Kilby Glass support light energy converter
US4203814A (en) 1978-11-01 1980-05-20 United Technologies Corporation Hydrogen gas generation utilizing a bromide electrolyte and radiant energy
US4215182A (en) 1979-05-29 1980-07-29 Institute Of Gas Technology Conversion of solar energy to chemical and electrical energy
IL58747A (en) 1979-11-20 1982-11-30 Yeda Res & Dev Photoelectrochemical cell assembly having electrolyte contacts between semiconductor surfaces
US4236984A (en) 1979-11-21 1980-12-02 United Technologies Corporation Hydrogen gas generation utilizing a bromide electrolyte, an amorphous silicon semiconductor and radiant energy
US4357400A (en) 1979-12-11 1982-11-02 Electric Power Research Institute, Inc. Photoelectrochemical cell employing discrete semiconductor bodies
US4263111A (en) 1979-12-17 1981-04-21 United Technologies Corporation Hydrogen generation utilizing semiconducting platelets suspended in a divergent vertically flowing electrolyte solution
US4263110A (en) 1979-12-17 1981-04-21 United Technologies Corporation Hydrogen-bromine generation utilizing semiconducting platelets suspended in a vertically flowing electrolyte solution
US4381233A (en) 1980-05-19 1983-04-26 Asahi Kasei Kogyo Kabushiki Kaisha Photoelectrolyzer
CH644471A5 (fr) 1981-02-02 1984-07-31 Michael Graetzel Produit destine a etre utilise comme photocatalyseur, procede de preparation de ce produit et utilisation de ce produit.
US4484992A (en) 1981-02-04 1984-11-27 Ciba-Geigy Corporation Process for the production of hydrogen by means of heterogeneous photoredox catalysis
US4419278A (en) 1981-05-04 1983-12-06 Diamond Shamrock Corporation Photoactive semiconductor material using true solid/solid solution mixed metal oxide
US4437954A (en) 1981-06-19 1984-03-20 Institute Of Gas Technology Fuels production by photoelectrolysis of water and photooxidation of soluble biomass materials
JPS58166680A (ja) 1982-03-29 1983-10-01 Semiconductor Energy Lab Co Ltd 半導体装置
FR2529379A1 (fr) 1982-06-28 1983-12-30 Centre Nat Rech Scient Cellule photosensible de decomposition de l'eau
US4533608A (en) 1982-09-09 1985-08-06 The Regents Of The University Of California Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes
US4466869A (en) 1983-08-15 1984-08-21 Energy Conversion Devices, Inc. Photolytic production of hydrogen
US4643817A (en) 1985-06-07 1987-02-17 Electric Power Research Institute, Inc. Photocell device for evolving hydrogen and oxygen from water
US4889604A (en) 1987-08-06 1989-12-26 Council Of Scientific & Industrial Research Process for the photocatalytic decomposition of water into hydrogen and oxygen
US5116582A (en) 1990-04-26 1992-05-26 Photo-Catalytics, Inc. Photocatalytic slurry reactor having turbulence generating means
US5118422A (en) 1990-07-24 1992-06-02 Photo-Catalytics, Inc. Photocatalytic treatment of water
JPH075281B2 (ja) 1991-08-20 1995-01-25 工業技術院長 高濃度炭酸塩水溶液を用いた金属担持半導体光触媒による水からの水素及び酸素の製造方法
JP2889778B2 (ja) 1992-11-20 1999-05-10 工業技術院長 水浄化法
KR0130515B1 (ko) 1994-08-30 1998-04-03 강박광 신규한 광촉매 및 그 제조방법, 그리고 이를 이용한 수소의 제조방법
US5581091A (en) 1994-12-01 1996-12-03 Moskovits; Martin Nanoelectric devices
KR0180606B1 (ko) 1995-09-18 1999-03-20 강박광 신규한 광촉매 및 그 제조방법, 그리고 이를 이용한 수소의 제조방법
KR100202238B1 (ko) 1996-10-07 1999-06-15 이서봉 신규한 제트엔에스계 광촉매 및 그 제조방법, 그리고 이를 이용한 수소의 제조방법
KR100377825B1 (ko) 1996-10-09 2003-07-16 나가다 죠스게 반도체디바이스
US6361660B1 (en) 1997-07-31 2002-03-26 Avery N. Goldstein Photoelectrochemical device containing a quantum confined group IV semiconductor nanoparticle
US6060026A (en) 1997-07-31 2000-05-09 Starfire Electronic Development & Mktg., Ltd. Photoelectrochemical device containing a quantum confined silicon particle
EP0940860B1 (en) 1997-08-27 2003-10-15 Josuke Nakata Spheric semiconductor device, method for manufacturing the same, and spheric semiconductor device material
US20020096479A1 (en) 2000-06-02 2002-07-25 Butters Brian E. System and method for photocatalytic treatment of contaminated media
US6315870B1 (en) 1998-04-10 2001-11-13 University Of Central Florida Method for high flux photocatalytic pollution control
KR100304349B1 (ko) 1998-09-09 2001-11-30 김충섭 황화카드뮴계수소발생용광촉매및그제조방법,그리고이를이용한수소의제조방법
KR100342856B1 (ko) 2000-02-22 2002-07-02 김충섭 양이온이 첨가된 수소발생용 황화카드뮴아연계 광촉매 및그 제조방법, 그리고 이에 의한 수소의 제조방법
US6297190B1 (en) 2000-02-23 2001-10-02 Korea Research Institute Of Chemical Technology ZnS photocatalyst, preparation therefor and method for producing hydrogen by use of the same
US6683023B2 (en) 2000-04-21 2004-01-27 Showa Denko K.K. Photocatalytic powder and polymer composition
ATE276205T1 (de) 2000-06-10 2004-10-15 Degussa Photokatalytisches verfahren
EP1175938A1 (en) 2000-07-29 2002-01-30 The Hydrogen Solar Production Company Limited Photocatalytic film of iron oxide, electrode with such a photocatalytic film, method of producing such films, photoelectrochemical cell with the electrode and photoelectrochemical system with the cell, for the cleavage of water into hydrogen and oxygen
JP4107792B2 (ja) 2000-08-28 2008-06-25 独立行政法人科学技術振興機構 可視光応答性を有する金属オキシナイトライドからなる光触媒
WO2002035613A1 (en) 2000-10-20 2002-05-02 Josuke Nakata Light-emitting or light-detecting semiconductor module and method of manufacture thereof
US6827911B1 (en) 2000-11-08 2004-12-07 Bechtel Bwxt Idaho, Llc Photoreactor with self-contained photocatalyst recapture
US6887816B2 (en) 2000-12-28 2005-05-03 Showa Denko K.K. Photocatalyst
JP4064065B2 (ja) 2001-02-07 2008-03-19 独立行政法人科学技術振興機構 水の可視光分解用光触媒
JP4107807B2 (ja) 2001-02-07 2008-06-25 独立行政法人科学技術振興機構 水の可視光分解用オキシサルファイド光触媒
US20020187082A1 (en) 2001-06-06 2002-12-12 Chang-Yu Wu Photocatalyst coated magnetic composite particle
JP3742873B2 (ja) 2001-07-10 2006-02-08 独立行政法人産業技術総合研究所 光触媒およびこれを用いた水素の製造方法ならびに有害物質の分解方法
US7318915B2 (en) 2002-01-25 2008-01-15 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Oxidation-reduction catalyst and its process of use
JP4113361B2 (ja) 2002-02-05 2008-07-09 日立ソフトウエアエンジニアリング株式会社 複層半導体ナノ粒子の製造方法
JP2003265962A (ja) 2002-03-18 2003-09-24 Nittetsu Mining Co Ltd 光触媒およびその製造方法
DE10216477B4 (de) 2002-04-13 2006-01-19 Liedy, Werner, Prof. Dr.-Ing. Neue Reaktor- und Verfahrenskonzepte zur technischen Anwendung der Photokatalyse
JP4357801B2 (ja) 2002-06-25 2009-11-04 日鉄鉱業株式会社 高活性光触媒およびその製造方法
US7534488B2 (en) 2003-09-10 2009-05-19 The Regents Of The University Of California Graded core/shell semiconductor nanorods and nanorod barcodes
WO2005002007A2 (en) 2003-03-20 2005-01-06 The Research Foundation Of State University Of Newyork Process for producing semiconductor nanocrystal cores, core-shell, core-buffer-shell, and multiple layer systems in a non-coordinating solvent utilizing in situ surfactant generation
JP3787686B2 (ja) 2003-03-26 2006-06-21 松下電器産業株式会社 水の光分解装置および光分解方法
US7459065B2 (en) 2004-02-18 2008-12-02 General Motors Corporation Hydrogen generator photovoltaic electrolysis reactor system
US7422696B2 (en) 2004-02-20 2008-09-09 Northwestern University Multicomponent nanorods
JP2006068577A (ja) 2004-08-31 2006-03-16 Sasano Densen Kk 光触媒粒状体
TWI251271B (en) 2004-09-22 2006-03-11 Ind Tech Res Inst Method for preparation of photocatalyst nanoparticles
JP4295231B2 (ja) 2005-03-01 2009-07-15 富士通株式会社 広帯域光吸収性光触媒及びその製造方法、並びに、広帯域光吸収性光触媒含有組成物及び成形体
US20080302669A1 (en) 2005-05-16 2008-12-11 Peters John W Composite Nanomaterials for Photocatalytic Hydrogen Production and Method of Their Use
US7625835B2 (en) 2005-06-10 2009-12-01 Gm Global Technology Operations, Inc. Photocatalyst and use thereof
US7763149B2 (en) 2005-08-19 2010-07-27 North Carolina State University Solar photocatalysis using transition-metal oxides combining d0 and d6 electron configurations
US7820022B2 (en) 2005-11-28 2010-10-26 General Electric Company Photoelectrochemical cell and method of manufacture
TWI280893B (en) 2005-12-23 2007-05-11 Ind Tech Res Inst Nano photocatalytic solution and application thereof
TW200732036A (en) 2006-02-01 2007-09-01 Toshiba Lighting & Technology Photocatalysis material, photocatalysis body, photocatalysis product, luminaire and manufacturing method thereof
GB0621246D0 (en) 2006-10-25 2006-12-06 Uvps Environmental Solutions L Photocatalytic reactor
JP2010519057A (ja) 2007-02-20 2010-06-03 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティー オブ エルサレム,リミテッド ハイブリッド金属半導体ナノ粒子、光誘導荷電分離方法およびその応用
CN101641292B (zh) 2007-03-23 2012-10-17 株式会社东芝 生产用于光催化剂的三氧化钨粉末的方法,用于光催化剂的三氧化钨粉末,及光催化剂产品
DE102007028391A1 (de) 2007-06-15 2008-12-18 Nano-X Gmbh Partikel bzw. Beschichtung zur Spaltung von Wasser
WO2009013745A1 (en) 2007-07-23 2009-01-29 Ramot At Tel Aviv University Ltd. Photocatalytic hydrogen production and polypeptides capable of same
WO2009031316A1 (ja) 2007-09-05 2009-03-12 Kabushiki Kaisha Toshiba 可視光応答型光触媒粉末とそれを用いた可視光応答型の光触媒材料、光触媒塗料および光触媒製品
TW200925116A (en) 2007-12-05 2009-06-16 Ind Tech Res Inst Photocatalytic reaction system for water purification
KR100945035B1 (ko) 2008-01-29 2010-03-05 재단법인서울대학교산학협력재단 텅스텐계 산화물을 이용한 가시광 응답형 광촉매 조성물 및 그 제조방법
ITSA20080012A1 (it) 2008-05-29 2009-11-30 Univ Degli Studi Salerno Fotoreattore catalitico ad alta efficienza di illuminazione per processi intensificati di fotossidazione
US20090321244A1 (en) 2008-06-25 2009-12-31 Hydrogen Generation Inc. Process for producing hydrogen
US20100176067A1 (en) 2008-10-31 2010-07-15 Boyd Joel E Photocatalytic reactor and process for photocatalysis
JP2011036770A (ja) 2009-08-07 2011-02-24 Hokkaido Univ 貴金属担持光触媒体粒子の製造方法
JP2011224534A (ja) 2009-09-16 2011-11-10 Sumitomo Chemical Co Ltd 光触媒複合体、およびこれを用いた光触媒機能製品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094751A (en) * 1976-09-30 1978-06-13 Allied Chemical Corporation Photochemical diodes
US4292461A (en) * 1980-06-20 1981-09-29 International Business Machines Corporation Amorphous-crystalline tandem solar cell
US4891074A (en) * 1980-11-13 1990-01-02 Energy Conversion Devices, Inc. Multiple cell photoresponsive amorphous alloys and devices
US4790916A (en) * 1984-03-14 1988-12-13 The Texas A&M University System One-unit photo-activated electrolyzer
CN102544374A (zh) * 2001-12-05 2012-07-04 株式会社半导体能源研究所 有机半导体元件
CN1849413A (zh) * 2003-06-27 2006-10-18 通用汽车公司 光电化学装置和电极
CN101379631A (zh) * 2005-06-13 2009-03-04 普林斯顿大学理事会 具有相反载流子激子阻挡层的有机双异质结构的光伏电池
CN102077367A (zh) * 2008-07-03 2011-05-25 Imec公司 多结光伏模块及其加工
CN102844881A (zh) * 2010-04-06 2012-12-26 韩国机械研究院 具有pn结和肖特基结的多路太阳能电池及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SYED MUBEEN等: "Synthesis of Chemicals Using Solar Energy with Stable Photoelectrochemically Active Heterostructures", 《NANO LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111334812A (zh) * 2020-03-05 2020-06-26 桂林电子科技大学 基于水合羟基氧化铁的非晶硅薄膜光电极及其制备方法

Also Published As

Publication number Publication date
AU2015231504A1 (en) 2016-09-29
AU2015231504B2 (en) 2018-04-05
WO2015142916A1 (en) 2015-09-24
US10100415B2 (en) 2018-10-16
US20160076154A1 (en) 2016-03-17
CN107075695B (zh) 2019-03-12
EP3119926B1 (en) 2019-03-06
EP3119926A1 (en) 2017-01-25
EP3119926A4 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
Lewis Developing a scalable artificial photosynthesis technology through nanomaterials by design
US10683218B2 (en) Z-scheme microbial photoelectrochemical system (MPS) for wastewater-to-chemical fuel conversion
Walter et al. Solar water splitting cells
Ganesh Solar fuels vis-a-vis electricity generation from sunlight: the current state-of-the-art (a review)
Hossain et al. Recent progress and approaches on carbon-free energy from water splitting
Lu et al. Microbial photoelectrosynthesis for self-sustaining hydrogen generation
Xia et al. Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation
Zhu et al. Double perovskite cobaltites integrated in a monolithic and noble metal-free photoelectrochemical device for efficient water splitting
Bhat et al. All-solution-processed BiVO4/TiO2 photoanode with NiCo2O4 nanofiber cocatalyst for enhanced solar water oxidation
Díez‐García et al. Progress in ternary metal oxides as photocathodes for water splitting cells: Optimization strategies
El Idrissi et al. Review of photoelectrochemical water splitting: From quantitative approaches to effect of sacrificial agents, oxygen vacancies, thermal and magnetic field on (photo) electrolysis
Vilanova et al. The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges
Khusnun et al. An avant-garde of carbon-doped photoanode materials on photo-electrochemical water splitting performance: A review
Nabgan et al. A review on the design of nanostructure-based materials for photoelectrochemical hydrogen generation from wastewater: Bibliometric analysis, mechanisms, prospective, and challenges
Tilley Will cuprous oxide really make it in water-splitting applications?
Gonzaga et al. Copper ternary oxides as photocathodes for solar-driven CO2 reduction
Sharma et al. Nanosheets of In2S3/S-C3N4-dots for solar water-splitting in saline water
Xu et al. Heterostructure Fe2O3/BiVO4 as a photoanode for a visible-light-responsive photocatalytic fuel cell
KR101992966B1 (ko) 슁글드 어레이 접합 방식을 이용한 광전기화학적 물분해용 고전압 광전극의 제조 방법 및 이에 따른 광전극
CN107075695B (zh) 具有提高的光电压的多结人工光合电池
Sharma et al. Combining experimental and engineering aspects of catalyst design for photoelectrochemical water splitting
Singh Nanomaterials for water splitting: a greener approach to generate hydrogen
Fiechter Artificial Photosynthesis–An Inorganic Approach
Hong et al. Planar GaN/Cu2O microcrystal composite junction photoanode for efficient solar water splitting
EP4394084A2 (en) Photocatalytic apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant