CN107072183A - 消除种系细胞的nanos敲除 - Google Patents

消除种系细胞的nanos敲除 Download PDF

Info

Publication number
CN107072183A
CN107072183A CN201580049047.XA CN201580049047A CN107072183A CN 107072183 A CN107072183 A CN 107072183A CN 201580049047 A CN201580049047 A CN 201580049047A CN 107072183 A CN107072183 A CN 107072183A
Authority
CN
China
Prior art keywords
sequence
cell
dna
animal
nanos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580049047.XA
Other languages
English (en)
Other versions
CN107072183B (zh
Inventor
J·M·奥特利
C·B·A·怀特洛
S·G·利利科
B·P·特卢古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Edinburgh
University of Maryland at Baltimore
Washington State University WSU
Original Assignee
University of Edinburgh
University of Maryland at Baltimore
Washington State University WSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Edinburgh, University of Maryland at Baltimore, Washington State University WSU filed Critical University of Edinburgh
Publication of CN107072183A publication Critical patent/CN107072183A/zh
Application granted granted Critical
Publication of CN107072183B publication Critical patent/CN107072183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/101Bovine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • A01K2267/025Animal producing cells or organs for transplantation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了通过调节NANOS基因移植精原干细胞而产生受体动物的牲畜动物和方法。在一个实施方案中,用基因组编辑产生具有失活或者另外调节NANOS基因活性的插入或缺失(indels)的动物,以便所得雄性动物缺少功能性生殖细胞而保留功能性体细胞,雌性动物是能生育的。然后为这些雄性动物移植供体精原干细胞并用于育种。

Description

消除种系细胞的NANOS敲除
相关申请的交叉参考
本申请要求2014年7月14日提交的美国临时申请号62/023,996的优先权,其全部内容并入本申请作参考。
发明领域
本发明涉及基因编辑的非人牲畜动物。本发明的方法提供了在动物中修饰的NANOS基因,从而雄性动物缺少种系细胞而雌性动物是能生育的。然后所得雄性动物用于精原干细胞移植及用于育种计划中。
发明背景
牲畜中的遗传增益(genetic gain)可以描述为由于选择性育种的结果而在群体的世代-世代之间生产特性的改良。利用这个原理是食用动物生产中的一个重要方面,以增进生长效率、动物健康及消费者使用的产品质量,同时也降低环境影响。在牲畜生产中,大多数遗传增益是通过希望的父系的选择性育种而产生的。因此,扩大父系个体精子的可利用性可以在全球范围内极大地影响食用动物生产。人工授精(AI)方法已经用于全世界的商业化牲畜生产以改良生产特性。尽管具有这些优势,但是在牲畜育种工业中用于AI的精良公猪和公牛的应用由于从个体可以收集的精子的绝对数目有限而受到限制。对于公猪,一周收集1-2次射出的精液,每次射精产生~20AI剂量。每头母猪在指定的发情周期期间人工授精2-3次。因此,每周用希望的父系的精子可以育种低于20头母猪。因此,显然需要从希望的父系扩充配子输出和可用性及保持种系的新方法。
精子发生每天产生数百万精子,这种巨大数目的基础是由含有精原干细胞(SSC)的未分化的精原细胞群的功能提供的。SSC一种独特的性质是其在移植后在受体动物睾丸建群并且再生精子发生的能力。已经针对啮齿动物模型开发了SSC移植方法,并将该方法针对猪而加以适应提供了有效的育种工具以扩增和保存父系个体的种系和遗传优点。应用SSC移植方法的关键方面是:1)产生缺少内源性种系细胞、但是具有完整的支持细胞群(即Sertoli细胞和睾丸间质细胞(Leydig))的受体动物;2)在体外扩增相对稀少的供体SSC以产生最佳数目以成功移植进一些受体雄性动物中;及3)将SSC注射进受体睾丸中。
供体SSC建群的效率受到受体睾丸环境的影响。消除内源性生殖细胞对于供体SSC可达到移植在受体睾丸的生精小管中是关键的。此外,精子发生是由生殖细胞与睾丸支持细胞群包括Sertoli和睾丸间质细胞之间紧密相互作用而调节的。因此,在移植时体细胞的健康状况影响供体SSC建群的成功与否。对于啮齿动物,用化学毒性药物尤其是烷化剂白消安处理成年雄性动物及局部睾丸照射均已用于有效地制备SSC移植的受体。虽然这两种处理均导致内源性生殖细胞耗竭及可以移植供体SSC,但是体细胞支持细胞的功能通常受到不利影响,一些内源性生殖细胞总是保持导致再生供体和内源性精子发生的混合物。在小鼠中,最成功的SSC移植包括使用由于在精子发生的最早阶段失活生殖细胞存活所需的基因而不育的受体。其中存留精原细胞群的精子发生的部分消除对于制备受体是无效的。在这种情况中,仍必须使用化学毒性药物以消除存留的精原细胞,从而开启供体SSC移植的小生境(niches)。原始生殖细胞(PGC)、生殖母细胞或者SSC的存活被削弱(compromised)的雄性动物提供了理想受体。
对于猪及其它大型家养动物,因为需要高剂量药物以完全消除生殖细胞,因此用化学毒性药物处理以制备受体雄性动物是不可行的。这些处理通常产生对于骨髓干细胞及其它组织特异性干细胞的不希望的毒性结果。此外,需要收集粪便和尿液作为生物有害垃圾。局部睾丸照射是一种可能的选项,其克服了化学毒性药物处理的限制,但是照射剂量需要精确控制且该过程对支持细胞包括睾丸间质细胞造成损害,从而不利地影响来自供体的精子发生的产生。理想的受体是由于遗传缺陷导致缺少内源性种系而留下体细胞支持细胞群功能是完整的雄性动物。
正如所见,在本领域中需要这样的动物,其中雄性动物没有生殖细胞但是保留功能性体细胞,因此可以进行SSC移植,同时理想地雌性动物是能生育的。
发明概述
本发明提供了通过产生具有调节的NANOS表达的受体动物进行精原干细胞移植的动物和方法。所述动物具有失活的或者另外调节的NANOS基因活性,导致雄性动物缺少功能性生殖细胞而仍保留功能性体细胞,而雌性动物是能生育的。这些动物可以使用任何众多方案如敲除技术或基因编辑产生。
因此,本发明的一个实施方案是经基因编辑的或修饰的牲畜动物,其包含具有针对生殖细胞功能选择性失活的NANOS基因的基因组。
本发明再一实施方案是生产牲畜动物的方法,包括将一种物质导入牲畜动物细胞或者牲畜动物胚胎中,该物质特异性结合细胞的染色体靶位点并导致双链DNA断裂,或者另外使用基因编辑方法如成簇规律间隔短回文重复序列(CRISPR)/Cas系统、转录激活因子样效应物核酸酶(TALEN)、锌指核酸酶(ZFN)或者重组融合蛋白失活其中的NANOS基因。
本发明的另一个实施方案是产生用于牲畜育种的具有希望的精原干细胞遗传成分的雄性动物精子供体的方法,所述方法包括:从希望的雄性动物供体收集供体SSC,在体外增殖SSC,之后将供体SSC移植至NANOS2-/-雄性动物,以便产生精子发生群落及长时间保持供体生殖细胞。
本发明的再一实施方案包括产生牲畜动物,包括用来自受体NANAOS2-/-雄性的供体精子对雌性牲畜进行天然交配和/或人工授精。
本发明还描述了一或多个串联的特定NANOS基因座与能导致在NANOS基因座内特定核酸序列裂解和/或整合的多肽的应用。串联NANOS基因座与能导致NANOS基因座裂解和/或整合的多肽的应用实例包括选自如下的多肽:锌指蛋白,大范围核酸酶,TAL结构域,TALEN,RNA指导的CRISPR/Cas重组酶,亮氨酸拉链,及本领域已知的其它多肽。特别的实例包括嵌合(融合)蛋白,其包含位点特异性DNA结合结构域多肽和裂解结构域多肽(例如核酸酶),如包含锌指多肽和FokI核酸酶多肽的ZFN蛋白。在一些方面中,本文描述的是包含特异性结合NANOS基因的DNA结合结构域的多肽。在一些实施方案中,这种多肽也可以包含核酸酶(裂解)结构域或者半结构域(例如ZFN、重组酶、转座酶,或者归巢核酸内切酶,包括具有修饰的DNA结合结构域的归巢核酸内切酶、TAL结构域、TALEN、RNA指导的CRISPR/Cas),和/或连接酶结构域,由此多肽可诱导靶向双链断裂,和/或促进感兴趣的核酸在断裂位点的重组。在特定的实施方案中,靶向NANOS基因座的DNA结合结构域可以是DNA裂解功能性结构域。前述多肽可用于一些实施方案中以将外源核酸导入宿主生物体(例如动物物种)的基因组的一或多个NANOS基因座。在某些实施方案中,DNA结合结构域包含具有一或多个锌指(例如2、3、4、5、6、7、8、9或更多个锌指)的锌指蛋白,其被工程化(非天然发生的)为结合NANOS基因内的任何序列。本文描述的任何锌指蛋白可以结合靶基因的编码序列内或者相邻序列(例如启动子或其它表达元件)内的靶位点。在某些实施方案中,锌指蛋白结合NANOS基因中的靶位点,例如外显子1中大约20个碱基。
通过如下本发明的详细描述可以明了进一步的实施方案。
附图描述
图1是猪基因组的多序列对比综合图,以鉴别在猪NANOS2基因内潜在的单核苷酸多态性(以红点标示),其可用于提供信息设计基因组编辑试剂。
图2示出琼脂糖凝胶上消化的PCR产物的结果,以鉴别NHEJ事件。基因组DNA从用编码TALEN对A、B或C的质粒转染的PK15细胞制备,随后用PCR引物oSL9和oSL10扩增。通过用酶CelI消化鉴别错配。
图3A、3B和3C示出指导RNA结合序列的序列(SEQ ID NO:15和SEQ ID NO:16)。图3C示出具有指导序列、人U6启动子、sgRNA结合序列和终止子序列的构建体。U6启动子序列(SEQ ID NO:18)、靶序列(SEQ ID NO:19)、gRNA支架(SEQ ID NO:20)、末端序列(SEQ IDNO:21)。
图4示出作用于PK15细胞的DNA的猪CRISPR/Cas9的琼脂糖凝胶上的消化的PCR产物。将分别编码sgRNA序列、CAG驱动的Cas9和CMV驱动的eGFP的三个质粒共转染进PK15细胞。使用引物oSL9和oSL10对所得基因组DNA进行PCR。将消化的PCR产物在2%TAE琼脂糖凝胶上解析。这两个指导序列导致在靶位点切割及NHEJ形成(通过存在CelI消化产物示出,红色箭头),令人惊奇地发现与编码序列相反方向的sgRNA序列比其有义对应物实质上更有效。.
图5A是pSpCas9(BB)-2A-GFP(PX458)质粒图。图5B示出pX458部分序列(SEQ IDNO:22)、hU6序列(SEQ ID NO:23)、gRNA序列(SEQ ID NO:24)、末端序列(SEQ ID NO:25)的序列注释。图5C1-5C3示出完整构建体序列(SEQ ID NO:43)。
图6A和6B是转染后基因组DNA的PCR产物凝胶,示出通过存在T7核酸内切酶消化产物表示的sgRNA在其靶位点能诱导NHEJ形成的效率中的实质差异(红色箭头)。
图7示出通过使用不同组合的CRISPR产生的缺失。照片是基因组DNA的凝胶,插入缺失(indel)是用6个质粒组合的引物oSL86(SEQ ID NO:64)和oSL87(SEQ ID NO:74)扩增。
图8示出与野生型相比牛插入缺失的序列。
pSL32&pSL38:WT(SEQ ID NO:117),克隆1(SEQ ID NO:118);克隆2(SEQ ID NO:119);克隆3(SEQ ID NO:120);克隆4(SEQ ID NO:121);克隆5(SEQ IDNO:122)。
pSL32&pSL39:WT(SEQ ID NO:123),克隆1(SEQ ID NO:124);克隆2(SEQ ID NO:125);克隆3(SEQ ID NO:126);克隆4(SEQ ID NO:127);克隆5(SEQ ID NO:128)。
pSL32&pSL42WT(SEQ ID NO:129),克隆1(SEQ ID NO:130);克隆2(SEQ ID NO:131);克隆3(SEQ ID NO:132);克隆4(SEQ ID NO:133);克隆5(SEQ ID NO:134).
pSL33&pSL38WT(SEQ ID NO:135),克隆1(SEQ ID NO:136);克隆2(SEQ ID NO:137);克隆3(SEQ ID NO:138);克隆4(SEQ ID NO:139);克隆5(SEQ ID NO:140)。
pSL33&pSL39WT(SEQ ID NO:141),克隆1(SEQ ID NO:142);克隆2(SEQ ID NO:143);克隆3(SEQ ID NO:144);克隆4(SEQ ID NO:145);克隆5(SEQ ID NO:146)。
pSL33&pSL42WT(SEQ ID NO:147),克隆1(SEQ ID NO:148);克隆2(SEQ ID NO:149);克隆3(SEQ ID NO:150);克隆4(SEQ ID NO:151);克隆5(SEQ ID NO:152)。
图9示出在猪胚胎中NANOS2基因座的CRISPR介导的基因靶向。A)进行哺乳动物表达的CMV启动子及在体外转录Cas9:GFP表达载体的T7启动子的示意图:HA标签,及NLS:核定位表达的Cas9核酸酶蛋白质的核定位信号。T7启动子驱动携带指导RNA和Cas9结合序列的嵌合单一指导RNA(sgRNA)表达盒。B)Cas9的示意图,指定基因组序列的sgRNA介导的靶向。C)在证实从Cas9:GFP中表达第2天的未注射(右侧)或者注射(左侧)A组表达盒(Cas9:GFP和指导序列)RNA的猪1-细胞胚胎的荧光显微照片。插图中示出发育中胚胎的明视野图像。D)对注射的胚胎测序示出不同程度的插入缺失,其通常是双等位基因的。野生型序列在上方以突出的序列示出,示出靶指导序列(黄色),及相反方向的PAM基序(AGG,绿色)。NANOS2(SEQ ID NO:29);N1-1(SEQ ID NO:30);N1-2(SEQ ID NO:31);N3-2(SEQ ID NO:32);N3-3(SEQ ID NO:33);N5-2(SEQ ID NO:34);N5-3(SEQ ID NO:35);N6-1(SEQ ID NO:36);N7-2(SEQ ID NO:37);N7-3(SEQ ID NO:38);N10-2(SEQ ID NO:39);N11-2(SEQ ID NO:40);N12-2(SEQ ID NO:41);N12-3(SEQ ID NO:42)。
图10A示出对注射两个sgRNA的猪胚胎的测序。如图所示,注射两个sgRNA导致NANOS2基因座较大节段缺失,及在NANOS2等位基因中插入外来序列(红色)。NANOS(SEQ IDNO:26);NN6-1(SEQ ID NO:27);NN7-1和NN7-2(SEQ ID NO:28)。图10B示出来自胚泡的进一步的插入缺失序列:NANOS(SEQ ID NO:44);N3-1-3(SEQ ID NO:45);N3-2-3(SEQ ID NO:46);N3-6-2(SEQ ID NO:47);N3-7-3(SEQ ID NO:48);N3-8-3(SEQ ID NO:49);N3-10-2(SEQ ID NO:50);N3-12-2(SEQ ID NO:51);N3-12-3(SEQ ID NO:52)。
图11示出设计单一指导RNA对(切口酶对)靶向相反链。这两个sgRNA在图中方框中示出,相反链以黄色标示。这两个sgRNA的PAM基序以绿色标示。在靶位点周围未鉴别修饰。sgRNA1(SEQ ID NO:53);sgRNA2(SEQ ID NO:54);NANOS(SEQ ID NO:55);N2-3(SEQ ID NO:56);N3-1(SEQ ID NO:57);N4-2(SEQ ID NO:58);N5-2(SEQ ID NO:59);N6-3(SEQ ID NO:60);N7-1(SEQ ID NO:61)。
图12示出具有注释的设计的指导序列和扩增引物的牛NANOS2序列。完整核苷酸序列(SEQ ID NO:62);NANOS 2CDS(SEQ ID NO:63);oSL86(SEQ ID NO:64);pSL36或37(SEQID NO:65);pSL34或35(SEQ ID NO:66);pSL32或33(SEQ ID NO:67);pSL38或39(SEQ IDNO:68);pSL39或40(SEQ ID NO:69);pSL41或42(SEQ ID NO:70);pSL43或44(SEQ ID NO:71);pSL45或46(SEQ ID NO:72);pSL47或48(SEQ ID NO:73);oSL87(SEQ ID NO:74)。
图13示出产生单-或双-等位基因敲除NANOS2小猪的CRISPR/Cas系统方法。20个核苷酸指导序列以下划线标示,PAM基序以黄色标示(注意:指导序列是相反方向)。CRISPR靶序列在NANOS2ORF内以下划线标示。CRISPR指导RNA序列(SEQ ID NO:160);NANOS2ORF(SEQID NO:1和2);CRISPR靶序列(SEQ ID NO:161)。
图14A和14B示出CRISPR/Cas介导的NANOS2单-或双-等位基因敲除小猪的基因型。NANOS WT(SEQ ID NO:163);NANOS猪1-1(SEQ ID NO:164);NANOS猪1-2(SEQ ID NO:165);NANOS猪1-3(SEQ ID NO:166);NANOS猪2-1(SEQ ID NO:167);NANOS猪2-4(SEQ ID NO:168);NANOS猪3-1(SEQ ID NO:169);NANOS猪4-1(SEQ ID NO:170);NANOS猪4-2(SEQ IDNO:171);NANOS猪10-1(SEQ ID NO:172);NANOS猪10-2(SEQ ID NO:173);NANOS猪11-1(SEQID NO:174);NANOS猪11-4(SEQ ID NO:175);NANOS猪12-1(SEQ ID NO:176);NANOS猪12-2(SEQ ID NO:177);NANOS小猪#1等位基因-1(SEQ ID NO:178);NANOS小猪#1等位基因-2(SEQ ID NO:179);NANOS小猪#2等位基因-1(SEQ ID NO:180);NANOS小猪#2等位基因-2(SEQ ID NO:181);NANOS小猪#3等位基因-1(SEQ ID NO:182);NANOS小猪#3等位基因-2(SEQ ID NO:183);NANOS小猪#4等位基因-1(SEQ ID NO:184);NANOS小猪#4等位基因-2(SEQ ID NO:185);NANOS小猪#5等位基因-1(SEQ ID NO:186);NANOS小猪#5等位基因-2(SEQ ID NO:187);NANOS小猪#6等位基因-1(SEQ ID NO:188);NANOS小猪#6等位基因-2(SEQ ID NO:189);NANOS小猪#7等位基因-1(SEQ ID NO:190);NANOS小猪#7等位基因-2(SEQ ID NO:191);NANOS小猪#8等位基因-1(SEQ ID NO:192);NANOS小猪#8等位基因-2(SEQ ID NO:193);NANOS小猪#9等位基因-1(SEQ ID NO:194);NANOS小猪#9等位基因-2(SEQ ID NO:195);NANOS小猪#10等位基因-1(SEQ ID NO:196);NANOS小猪#10等位基因-2(SEQ ID NO:197);NANOS小猪#11等位基因-1(SEQ ID NO:198);NANOS小猪#11等位基因-2(SEQ ID NO:199)。
图15示出通过SCNT产生的NANOS2无效雄性和雌性小猪的基因型。在图中,靶向NANOS2的20个核苷酸的指导序列(SEQ ID NO:162)以绿色和下划线标示,随后是3个核苷酸的PAM基序(蓝色标示)。在雄性敲除动物中,两个等位基因在NANOS2ORF中均具有7个核苷酸缺失,导致NANOS2基因的破坏。在雌性动物中,一个等位基因具有1个核苷酸缺失及几个改变的核苷酸序列,第二个等位基因具有11个核苷酸缺失。总之,这些等位基因使得雌性动物对于NANOS2是无效的(null)。
图16示出3月龄Nanos2纯合敲除猪的睾丸活检组织横切面的代表性图像。使用光学显微镜生成横切面活检组织图像,示出完整的曲细精管及存在体细胞支持细胞。此外,图16示出在曲细精管索内不存在多层生殖细胞。
发明详述
根据所附实施例对本发明进行更充分描述。本发明可以许多不同方式实施,不应解释为限于本申请陈述的实施方案;提供这些实施方案只是为了本发明满足可适用的法律要求。
本发明的一些修改及其它实施方案将为本发明所属领域技术人员了解,具有本发明描述和图表中呈现的教导的益处。结果,应理解本发明不限于所揭示的特定实施方案,修改及其它实施方案包含在所附权利要求书范围内。尽管本说明书中使用了一些特定术语,但是其仅是以一般性和描述性含义使用,无限制目的。
单位、前缀和符号以其SI公认的形式表示。除非特别指出,则核酸以从左至右5’至3’方向书写;氨基酸序列从左至右氨基至羧基方向书写。本说明书内列举的数值范围包含指定范围的数,也包括指定范围内的每个整数。在本文氨基酸可以其通常已知的三字母符号或者IUPAC-IUB生物化学命名委员会推荐的单字母符号形式表示。同样,核苷酸可以其通常公认的单字母代码表示。除非另外提供,则如本文所用的软件、电气和电子术语均如TheNew IEEE Standard Dictionary of Electrical and Electronics Terms(5th edition,1993)所定义。下文定义的术语参考说明书总体上更充分地定义。
“扩增的”是指使用至少一个核酸序列作为模板构建一个核酸序列的多个拷贝或者与该核酸序列互补的多个拷贝。扩增系统包括聚合酶链反应(PCR)系统、连接酶链反应(LCR)系统、基于核酸序列扩增(NASBA,Cangene,Mississauga,Ontario),Q-Beta复制酶系统、基于转录的扩增系统(TAS),及链置换扩增(SDA)。见例如Diagnostic MolecularMicrobiology:Principles and Applications,D.H.Persing et al.,Ed.,AmericanSociety for Microbiology,Washington,D.C.(1993)所述。扩增产物称作扩增子。
术语“保守修饰的变体”可用于氨基酸序列和核酸序列。关于特定的核酸序列,“保守修饰的变体”是指编码相同的或保守修饰的氨基酸序列变体的那些核酸。由于遗传密码的简并,许多功能相同的核酸编码任何指定蛋白质。例如,密码子GCA、GCC、GCG和GCU均编码丙氨酸。因此,在其中丙氨酸由密码子指定的每个位置,所述密码子可以改变为所述任何相应密码子而不改变编码的多肽。这种核酸变异是“沉默变异”,代表一种类型的保守修饰变异。在此编码多肽的每个核酸序列参考遗传密码也描述了核酸的每个可能的沉默变异。
技术人员意识到核酸中的每个密码子(除了AUG之外,其通常仅是甲硫氨酸的密码子,及除了UGG之外,其通常仅是色氨酸的密码子)均可以被修饰以产生功能相同的分子。因此,编码本发明多肽的核酸的每个沉默变异在每个描述的多肽序列中是隐含的及在本发明的范围内。
与氨基酸序列一样,技术人员意识到在编码的序列中改变、添加或缺失一个氨基酸或小百分比氨基酸的核酸、肽、多肽或蛋白质序列的各个取代、缺失或添加是“保守修饰的变体”,其中所述改变导致氨基酸由化学相似的氨基酸取代。因此,可以如此改变选自1-15整数中任何数目的氨基酸残基。因此,例如可以产生1、2、3、4、5、7或10个改变。
保守修饰的变体典型提供了与其从中衍生的未修饰的多肽序列相似的生物学活性。例如,底物特异性、酶活性或者配体/受体结合通常是天然蛋白质与其天然底物的至少30%、40%、50%、60%、70%、80%或者90%。提供功能相似氨基酸的保守取代表为本领域熟知。
如下六组的每组均含有彼此保守取代的氨基酸:[1]丙氨酸(A),丝氨酸(S),苏氨酸(T);[2]天冬氨酸(D),谷氨酸(E);[3]天冬酰胺(N),谷氨酰胺(Q);[4]精氨酸(R),赖氨酸(K);[5]异亮氨酸(I),亮氨酸(L),甲硫氨酸(M),缬氨酸(V);及[6]苯丙氨酸(F),酪氨酸(Y),色氨酸(W)。也见Creighton(1984)Proteins W.H.Freeman and Company所述。
关于指定的核酸所用术语“编码”或者“编码的”是指包含翻译为指定蛋白质的信息。编码蛋白质的核酸可包含在核酸翻译区内的间插序列(例如内含子),或者可以缺少这种间插非翻译序列(例如在cDNA中)。蛋白质编码信息由使用的密码子指定。典型地,氨基酸序列由核酸使用“通用”遗传密码编码。当合成制备或者改变核酸时,可利用表达核酸的指定宿主的已知密码子优选性。
如本文所用,关于指定多核苷酸或其编码蛋白质所用术语“全长序列”是指具有指定蛋白质的天然的(非合成的)、内源的、生物学活性形式的完整氨基酸序列。确定序列是否是全长序列的方法为本领域熟知,包括这种示例的技术是northern或western印迹、引物延伸、S1保护及核糖核酸酶保护技术。与已知全长同源(直系同源和/或旁系同源)序列对比也可以用于鉴别本发明的全长序列。此外,典型地存在于mRNA的5’和3’非翻译区的共有序列有助于鉴别多核苷酸是否是全长序列。例如,共有序列ANNNNAUGG有助于确定多核苷酸是否具有完整的5’末端,其中下划线处密码子表示N末端甲硫氨酸。在3’末端的共有序列如聚腺苷酸化序列有助于确定多核苷酸是否具有完整的3’末端。
如本文所用,关于核酸所用术语“异源”是指源自外源物种的核酸,或者如果源自相同物种则通过有意人为干预在组成成分和/或基因组基因座方面从其天然形式加以充分修饰的核酸。例如,与异源结构基因可操纵地连接的启动子来自与该结构基因从中衍生的物种不同的物种,或者如果来自相同物种,则其一或二者均从其原始形式进行了充分修饰。异源蛋白质可以源自外源物种,或者如果源自相同物种则通过有意人为干预从其原始形式加以充分修饰。
“宿主细胞”是指含有载体并支持载体复制和/或表达的细胞。宿主细胞可以是原核细胞如大肠杆菌,或者是真核细胞如酵母、昆虫、两栖动物或者哺乳动物细胞。
术语“杂交复合物”包括通过彼此选择性杂交的两个单链核酸序列形成的双链体核酸结构。
在将核酸插入细胞中的语境中所用术语“导入”与“转染”或者“转化”或者“转导”等同,包括将核酸掺入真核细胞或原核细胞中,其中所述核酸可以掺入细胞的基因组中(例如染色体、质粒、质体或者线粒体DNA),转变为自主复制子,或者瞬时表达(例如转染的mRNA)。
术语“分离的”是指如核酸或蛋白质这样的材料,其:(1)实质上或者基本上不含在其天然发生的环境中发现的通常伴随或与其相互作用的成分-分离的材料任选包含在其天然环境中未与该材料在一起的材料;或者(2)如果材料是在其天然环境中,则该材料通过有意人为干预被合成地改变成分和/或置于细胞中该材料非天然的位置(例如基因组或者亚细胞细胞器)。产生合成材料的改变可以在天然状态中对材料进行或者从其天然状态中除去。例如,天然发生的核酸如果通过在其源自其中的细胞内进行人为干预被改变或者从已经被改变的DNA中转录则成为分离的核酸。见例如Compounds and Methods for SiteDirected Mutagenesis in Eukaryotic Cells,Kmiec,U.S.Patent No.5,565,350;InVivo Homologous Sequence Targeting in Eukaryotic Cells;Zarling et al.,PCT/US93/03868。同样,天然发生的核酸(例如启动子)如果是通过非天然发生的方式导入该核酸非天然的基因组的基因座则成为分离的。如本文定义是“分离的”核酸也称作“异源”核酸。
如本文所用,关于特定标记所用“定位在由…定义并包括…的染色体区域内”是指由指定标记定界并包括其的连续染色体长度。
如本文所用,“标记”是指染色体上的基因座,其用于鉴别染色体上的独特位置。“多态性标记”包括以多种形式(等位基因)呈现的标记,由此不同形式的标记当以同源配对呈现时使得该配对的每个染色体得以传递。基因型可以通过一或多个标记的使用而定义。
如本文所用,“突变”是指多核苷酸的核苷酸序列例如基因或编码DNA序列(CDS)中与野生型序列相比的改变。该术语包括但不限于取代、插入、移码、缺失、倒位、易位、复制、剪接供体位点突变、点突变等。
如本文所用,“核酸”是指单链或双链形式的脱氧核糖核苷酸或者核糖核苷酸聚合物,及除非特别限制则涵盖了保守修饰的变体及已知的具有天然核苷酸的基本性质的类似物,其以与天然发生的核苷酸相似的方式与单链核酸杂交(例如肽核酸)。
“核酸文库”是指分离的DNA或RNA分子的集合,其包含且基本上代表指定生物体的基因组的全部转录部分。示例的核酸文库如基因组和cDNA文库的构建在标准分子生物学参考文献中教导,如Berger and Kimmel,Guide to Molecular Cloning Techniques,Methods in Enzymology,Vol.152,Academic Press,Inc.,San Diego,CA(Berger);Sambrook et al.,Molecular Cloning-A Laboratory Manual,2nded.,Vol.1-3(1989);及Current Protocols in Molecular Biology,F.M.Ausubel et al.,Eds.,CurrentProtocols,a joint venture between Greene Publishing Associates,Inc.and JohnWiley&Sons,Inc.(1994)。
如本文所用,“可操纵地连接”是指启动子与第二序列之间的功能性连接,其中启动子序列起始并介导相应于第二序列的DNA序列的转录。通常,可操纵地连接是指连接的核酸序列是连续的且在需要的情况中连续地及在相同读框中连接两个蛋白质编码区。
如本文所用,“多核苷酸”是指脱氧核糖多核苷酸、核糖多核苷酸或者保守修饰的变体;该术语还涉及具有天然核糖核苷酸的基本性质的其类似物,其在严格杂交条件下与天然发生的核苷酸杂交基本相同的核苷酸序列和/或使得翻译为与天然发生的核苷酸相同的氨基酸。多核苷酸可以是天然或异源结构或调节基因的全长序列或者子序列。除非特别指出,该术语是指指定的序列以及其互补序列。因此,由于稳定性或其它原因而具有修饰的主链的DNA或RNA是本文所用术语“多核苷酸”。此外,包含非常规碱基如肌苷或者修饰的碱基如三苯甲基化(tritylated)碱基(只是举两个实例)的DNA或RNA是本文所用术语描述的多核苷酸。应意识到已经对DNA和RNA进行了大量修饰以适合本领域技术人员已知的众多有用的目的。
在本文中使用的术语多核苷酸包含这种经化学、酶或者代谢修饰形式的多核苷酸,以及病毒和细胞包括例如简单和复杂细胞特有的化学形式的DNA和RNA。
术语“多肽”、“肽”和“蛋白质”在本文可互换使用,是指氨基酸残基的聚合物。该术语也可用于保守修饰的变体及其中一或多个氨基酸残基是相应天然发生的氨基酸的人工化学类似物的氨基酸聚合物,以及用于天然发生的氨基酸聚合物。这种天然发生的氨基酸的类似物的基本性质是当掺入蛋白质中时,该蛋白质与由相同的但是完全由天然发生的氨基酸组成的蛋白质激发的抗体特异性反应。术语“多肽”、“肽”和“蛋白质”也包含修饰,包括但不限于糖基化、脂质附着、硫酸化、谷氨酸残基的γ羧化、羟基化和ADP核糖基化。正如熟知的及如上所示,应意识到多肽不总是完全线性的。例如,多肽由于遍在化的结果而可以是分支的,及其可以是有或无分支的环形的,通常是由于翻译后事件的结果所致,包括天然加工事件及通过非天然发生的人工操作事件所致。环形、分支的及分支环形多肽可以通过非翻译天然方法合成及通过完全合成方法合成。此外,本发明涵盖了本发明蛋白质的含有甲硫氨酸及无甲硫氨酸的氨基末端变体的应用。
如本文所用,“启动子”是指位于转录起始上游并参与RNA聚合酶及其它蛋白质的识别和结合以起始转录的DNA区域。在发育控制下的启动子的实例包括在某些组织如睾丸、卵巢或胎盘中优先起始转录的启动子。这种启动子被称作“组织优选的”。仅在某组织中起始转录的启动子被称作“组织特异的”。“细胞类型”特异性启动子主要驱动在一或多个器官中某些细胞类型中表达,例如睾丸或卵巢中的生殖细胞。“可诱导的”或者“可抑制的”启动子是在环境控制下的启动子。可以影响可诱导启动子转录的环境条件例如包括应激和温度。组织特异性、组织优选的、细胞类型特异性及可诱导的启动子组成了“非组成型”启动子类别。“组成型”启动子是在大多数环境条件下具均活性的启动子。
如本文所用,“重组体”是指已经通过导入异源核酸修饰的细胞或载体或者该细胞衍生自如此修饰的细胞。因此,例如重组细胞表达在相同形式天然(非重组)形式细胞内未发现的基因,或者表达由于有意人为干预所致另外非正常表达、低表达或者根本不表达的天然基因。如本文所用,术语“重组”不包括通过天然发生事件(例如自发突变、天然转化/转导/转位)如未经有意人为干预发生的那些改变所致细胞或载体的改变。
如本文所用“重组表达盒”是使用具有使得特定核酸在宿主细胞中转录的一系列指定核酸元件经重组或合成产生的核酸构建体。重组表达盒可以掺入质粒、染色体、线粒体DNA、质体DNA、病毒或核酸片段中。典型地,表达载体的重组表达盒部分例如包括被转录的核酸及启动子。
术语“残基”或者“氨基酸残基”或者“氨基酸”在本文可互换使用,是指掺入蛋白质、多肽或肽(统称为“蛋白质”)中的氨基酸。氨基酸可以是天然发生的氨基酸,除非特别限制则可涵盖天然氨基酸的非天然类似物,其可以与天然发生的氨基酸相似方式发挥功能。
术语“选择性杂交”是指在严格杂交条件下核酸序列与另一核酸序列或其它生物制剂的杂交。当使用基于杂交的检测系统时,选择与参考核酸序列互补的核酸探针,然后选择所述探针与参考序列选择性杂交或者彼此结合形成双链分子的合适条件。
术语“严格条件”或者“严格杂交条件”是指在此条件下探针与其靶序列以比与其它序列更高的可检测程度杂交(例如高于背景至少2倍)。严格条件是序列依赖性的,在不同环境中是不同的。通过控制杂交的严格性和/或洗涤条件,可以鉴别与探针100%互补的靶序列(同源探查)。
或者,可以调整严格条件以允许序列中存在一些错配,由此检测较低程度的相似性(异源探查)。通常,探针的长度小于大约1000个核苷酸,任选长度小于500个核苷酸。
典型地,严格条件是其中盐浓度低于大约1.5M Na离子,典型为大约0.01-1.0M Na离子浓度(或者其它盐),pH 7.0-8.3,温度对于短探针(例如10-50个核苷酸)为至少大约30℃,对于长探针(例如超过50个核苷酸)为至少大约60℃。严格条件也可以通过加入去稳定剂如甲酰胺而获得。特异性典型是杂交后洗涤的作用,关键因素是离子强度和最终洗涤溶液的温度。对于DNA/DNA杂交体,热熔点(Tm)可以从Meinkoth and Wahl,Anal.Biochem.,138:267-284(1984)的等式估算:Tm[℃]=81.5+16.6(log M)+0.41(%GC)-0.61(%form)-500/L;其中M是一价阳离子的摩尔浓度,%GC是DNA中鸟苷与胞嘧啶核苷酸的百分比,%form是杂交溶液中甲酰胺的百分比,L是碱基对中杂交体的长度。Tm是(在指定离子强度和pH)50%的互补靶序列与完美匹配探针杂交的温度。对于每1%错配,Tm降低大约1℃;因此可以调整Tm、杂交和/或洗涤条件以与具有希望相同性的序列杂交。例如,如果寻求序列>90%相同性,则可以将Tm降低10℃。通常,在指定离子强度和pH条件下,针对特定序列及其互补序列选择低于Tm大约5℃的严格条件。然而,重度严格条件可利用杂交和/或洗涤温度低于Tm温度1-4℃;中等严格条件可利用杂交和/或洗涤温度低于Tm温度6-10℃;低严格条件可利用杂交和/或洗涤条件低于Tm温度11-20℃。使用该等式、杂交和洗涤成分及希望的Tm,本领域技术人员将理解描述的杂交和/或洗涤溶液的严格性变化。关于核酸杂交的深入指南见于Tijssen,Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes,Part I,Chapter 2"Overview ofprinciples of hybridization and the strategy of nucleic acid probe assays",Elsevier,New York(1993);及Current Protocols in Molecular Biology,Chapter 2,Ausubel,et al.,Eds.,Greene Publishing and Wiley-Interscience,New York(1995)。
如本文所用,“转基因动物、细胞或组织”包括在其基因组中包含异源多核苷酸的动物。通常,所述异源多核苷酸稳定整合在基因组内,由此该多核苷酸被传递至后续世代。所述异源多核苷酸可以单独或者作为重组表达盒的一部分整合进基因组中。如本文所用“转基因”包括任何细胞、细胞系、组织或者器官,其基因型由于存在异源核酸而被改变,包括最初如此改变的那些转基因动物以及通过从最初转基因动物性交或无性繁殖而产生的那些转基因动物。如本文所用,术语“转基因”不涵盖通过常规育种方法或者通过天然发生的事件如随机异体受精、非重组病毒感染、非重组细菌转化、非重组转位或者自发突变而发生的基因组的改变(染色体或染色体外)。
如本文所用,“载体”包括用于转染宿主细胞及在其中可以插入多核苷酸的核酸。载体通常是复制子。表达载体允许插入其中的核酸转录。
如下术语用于描述本发明的多核苷酸/多肽与参考多核苷酸/多肽之间的序列关系:(a)“参考序列”,(b)“对比窗”,(c)“序列相同性”,及(d)“序列相同性百分比”。
(a)如本文所用,“参考序列”是用作与本发明的多核苷酸/多肽进行序列对比基础的指定序列。参考序列可以是特定序列的一部分或者全部;例如是全长cDNA或基因序列的节段,或者是完整cDNA或基因序列。
(b)如本文所用,“对比窗”包括多核苷酸/多肽序列的一个连续和指定节段,其中可以将多核苷酸/多肽序列与参考序列对比及其中对比窗中的多核苷酸/多肽序列部分与参考序列(其不包含添加或缺失)相比可包含添加或缺失(即缺口(gap)),以最佳排列对比这两个序列。通常,对比窗的长度是至少20个连续核苷酸/氨基酸残基,任选可以是30、40、50、100个或更长。本领域技术人员理解为了避免由于在多核苷酸/多肽序列中包含缺口导致与参考序列的高相似性,典型地引入缺口罚分并从匹配数中减去。
排列序列以进行对比的方法为本领域熟知。最佳的序列对比可以通过如下方法进行:Smith and Waterman,Adv.Appl.Math.2:482(1981)的局部同源算法,Needleman andWunsch,J.Mol.Biol.48:443(1970)的同源排列算法,Pearson and Lipman,Proc.Natl.Acad.Sci.85:2444(1988)的相似性搜索方法,及这些算法的计算机执行程序,包括但不限于:Intelligenetics,Mountain View,California的PC/Gene程序中的CLUSTAL;GAP、BESTFIT、BLAST、FASTA和TFASTA,及在GCG Wisconsin Genetics SoftwarePackage,Version 10中的相关程序(得自Accelrys Inc.,9685Scranton Road,San Diego,California,USA)。CLUSTAL程序由Higgins and Sharp,Gene 73:237-244(1988)、Higginsand Sharp,CABIOS 5:151-153(1989)、Corpet,et al.,Nucleic Acids Research 16:10881-90(1988)、Huang,et al.,Computer Applications in the Biosciences 8:155-65(1992)和Pearson,et al.,Methods in Molecular Biology 24:307-331(1994)充分描述。
可用于数据库相似性搜索的BLAST程序家族包括:BLASTN,针对核苷酸数据库序列的核苷酸查询序列;BLASTX,针对蛋白质数据库序列的核苷酸查询序列;BLASTP,针对蛋白质数据库序列的蛋白质查询序列;TBLASTN,针对核苷酸数据库序列的蛋白质查询序列;及TBLASTX,针对核苷酸数据库序列的核苷酸查询序列。见Current Protocols in MolecularBiology,Chapter 19,Ausubel,et al.,Eds.,Greene Publishing and Wiley-Interscience,New York(1995);Altschul et al.,J.Mol.Biol.,215:403-410(1990);和Altschul et al.,Nucleic Acids Res.25:3389-3402(1997)所述。进行BLAST分析的软件是可公开获得的,例如通过National Center for Biotechnology Information(ncbi.nlm.nih.gov/)获得。这个算法在许多出版物中充分描述。见例如Altschul SF etal.,Gapped BLAST and PSI-BLAST:a new generation of protein database searchprograms,25Nucleic Acids Res.3389(1997);National Center for BiotechnologyInformation,The NCBI Handbook[Internet],Chapter 16:The BLAST SequenceAnalysis Tool(McEntyre J,Ostell J,eds.,2002),得自http://www.ncbi.nlm.nih.gov/books/NBK21097/pdf/ch16.pdf。针对氨基酸序列的BLASTP程序也已经充分描述(见Henikoff&Henikoff(1989)Proc.Natl.Acad.Sci.USA 89:10915)。
除了计算序列相同性百分比之外,BLAST算法也进行两个序列之间相似性的统计学分析(见例如Karlin&Altschul,Proc.Natl.Acad.Sci.USA 90:5873-5877(1993)所述)。可以使用许多低复杂度过滤程序以降低这种低复杂度排列。例如,可以单独或者组合使用SEG(Wooten and Federhen,Comput.Chem.,17:149-163(1993))和XNU(Claverie andStates,Comput.Chem.,17:191-201(1993))低复杂度过滤法。
除非特别指出,本文提供的核苷酸和蛋白质相同性/相似性数值是使用GAP(GCGVersion 10)在默认值下计算的。GAP(整体排列对比程序)也可以用于对比本发明的多核苷酸或多肽与参考序列。GAP使用Needleman and Wunsch算法(J.Mol.Biol.48:443-453,1970)使匹配数最大及缺口数最小以发现两个完整序列的对比。GAP代表最佳对比家族的一个成员。这个家族有许多成员,但是无其它成员具有更好的品质。GAP展示了对比的四个品质因素:质量(Quality),比率,相同性和相似性。质量是最大化测度以排列序列。比率是质量除以较短节段中的碱基数。相同性百分比是实际匹配的符号的百分比。相似性百分比是相似的符号的百分比。忽略在缺口对面的符号。当一对符号的评分矩阵值高于或等于0.50(相似性阈值)时,评分为相似性。Version 10的Wisconsin Genetics Software Package中使用的评分矩阵是BLOSUM62(见Henikoff&Henikoff(1989)Proc.Natl.Acad.Sci.USA 89:10915)。
通过CLUSTAL对比方法(Higgins and Sharp(1989)CABIOS.5:151-153)使用默认参数(GAPPENALTY=10,GAP LENGTH PENALTY=10)可以进行多重序列对比。使用CLUSTAL方法的成对对比的默认参数包括KTUPLE1、GAP PENALTY=3、WINDOW=5及DIAGONALS SAVED=5。
(c)如本文所用,连个核酸或多肽序列之间的“序列相同性”或“相同性”是指两个序列中的残基当在指定对比窗最大对应对比时是相同的。当关于蛋白质使用序列相同性百分比时,应意识到不相同的残基位置通常由于保守氨基酸取代而不同,其中氨基酸残基由具有相似化学性质(例如电荷或疏水性)的其它氨基酸残基取代及因此不改变分子的功能性质。在序列在保守取代中不同的情况中,序列相同性百分比可以向上调节以校正取代的保守性质。由于这种保守取代而不同的序列被称作具有“序列相似性”或“相似性”。产生这种调节的方法为本领域熟知。典型地这包括将保守取代评分为部分而不是完全错配,从而提高序列相同性百分比。因此,例如在相同氨基酸给分为1及非保守取代给分为0的情况中,保守取代给分在0-1之间。保守取代的评分可以根据Meyers and Miller,ComputerApplic.Biol.Sci.,4:11-17(1988)的算法计算,例如在程序PC/GENE(Intelligenetics,Mountain View,California,USA)中执行。
(d)如本文所用,“序列相同性百分比”是指通过在对比窗对比两个最佳对比的序列确定的数值,其中对比窗中的多核苷酸序列部分可包含与参考序列(不包含添加或缺失)相比的添加或缺失(即缺口)以对两个序列最佳对比。计算百分比是通过确定在这两个序列中出现的相同核酸碱基或氨基酸残基的位置数以产生匹配的位置数,将匹配的位置数除以对比窗中位置总数及将结果乘以100,产生序列相同性百分比。
如本文所用,“基因编辑”、“基因编辑的”、“经遗传编辑的”和“基因编辑效应子”是指使用天然发生的或者人工工程化的核酸酶,也称作“分子剪刀”。核酸酶在基因组的预定位置产生特异性双链断裂(DSB),在一些情况中其利用(harness)细胞内源性机制以修复通过天然同源重组(HR)过程和/或非同源末端连接(NHEJ)诱导的断裂。基因编辑效应子包括锌指核酸酶(ZFN)、转录激活因子样效应物核酸酶(TALEN)、成簇规律间隔短回文重复序列/CAS9(CRISPR/Cas9)系统,及作为归巢内切核酸酶再工程化的大范围核酸酶。该术语还包括使用转基因程序和技术,包括例如在改变相对较小和/或不导入外源物种DNA的情况中。术语“遗传操纵”和“遗传操纵的”包括基因编辑技术,以及和/或除了改变或修饰基因的核苷酸序列或者修饰或改变基因的表达的其它技术和方法之外。
如本文所用,“归巢DNA技术”或者“归巢技术”涵盖了使得特定分子靶向特定DNA序列包括锌指(ZF)蛋白、转录激活因子样效应物(TALE)、大范围核酸酶及CRISPR/Cas9系统的任何机制。
术语“牲畜动物”包括在畜牧业传统养殖的动物,如菜牛、乳牛、猪、绵羊、山羊、马、骡、驴、野牛(buffalo)和骆驼。该术语还包括肉或蛋用商业养殖的禽类(即鸡、火鸡、鸭、鹅、珍珠鸡和鸽)。该术语不包括大鼠、小鼠或者其它啮齿动物。
如本文所用,“胚泡”是指早期发育阶段的胚胎,包含内细胞团(从中产生胚体)及液体充填的腔,典型地由单层滋养层细胞围绕。"Developmental Biology",sixthedition,ed.by Scott F.Gilbert,Sinauer Associates,Inc.,Publishers,Sunderland,Mass.(2000)。
如本文所用,“条件性敲除”或者“条件性突变”是指当符合某些条件时实现的敲除或突变。这些条件包括但不限于存在某些诱导剂、重组酶、抗生素及一定的温度和盐水平。
术语“早期胚胎”是指胚期在受精卵至胚泡之间的任何胚胎。典型地,8细胞阶段和桑椹胚阶段胚胎被称作早期胚胎。
“胚胎生殖细胞”或者“EG细胞”是指原始生殖细胞衍生细胞,其具有分化为机体所有细胞类型的潜力及可遗传修饰为胚胎干细胞,在这个意义上有时忽略EG细胞与ES细胞之间的区别。"Developmental Biology",sixth edition,ed.by Scott F.Gilbert,SinauerAssociates,Inc.,Publishers,Sunderland,Mass.(2000)。
“胚胎干细胞”或者“ES细胞”是指衍生自早期胚胎内细胞团的培养的细胞,其可接受遗传修饰及保留其全能性且如果注射进宿主胚胎中可以有助于所得嵌合动物的所有器官。"Developmental Biology",sixth edition,ed.by Scott F.Gilbert,SinauerAssociates,Inc.,Publishers,Sunderland,Mass.(2000)。
如本文所用,“受精”是指在育种期间雄性和雌性配子的结合导致受精卵的形成,这是胚胎最早发育阶段。“外源细胞”是指可以遗传编辑的或者可以衍生自遗传编辑的细胞且当注射进或者与供体胚泡/胚胎聚集时可以有助于嵌合胚胎的种系的任何细胞。这包括但不限于胚胎干细胞(ES)、畸胎瘤干细胞、原始生殖细胞及胚胎生殖细胞(EG)。
短语“经遗传编辑的”是指具有希望的遗传修饰的那些动物或胚胎或细胞,如敲除、敲入、条件化、可诱导、瞬时或点突变任何基因或其调节机制或者具有外源或修饰的基因或调节序列的转基因,或者经历任何方式的遗传修饰包括但不限于重组、染色体缺失、添加、易位、重排,或者添加、缺失或修饰核酸、蛋白质或者任何其它天然或合成分子或细胞器,或者胞质或核转移,导致可遗传的改变。
“生殖细胞发育”是指早期发育中的胚胎中的某些细胞分化为原始生殖细胞的过程。
“生殖细胞迁移”是指原始生殖细胞在起源于胚外中胚层之后经由尿囊(脐带的前体)返回胚胎中并经过相邻卵黄囊、后肠和背系膜继续迁移最终达到生殖嵴(发育中性腺)的过程。"Developmental Biology",sixth edition,ed.by Scott F.Gilbert,SinauerAssociates,Inc.,Publishers,Sunderland,Mass.(2000)。
“种系细胞(Germ line cell)”是指在朝向成熟配子的任何分化阶段的任何细胞,包括成熟配子。
如本文所用,术语“敲入”是指将内源基因用转基因或者具有一些结构修饰但是保留内源基因转录控制的相同内源基因置换。
“敲除”是指基因的结构或调节机制的破坏。敲除可以通过靶向载体、置换载体或hit-and-run载体同源重组或者随机插入基因捕获载体致使完全、部分或者条件性丧失基因功能而产生。“卵子发生”是指在雌性动物中从原始生殖细胞产生成熟卵子的过程。
“原始生殖细胞”是指在胚胎发育早期产生的那些细胞,其通过生殖母细胞中介产生生精细胞系或者通过卵原细胞中介产生雌性生殖细胞系。
“精子发生”是指在雄性动物中从精原干细胞产生成熟精子的过程。
“野生型”是指未经遗传编辑的且通常是从天然发生的株系中发生的近交品系和远交品系的那些动物及从中衍生的胚泡、胚胎或细胞。
“结合蛋白”是能结合另一分子的蛋白质。结合蛋白可结合例如DNA分子(DNA结合蛋白)、RNA分子(RNA结合蛋白)和/或蛋白质分子(蛋白质结合蛋白)。在蛋白质结合蛋白的情况中,其可以结合自身(形成同源二聚体、同源三聚体等)和/或其可以结合一或多种不同的蛋白质分子。结合蛋白可具有一种类型以上的结合活性。例如,锌指蛋白具有DNA结合、RNA结合和蛋白质结合活性。
“锌指DNA结合蛋白”(或者结合结构域)是一种蛋白质或者在较大蛋白质内的结构域,其以序列特异性方式通过一或多个锌指结合DNA,锌指是其结构通过锌离子配位而稳定的结合结构域内的氨基酸序列区域。术语锌指DNA结合蛋白通常缩写为锌指蛋白或ZFP。
“TALE DNA结合结构域”或者“TALE”是包含一或多个TALE重复结构域/单位的多肽。所述重复结构域参与TALE与其同源靶DNA序列的结合。单一的“重复单位”(也称作“重复”)典型地长度为33-35个氨基酸,并与天然发生的TALE蛋白内其它TALE重复序列呈现出至少一些序列同源性。
锌指和TALE结合结构域可以被“工程化”为结合预定的核苷酸序列,例如通过对天然发生的锌指或TALE蛋白的识别螺旋区域进行工程化(改变一或多个氨基酸)。因此,工程化的DNA结合蛋白(锌指或TALE)是非天然发生的蛋白质。工程化DNA结合蛋白的方法的非限制性实例是设计和选择。设计的DNA结合蛋白是非天然发生的蛋白质,其设计/组成成分主要得自合理标准。关于设计的合理标准包括应用处理存储现有ZFP和/或TALE设计和结合数据的数据库信息的替代规则和计算机算法。见例如美国专利号6,140,081、6,453,242和6,534,261;也见WO 98/53058、WO 98/53059、WO 98/53060、WO 02/016536和WO 03/016496及美国专利公开号20110301073所述。
“选择的”锌指蛋白或TALE是非天然发现的蛋白质,其产生主要得自实验方法如噬菌体展示、相互作用捕获或者杂交选择。见例如美国专利号5,789,538、美国专利号5,925,523、美国专利号6,007,988、美国专利号6,013,453、美国专利号6,200,759、WO 95/19431、WO 96/06166、WO 98/53057、WO 98/54311、WO 00/27878、WO 01/60970、WO 01/88197、WO02/099084和美国专利公开号20110301073所述。
“裂解”是指DNA分子的共价主链的断裂。裂解可以通过多种方法起始,包括但不限于对磷酸二酯键进行酶解或者化学水解。单链裂解和双链裂解均可以,双链裂解可以是由于两个独特的单链裂解事件的结果而发生。DNA裂解可以导致钝端或交错末端产生。在某些实施方案中,融合多肽用于靶向双链DNA裂解。
“裂解半结构域”是一个多肽序列,其与第二多肽(相同或不同)结合形成具有裂解活性(优选双链裂解活性)的复合物。术语“第一和第二裂解半结构域”、“+和-裂解半结构域”及“右和左裂解半结构域”可互换使用,是指二聚体化的裂解半结构域对。
“工程化的裂解半结构域”是已经修饰以与另一裂解半结构域(例如另一工程化的裂解半结构域)形成专性(obligate)异源二聚体的裂解半结构域。也见美国专利公开号2005/0064474、20070218528、2008/0131962和2011/0201055所述,所述专利以其全部内容并入本文作参考。
产生双链DNA断裂的方式(means):如本文所用,术语“产生双链DNA断裂的方式”旨在触发国会在35U.S.C.sctn.112第六段授权的特殊权利要求条款。特别地,“产生双链DNA断裂的方式”是指能裂解双链DNA分子的两个链的分子结构。这种结构包括许多已知核酸酶蛋白质内包含的多肽结构域,例如FokI核酸酶结构域,选自如下的催化结构域:蛋白质Mme1,Colicin-E7(CEA7_ECOLX),Colicin-E9,APFL,EndA,Endo I(END1_EC0LI),人Endo G(NUCG_HUMAN),牛Endo G(NUCG_BOVIN),R.HinP11,1-Bas-1,1-Bmo-1,1-Hmu1,1-Tev-1,1-Tev11,1-Tev111,1-Two1,R.Msp1,R.Mva1,NucA,NucM,Vvn,Vvn_CLS,葡萄球菌核酸酶(NUC_STAAU),葡萄球菌核酸酶(NUC_STAHY),微球菌核酸酶(NUC_SHIFL),内切核酸酶yncB,内切脱氧核糖核酸酶I(ENRN_BPT7),Metnase,Nb.BsrDI,BsrDI A,Nt.BspD61(R.BspD61大亚基),ss.BspD61(R.BspD61小亚基),R.PIe1,Mly1,Alw1,Mva12691,Bsr1,Bsm1,Nb.BtsCI,Nt.BtsCI,R1.Bts1,R2.Bts1,BbvCI亚基1,BbvCI亚基2,BpulOIα亚基,BpulOIβ亚基,Bmr1,Bfi1,1-Cre1,hExo1(EX01JHUMAN),酵母Exo1(EX01_YEAST),大肠杆菌Exo1,人TREX2,小鼠TREX1,人TREX1,牛TREX1,大鼠TREX1,人DNA2,酵母DNA2(DNA2YEAST)。
修复双链DNA断裂的方式:如本文所用,术语“修复双链DNA断裂的方式”也是旨在触发国会在35U.S.C.sctn.112第六段授权的特殊权利要求条款。特别地,“修复双链DNA断裂的方式”是指能促进/催化双链DNA分子末端接合的分子结构,例如接合通过裂解单一双链DNA分子产生的末端或者接合通过裂解单一双链DNA分子产生的一个末端与外源双链DNA分子的末端。这种结构包括许多已知连接酶蛋白质例如Cre重组酶内包含的多肽结构域。在一些实例中,相同的分子结构可作为产生双链DNA断裂的方式也作为修复双链DNA断裂的方式,其中相同结构促进双链DNA分子的裂解及修复(例如Hin重组酶)。
基因组中位点特异性双链断裂的诱导引起宿主细胞DNA修复途径,这通过同源定向修复(HDR)或者非同源末端结合(NHEJ)修复解决(resolve)了双链断裂。在供体分子上可具有一或多个ZFN切割位点(一个单一ZFN切割位点使整个供体分子线性化,2个相同ZFN切割位点释放较小的供体DNA片段或者2个不同ZFN位点从供体中释放一个片段及从宿主基因组DNA中释放一个相应片段(DNA置换))。
因此,供体多核苷酸可以是DNA或RNA,是单链和/或双链的,且可以线性或环形方式导入细胞中。见例如美国专利公开号20100047805和20110207221。在本发明的某些实施方案中,也可以包括线性外源(供体)核酸、包含这些核酸的组合物以及产生和使用这些线性供体分子的方法。在某些实施方案中,线性供体分子稳定存在于其导入之中的细胞中。在其它实施方案中,线性供体分子被修饰以抵抗核酸外切裂解,例如通过在供体分子的末端上一或多个碱基对之间放置一或多个硫代磷酸磷酸二酯键修饰。线性外源核酸也可以包括单链特异性DNA。
NANOS基因编辑
NANOS是进化保守RNA结合蛋白家族,其在无脊椎动物和脊椎动物生殖细胞中特异性表达。NANOS及其直系同源物的消除导致在果蝇、秀丽线虫(C.elegans)、斑马鱼、爪蟾(Xenopus)和小鼠中丧失生殖细胞。在人中,生殖细胞丧失和不育与NANOS基因突变相关。
在脊椎动物中,已经鉴别三个NANOS基因,其中NANOS2和NANOS3在PGC中表达。在小鼠中,Nanos3蛋白首先在早期PGC中可检测,在其迁移至生殖嵴中持续保留,然后在雄性胚胎期15.5天或者在雌性胚胎E13.5之前终止。相反,Nanos2的表达限于雄性性腺。Nanos2mRNA首先在生殖细胞开始与性腺体细胞相互作用之后大约E13.0在已经在雄性胚胎性腺中建群的生殖细胞中可检测。尽管所述表达在胚胎发生的后期瞬时降低,但是在新生儿发育期间在生殖母细胞中可再次检测到Nanos2mRNA。
在小鼠中Nanos3的消除由于在大约E8.0的凋亡细胞死亡导致两个性别的生殖细胞完全丧失。重要地,在小鼠中Nanos2的失活导致雄性胚胎仅在大约E15.5即丧失生殖细胞。因此,在雄性小鼠出生时完全缺少种系,但是睾丸体细胞支持细胞群功能完整。Nanos2无效雄性和雌性动物也是存活的且生长为正常成熟状态。此外,Nanos2无效雌性动物具有正常生育能力。申请人已经证实NANOS2在猪胚胎中由PGC特异性表达。
已知NANOS家族基因,编码其的序列可得自Genbank或者其它这种来源。野猪(SusScrofa)NANOS1核酸和蛋白质序列在XM_001928298中揭示,在本文以SEQ ID NO:5和6表示。NANOS2在XM_003127232.1中揭示或者在本文以SEQ ID NO:1和2表示,NANOS3在XM_005661246中揭示或者在本文以SEQ ID NO:3和4表示,牛NANOS基因分别在NM_001291904及本文SEQ ID NO:9和10(NANOS2)、XM_005225796及SEQ ID NO:11和12(NANOS1);XM_001787922SEQ ID NO:13和14(NANOS1alt)表示。
本发明提供了经遗传编辑的动物或动物细胞,其包含编码NANOS蛋白质或与生殖细胞功能或发育相关的其它蛋白的至少一个编辑的染色体序列。编辑的染色体序列可以是:(1)失活的,(2)修饰的,或者(3)包含整合的序列。失活的染色体序列被改变,由此NANOS蛋白质关于生精细胞发育的功能被损害、降低或消除。因此,包含失活的染色体序列的经遗传编辑的动物可以称作“敲除”或者“条件敲除”。相似地,包含整合的序列的经遗传编辑的动物可以称作“敲入”或者“条件敲入”。此外,包含修饰的染色体序列的经遗传编辑的动物可包含靶向点突变或者其它修饰,由此产生改变的蛋白质产物。简而言之,所述方法包括在胚胎或细胞中导入编码靶向的锌指核酸酶的至少一个RNA分子及任选至少一个附属多核苷酸。所述方法进一步包括温育所述胚胎或细胞以使得锌指核酸酶表达,其中通过锌指核酸酶导入靶向染色体序列中的双链断裂通过易错非同源末端结合DNA修复方法或者同源定向DNA修复方法修复。使用靶向锌指核酸酶技术编辑编码与种系发育相关的蛋白质的染色体序列的方法是快速、精确和高效的。
在本发明的一些实施方案中,至少一个NANOS基因座(例如NANOS2基因座)用作位点特异性编辑的靶位点。这可以包括在所述基因座中插入外源核酸(例如包含编码感兴趣多肽的核苷酸序列的核酸)或者缺失核酸。在特定实施方案中,插入和/或缺失修饰基因座。例如,外源核酸的整合和/或部分基因组核酸的缺失可以修饰基因座以产生破坏的(即失活的)NANOS基因。
在一些实施方案中,被编辑的NANOS基因座包含选自如下的核苷酸序列:SEQ IDNO:27、28、30、31、32、33、34、35、36、37、38、39、40、41、42、45、46、47、48、49、50、51、52、56、57、58、59、60、61、118、119、120、121、122、124、125、126、127、128、130、131、132、133、134、136、137、138、139、140、142、143、144、145、146、148、149、150、151、152、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、201、202、203或204。在一些实施方案中,被编辑的NANOS基因座可包含与选自如下的核苷酸序列基本相同的核苷酸序列:SEQ ID NO:27、28、30、31、32、33、34、35、36、37、38、39、40、41、42、45、46、47、48、49、50、51、52、56、57、58、59、60、61、118、119、120、121、122、124、125、126、127、128、130、131、132、133、134、136、137、138、139、140、142、143、144、145、146、148、149、150、151、152、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、201、202、203或204。例如,在一些实施方案中,NANOS基因座是NANOS同源物(例如直系同源物或旁系同源物),其包含与选自如下的核苷酸序列至少大约85%相同的核苷酸序列:SEQ ID NO:27、28、30、31、32、33、34、35、36、37、38、39、40、41、42、45、46、47、48、49、50、51、52、56、57、58、59、60、61、118、119、120、121、122、124、125、126、127、128、130、131、132、133、134、136、137、138、139、140、142、143、144、145、146、148、149、150、151、152、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、201、202、203或204。NANOS同源物可包含与选自如下的核苷酸序列的大约20个连续核苷酸是例如但不限于至少80%、至少85%、至少大约90%、至少大约91%、至少大约92%、至少大约93%、至少大约94%、至少大约95%、至少大约96%、至少大约97%、至少大约98%、至少大约99%、至少大约99.5%、99.6%、99.7%、99.8%和/或至少大约99.9%相同的核苷酸序列:SEQ ID NO:27、28、30、31、32、33、34、35、36、37、38、39、40、41、42、45、46、47、48、49、50、51、52、56、57、58、59、60、61、118、119、120、121、122、124、125、126、127、128、130、131、132、133、134、136、137、138、139、140、142、143、144、145、146、148、149、150、151、152、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、201、202、203或204。
在NANOS基因座的核酸靶向整合
外源核酸在NANOS基因座的位点特异性整合可以通过本领域技术人员已知的任何技术实现。在一些实施方案中,外源核酸在NANOS基因座的整合包括将细胞(例如分离的细胞或者在组织或生物体中的细胞)与包含所述外源核酸的核酸分子接触。在实例中,这种核酸分子可包含在外源核酸两侧的核苷酸序列,其促进核酸分子与至少一个NANOS基因座之间的同源重组。在特定的实例中,在外源核酸两侧的促进同源重组的核苷酸序列可以与NANOS基因座的内源核苷酸互补。在特定的实例中,在外源核酸两侧的促进同源重组的核苷酸序列可以与先前整合的外源核苷酸互补。在一些实施方案中,在一个NANOS基因座可以整合多个外源核酸,如基因叠加(stacking)。
在一些实施方案中,核酸在NANOS基因座的整合可以通过宿主细胞的内源细胞机制促进(例如催化),例如但不限于内源DNA和内源重组酶。在一些实施方案中,核酸在NANOS基因座的整合可以通过提供给宿主细胞的一或多种因子(例如多肽)促进。例如,通过将多肽与宿主细胞接触或者通过在宿主细胞内表达多肽而可以提供核酸酶、重组酶和/或连接酶多肽(单独或者作为嵌合多肽的一部分)。因此,在一些实例中,包含编码至少一种核酸酶、重组酶和/或连接酶多肽的核苷酸序列的核酸可以与在NANOS基因座位点特异性整合的核酸同时或相继导入宿主细胞中,其中至少一种核酸酶、重组酶和/或连接酶多肽在宿主细胞中从所述核苷酸序列表达。
DNA结合多肽
在一些实施方案中,位点特异性整合可以通过利用能识别并结合例如在宿主生物体基因组中特定核苷酸序列的因子而实现。例如,许多蛋白质包含能以位点特异性方式识别并结合DNA的多肽结构域。由DNA结合多肽识别的DNA序列可以称作“靶”序列。能以位点特异性方式识别并结合DNA的多肽结构域通常正确折叠并独立地以位点特异性方式发挥结合DNA功能,甚至当在除了该结构域最初从中分离的蛋白质之外的多肽中表达时也如此。相似地,由DNA结合多肽识别并结合的靶序列甚至当在较大DNA结构(例如染色体)中存在时,特别是当靶序列所在位点是已知可接近可溶的细胞蛋白质(例如基因)的位点时,其通常能被这种多肽识别并结合。
虽然从天然存在的蛋白质中鉴别的DNA结合多肽典型结合不连续的核苷酸序列或基序(例如共有识别序列),但是本领域现有及已知修饰许多这种DNA结合多肽的方法以识别不同的核苷酸序列或基序。DNA结合多肽包括例如但不限于:锌指DNA结合结构域,亮氨酸拉链,UPA DNA结合结构域,GAL4,TAL,LexA,Tet阻抑物,LacR,及甾体激素受体。
在一些实例中,DNA结合多肽是锌指。单独的锌指基序可以设计为靶向并特异性结合任何范围的DNA位点。典型的Cys2His2(以及非典型的Cys3His)锌指多肽通过在靶DNA双螺旋的大沟中插入α螺旋而结合DNA。锌指对DNA的识别是模块化的,每个锌指主要接触靶中的三个连续碱基对,多肽中的几个关键残基介导识别。通过在靶向内切核酸酶中包含多个锌指DNA结合结构域,所述靶向内切核酸酶的DNA结合特异性可以进一步增加(及因此其赋予的任何基因调节作用的特异性也可以增加)。见例如Urnov et al.(2005)Nature 435:646-51。因此,可以工程化并使用一或多种锌指DNA结合多肽,由此导入宿主细胞中的靶向内切核酸酶与宿主细胞基因组内独特的DNA序列相互作用。
优选地,锌指蛋白是非天然发生的,其被工程化为结合选择的靶位点。见例如Beerli et al.(2002)Nature Biotechnol.20:135-141;Pabo et al.(2001)Ann.Rev.Biochem.70:313-340;Isalan et al.(2001)Nature Biotechnol.19:656-660;Segal et al.(2001)Curr.Opin.Biotechnol.12:632-637;Choo et al.(2000)Curr.Opin.Struct.Biol.10:411-416;美国专利号6,453,242、6,534,261、6,599,692、6,503,717、6,689,558、7,030,215、6,794,136、7,067,317、7,262,054、7,070,934、7,361,635、7,253,273及美国专利公开号2005/0064474、2007/0218528、2005/0267061,所有文献均以其全部内容并入本文作参考。
工程化的锌指结合结构域与天然发生的锌指蛋白相比可具有新的结合特异性。工程化方法包括但不限于合理设计及各种类型的选择。合理设计包括例如使用包含三联(或四联)核苷酸序列和各个锌指氨基酸序列的数据库,其中每个三联或四联核苷酸序列均与结合特定三联或四联序列的一或多个锌指氨基酸序列关联。见例如共有的美国专利号6,453,242和6,534,261所述,所述专利以其全部内容并入本文作参考。
示例的选择方法包括噬菌体展示和双杂交系统,在美国专利号5,789,538、5,925,523、6,007,988、6,013,453、6,410,248、6,140,466、6,200,759和6,242,568以及WO 98/37186、WO 98/53057、WO 00/27878、WO 01/88197和GB 2,338,237中揭示。此外,与锌指结合结构域的结合特异性增强已经在例如共有专利WO 02/077227中描述。
此外,如在这些及其它参考文献中揭示,锌指结构域和/或多指锌指蛋白可以使用任何合适的接头序列包括例如长度为5或更多个氨基酸的接头连接在一起。也见美国专利号6,479,626、6,903,185和7,153,949关于示例的长度为6或更多个氨基酸的接头序列。本文描述的蛋白质可包含在蛋白质的各个锌指之间任何合适的接头组合。
靶位点的选择、ZFP及设计和构建融合蛋白(及编码其的多核苷酸)的方法为本领域技术人员已知,在美国专利号6,140,0815、789,538、6,453,242、6,534,261、5,925,523、6,007,988、6,013,453、6,200,759、WO 95/19431、WO 96/06166、WO 98/53057、WO 98/54311、WO 00/27878、WO 01/60970WO 01/88197、WO 02/099084、WO 98/53058、WO 98/53059、WO 98/53060、WO 02/016536和WO 03/016496中详细描述。
此外,如在这些及其它参考文献中所揭示,锌指结构域和/或多指锌指蛋白可以使用任何合适的接头序列包括例如长度为5或更多个氨基酸的接头连接在一起。也见美国专利号6,479,626、6,903,185和7,153,949关于示例的长度为6或更多个氨基酸的接头序列。本文描述的蛋白质可包含在蛋白质的各个锌指之间任何合适的接头组合。
在一些实例中,DNA结合多肽是来自GAL4的DNA结合结构域。GAL4是在酿酒酵母中的模块反式激活蛋白,但是其在许多其它生物体中也作为反式激活蛋白。见例如Sadowskiet al.(1988)Nature 335:563-4所述。在这种调节系统中,编码半乳糖代谢途径的酶的基因在酿酒酵母中的表达由可利用的碳源严格调节。Johnston(1987)Microbiol.Rev.51:458-76。这些代谢途径酶的转录控制通过阳性调节蛋白GAL4与GAL4特异性结合的17bp对称DNA序列(UAS)之间的相互作用介导。
天然GAL4由881个氨基酸残基组成,分子量为99kDa。GAL4包含功能自主结构域,其组合的活性构成GAL4在体内的活性。Ma and Ptashne(1987)Cell 48:847-53);Brent andPtashne(1985)Cell 43(3Pt 2):729-36。GAL4的N末端65个氨基酸包含GAL4DNA结合结构域。Keegan et al.(1986)Science 231:699-704;Johnston(1987)Nature 328:353-5。序列特异性结合要求存在由DNA结合结构域中存在的6个Cys残基配位的二价阳离子。配位的含有阳离子的结构域通过与DNA螺旋的大沟直接接触而与在17bp UAS每个末端的保守的CCG三联体相互作用并识别其。Marmorstein et al.(1992)Nature 356:408-14。蛋白质的DNA结合功能位于在启动子附近的C末端转录激活结构域,由此该激活结构域可以指导转录。
在某些实施方案中可以利用的另外的DNA结合多肽包括例如但不限于来自AVRBS3可诱导基因的结合序列,来自AVRBS3可诱导基因的共有结合序列或者从中工程化的合成的结合序列(例如UPA DNA结合结构域),TAL,LexA(见例如Brent&Ptashne(1985),如前),LacR(见例如Labow et al.(1990)Mol.Cell.Biol.10:3343-56;Baim et al.(1991)Proc.Natl.Acad.Sci.USA 88(12):5072-6),甾体激素受体(Ellliston et al.(1990)J.Biol.Chem.265:11517-121),Tet阻抑物(美国专利号6,271,341)及在存在而不是不存在四环素(Tc)条件下结合tet操纵基因序列的突变的Tet阻抑物,NF-κB的DNA结合结构域,及Wang et al.(1994)Proc.Natl.Acad.Sci.USA 91(17):8180-4描述的调节系统的成分,其利用GAL4、激素受体与VP16的融合。
在某些实施方案中,本发明描述的方法和组合物中使用的一或多种核酸酶的DNA结合结构域包含天然发生的或者工程化的(非天然发生的)TAL效应子DNA结合结构域。见例如以其全部内容并入本文作参考的美国专利公开号20110301073。
在其它实施方案中,所述核酸酶包含CRISPR/Cas系统。CRISPR(成簇规律间隔短回文重复序列)基因座,其编码该系统的RNA成分,及Cas(CRISPR相关的)基因座,其编码蛋白质(Jansen et al.,2002.Mol.Microbiol.43:1565-1575;Makarova et al.,2002.NucleicAcids Res.30:482-496;Makarova et al.,2006.Biol.Direct 1:7;Haft et al.,2005.PLoS Comput.Biol.1:e60),组成CRISPR/Cas核酸酶系统的基因序列。微生物宿主中的CRISPR基因座含有Cas基因以及能程序化CRISPR介导的核酸裂解的特异性的非编码RNA元件的组合。
II型CRISPR是最充分鉴定的系统之一,在四个相继步骤中进行靶向DNA双链断裂。首先,从CRISPR基因座转录两个非编码RNA、pre-crRNA阵列和tracrRNA。其次,tracrRNA与pre-crRNA重复区杂交并介导pre-crRNA处理为含有单独间隔区序列的成熟crRNA。第三,成熟crRNA:tracrRNA复合物通过crRNA上间隔区与紧邻靶向识别额外需要的前间区序列邻近基序(PAM)的靶DNA上前间区序列之间的Wastson-Crick碱基配对将Cas9定向至靶DNA。最后,Cas9介导靶DNA裂解以在前间区序列内产生双链断裂。CRISPR/Cas系统的活性包括三个步骤:(i)在称作“适应”的过程中,将外来DNA序列插入CRISPR阵列以防止将来的攻击,(ii)相关蛋白质的表达,以及阵列的表达与处理,随后是(iii)RNA介导的外源核酸干扰。因此,在细菌细胞中,一些Cas蛋白涉及CRISPR/Cas系统的天然功能并在如插入外源DNA等功能中起作用。
在某些实施方案中,Cas蛋白可以是天然发生的Cas蛋白的“功能性衍生物”。天然序列多肽的“功能性衍生物”是具有与天然序列多肽一样的定性生物学性质的化合物。“功能性衍生物”包括但不限于天然序列的片段及天然序列多肽及其片段的衍生物,条件是其具有与相应天然序列多肽一样的生物学活性即可。在本发明中预期的生物学活性是功能性衍生物将DNA底物水解为片段的能力。术语“衍生物”涵盖了多肽的氨基酸序列变体、共价修饰以及其融合体。Cas多肽或其片段的合适衍生物包括但不限于Cas蛋白或其片段的突变体、融合体、共价修饰。Cas蛋白质、包括Cas蛋白或其片段以及Cas蛋白或其片段的衍生物,可以得自细胞或者化学合成或者通过组合这两种方法而获得。所述细胞可以是天然产生Cas蛋白的细胞,或者是天然产生Cas蛋白及经遗传工程化以较高表达水平产生内源Cas蛋白或者从外源导入的核酸(该核酸编码与内源Cas相同或不同的Cas)产生Cas蛋白的细胞。在一些情况中,细胞不天然产生Cas蛋白,通常是经遗传工程化以产生Cas蛋白。
在特定的实施方案中,DNA结合多肽特异性识别并结合包含在宿主生物体的基因组核酸内的靶核苷酸序列。在一些实例中在宿主基因组中可发现许多不连续的靶核苷酸序列实例。靶核苷酸序列在生物体基因组内可以很少见(例如基因组中可以存在少于大约10、大约9、大约8、大约7、大约6、大约5、大约4、大约3、大约2或者大约1个靶序列拷贝)。例如,靶核苷酸序列可以位于生物体基因组内的独特位置。靶核苷酸序列可以例如但不限于彼此之间随机分散于整个基因组内;位于基因组中不同的连锁群中;位于相同连锁群中;位于不同染色体上;位于相同染色体上;位于基因组中在相似条件下在生物体中表达的位点(例如在相同或者基本功能相同的调节因子控制下);及在基因组中彼此紧邻(例如靶序列可以包含于在基因组基因座作为串联体整合的核酸内)。
靶向内切核酸酶
在特定的实施方案中,特异性识别并结合靶核苷酸序列的DNA结合多肽可以包含于嵌合多肽内,以赋予在嵌合多肽之上与靶序列特异性结合。在实例中,这种嵌合多肽可包含例如但不限于核酸酶、重组酶和/或连接酶多肽,这些多肽如上文所述。包含DNA结合多肽和核酸酶、重组酶和/或连接酶多肽的嵌合多肽也可以包含其它功能性多肽基序和/或结构域,例如但不限于:位于嵌合蛋白中功能性多肽之间的间隔区序列,前导肽,将融合蛋白靶向细胞器(例如细胞核)的肽,由细胞酶裂解的多肽,肽标签(例如Myc、His等),及不干扰嵌合多肽功能的其它氨基酸序列。
嵌合多肽中的功能性多肽(例如DNA结合多肽及核酸酶多肽)可以是可操纵地连接的。在一些实施方案中,嵌合多肽的功能性多肽可以通过其从编码至少符合读框地彼此连接的功能性多肽的单一多核苷酸表达而可操纵地连接,以产生编码嵌合蛋白的嵌合基因。在另外实施方案中,嵌合多肽的功能性多肽可以通过其它方式如通过单独表达的多肽的交联而可操纵地连接。
在一些实施方案中,特异性识别并结合靶核苷酸序列的DNA结合多肽或者指导RNA可以包含于天然分离的蛋白质(或其突变体)内,其中天然分离的蛋白质或其突变体也包含核酸酶多肽(及也可以包含重组酶和/或连接酶多肽)。示例的这种分离的蛋白质包括TALEN、重组酶(例如Cre、Hin、Tre和FLP重组酶)、RNA-指导的CRISPR/Cas9,及大范围核酸酶。
如本文所用,术语“靶向内切核酸酶”是指包含DNA结合多肽或指导RNA及核酸酶多肽的天然或工程化的分离的蛋白质及其突变体,以及包含DNA结合多肽或指导RNA及核酸酶的嵌合多肽。任何包含特异性识别并结合包含于NANOS基因座内的靶核苷酸序列的DNA结合多肽或指导RNA的靶向内切核酸酶(例如由于靶序列包含于在该基因座的天然序列内,或者由于靶序列已经例如通过重组导入基因座中)可用于某些实施方案中。
可用于本发明特定实施方案中的一些嵌合多肽例如包括但不限于如下多肽的组合:锌指DNA结合多肽,FokI核酸酶多肽,TALE结构域,亮氨酸拉链,转录因子DNA结合基序,及分离自例如但不限于TALEN、重组酶(例如Cre、Hin、RecA、Tre和FLP重组酶)、RNA-指导的CRISPR/Cas9、大范围核酸酶的DNA识别和/或裂解结构域;及本领域技术人员已知的其它多肽。特定的实例包括包含位点特异性DNA结合多肽和核酸酶多肽的嵌合蛋白。嵌合多肽可以通过本领域技术人员已知的方法工程化,以改变包含于嵌合多肽内的DNA结合多肽的识别序列,以将嵌合多肽靶向特定的感兴趣的核苷酸序列。
在某些实施方案中,嵌合多肽包含DNA结合结构域(例如锌指、TAL效应子结构域等)和核酸酶(裂解)结构域。裂解结构域与DNA结合结构域可以是异源的,例如锌指DNA结合结构域与核酸酶裂解结构域,或者TALEN DNA结合结构域与裂解结构域,或者大范围核酸酶DNA结合结构域与不同核酸酶的裂解结构域。异源裂解结构域可以得自任何内切核酸酶或外切核酸酶。从中可以获得裂解结构域的内切核酸酶例如包括但不限于限制性内切核酸酶和归巢内切核酸酶。见例如2002-2003Catalogue,New England Biolabs,Beverly,Mass.;及Belfort et al.(1997)Nucleic Acids Res.25:3379-3388。已知裂解DNA的其它酶(例如51核酸酶,绿豆核酸酶,胰腺DNase I,微球菌核酸酶,酵母HO内切核酸酶;也见Linn et al.(eds.)Nucleases,Cold Spring Harbor Laboratory Press,1993)。一或多种这些酶(或者其功能性片段)可用作裂解结构域和裂解半结构域的来源。
相似地,裂解半结构域可以衍生自任何核酸酶或其部分,如上文所示,对于裂解活性需要二聚体化。通常,如果融合蛋白包含裂解半结构域,则需要两个融合蛋白以便裂解。或者,可以使用包含两个裂解半结构域的单一蛋白。所述两个裂解半结构域可以衍生自相同内切核酸酶(或者其功能性片段),或者每个裂解半结构域可以衍生自不同的内切核酸酶(或者其功能性片段)。此外,两个融合蛋白的靶位点优选是彼此排列的(disposed),由此两个融合蛋白与其各自的靶位点的结合以空间方向彼此放置裂解半结构域,使得所述裂解半结构域例如通过二聚体化形成功能性裂解结构域。因此,在某些实施方案中,靶位点的近边由5-8个核苷酸或者15-18个核苷酸分离。然而,任何整数的核苷酸或核苷酸对可以插入在两个靶位点之间(例如2-50个核苷酸对或更多)。通常,裂解位点位于靶位点之间。
限制性内切核酸酶(限制酶)存在于许多物种中且能序列特异性结合DNA(在识别位点),并在结合位点或附近裂解DNA,例如由此一或多个外源序列(供体/转基因)整合在结合(靶)位点或附近。某些限制酶(例如Type IIS)在远离识别位点的位点裂解DNA及具有可分的结合和裂解结构域。例如,Type IIS酶Fok I在DNA的一条链上离其识别位点9个核苷酸及在另一链上离其识别位点13个核苷酸催化双链DNA裂解。见例如美国专利号5,356,802、5,436,150和5,487,994,以及Li et al.(1992)Proc.Natl.Acad.Sci.USA 89:4275-4279、Li et al.(1993)Proc.Natl.Acad.Sci.USA 90:2764-2768、Kim et al.(1994a)Proc.Natl.Acad.Sci.USA 91:883-887、Kim et al.(1994b)J.Biol.Chem.269:31,978-31,982。因此,在一个实施方案中,融合蛋白包含来自至少一种Type IIS限制酶的裂解结构域(或者裂解半结构域)及一或多个锌指结合结构域,其可以是或者不是工程化的。
其裂解结构域与结合结构域可分的Type IIS限制酶的一个实例是Fok I。这种特殊的酶作为二聚体时是活性的。Bitinaite et al.(1998)Proc.Natl.Acad.Sci.USA 95:10,570-10,575。因此,对于本发明,用于揭示的融合蛋白中的部分Fok I酶被认为是裂解半结构域。因此,对于使用锌指-Fok I融合蛋白进行靶向双链裂解和/或靶向细胞序列置换,均包含Fok I裂解半结构域的两个融合蛋白可用于重建催化活性裂解结构域。或者,也可以使用含有DNA结合结构域和两个Fok I裂解半结构域的单一多肽分子。
裂解结构域或者裂解半结构域可以是保留裂解活性或者保留多聚体化(例如二聚体化)以形成功能性裂解结构域的能力的蛋白质的任何部分。
示例的Type IIS限制酶在美国专利公开号20070134796中描述,所述专利以其全部内容并入本文作参考。另外的限制酶也含有可分的结合及裂解结构域,这些酶也涵盖在本发明中。见例如Roberts et al.(2003)Nucleic Acids Res.31:418-420。
在某些实施方案中,裂解结构域包含一或多个工程化的裂解半结构域(也称作二聚体化结构域突变体),其最小化或者阻止同源二聚体化,例如在美国专利公开号20050064474、20060188987和20080131962中描述,所述专利以其全部内容并入本文作参考。
或者,可以使用所谓的“断裂-酶”技术在体内在核酸靶位点装配核酸酶(见例如美国专利公开号20090068164)。这种断裂酶的成分可以在单独的表达构建体上表达,或者可以在其中各个成分是例如由自身裂解2A肽或IRES序列分离的一个开放读框中连接。成分可以是单独的锌指结合结构域或者大范围核酸酶核酸结合结构域的结构域。
锌指核酸酶
在特定的实施方案中,嵌合多肽是定制的锌指核酸酶(ZFN),其可以设计为输送靶向的位点特异性双链DNA断裂,外源核酸或者供体DNA可以整合入该双链DNA断裂中(见共有的美国专利公开20100257638所述,该专利并入本文作参考)。ZFN是含有来自限制性内切核酸酶(例如FokI)的非特异性裂解结构域和锌指DNA结合结构域多肽的嵌合多肽。见例如Huang et al.(1996)J.Protein Chem.15:481-9、Kim et al.(1997a)Proc.Natl.Acad.Sci.USA 94:3616-20、Kim et al.(1996)Proc.Natl.Acad.Sci.USA 93:1156-60、Kim et al.(1994)Proc Natl.Acad.Sci.USA 91:883-7、Kim et al.(1997b)Proc.Natl.Acad.Sci.USA 94:12875-9、Kim et al.(1997c)Gene 203:43-9、Kim et al.(1998)Biol.Chem.379:489-95、Nahon and Raveh(1998)Nucleic Acids Res.26:1233-9、Smith et al.(1999)Nucleic Acids Res.27:674-81。在一些实施方案中,ZFN包含非典型的锌指DNA结合结构域(见共有的美国专利公开20080182332所述,该专利并入本文作参考)。FokI限制性内切核酸酶必须通过核酸酶结构域二聚体化以裂解DNA及导入双链断裂。因此,含有来自这种内切核酸酶的核酸酶结构域的ZFN也需要核酸酶结构域的二聚体化以裂解靶DNA。Mani et al.(2005)Biochem.Biophys.Res.Commun.334:1191-7;Smith et al.(2000)Nucleic Acids Res.28:3361-9。ZFN的二聚体化可以通过两个相邻的相反方向的DNA结合位点促进。Id.
在特定的实例中,将外源核酸位点特异性整合进宿主的至少一个NANOS基因座中的方法包括将ZFN导入宿主细胞,其中ZFN识别并结合靶核苷酸序列,其中所述靶核苷酸序列包含于宿主的至少一个NANOS基因座内。在某些实例中,靶核苷酸序列不包含于宿主基因组内除了至少一个NANOS基因座之外的任何其它位置内。例如,ZFN的DNA结合多肽可以工程化为识别并结合在至少一个NANOS基因座内鉴别的靶核苷酸序列(例如通过对NANOS基因座测序而鉴别)。将外源核酸位点特异性整合进宿主的至少一个NANOS性能(performance)基因座的方法包括将ZFN导入宿主细胞中,也可包括将外源核酸导入细胞中,其中外源核酸在包含至少一个NANOS基因座的宿主核酸中的重组通过ZFN与靶序列的位点特异性识别及结合(及随后裂解包含NANOS基因座的核酸)而促进。
整合在NANOS基因座的任选的外源核酸
本发明的实施方案可包括选自如下的一或多个核酸:位点特异性整合在至少一个NANOS基因座中的外源核酸,例如但不限于ORF;包含编码靶向内切核酸酶的核苷酸序列的核酸;及包含前述至少任一或这两个核酸的载体。因此,在一些实施方案中使用的特定核酸包括编码多肽的核苷酸序列,结构核苷酸序列,和/或DNA结合多肽识别和结合位点。
用于进行位点特异性整合的任选的外源核酸分子
如上所示,提供了外源序列(也称作“供体序列”或“供体”或“转基因”)的插入,例如用于表达多肽、校正突变基因或者提高野生型基因的表达。显然供体序列典型地与其放置于其中的基因组序列不同。供体序列可以含有两侧是两个同源区的非同源序列,以使得在感兴趣的位置有效的HDR。此外,供体序列可包含含有与细胞染色质中感兴趣区域不同源的序列的载体分子。供体分子可含有与细胞染色质同源的一些不连续的区域。例如,为了靶向插入在感兴趣的区域中通常不存在的序列,所述序列可以存在于供体核酸分子中,及两侧是与感兴趣区域中的序列同源的区域。
所述供体多核苷酸可以是DNA或RNA、单链或双链的,及可以线性或环形形式导入细胞。见例如美国专利公开号20100047805、20110281361、20110207221和美国专利申请系列号13/889,162所述。如果以线性形式导入,供体序列的末端可以通过本领域技术人员已知的方法保护(例如免于外切核酸降解)。例如,将一或多个二脱氧核苷酸残基加入线性分子的3’末端和/或在一或两个末端连接自身互补的寡核苷酸。见例如Chang et al.(1987)Proc.Natl.Acad.Sci.USA 84:4959-4963;Nehls et al.(1996)Science 272:886-889。保护外源多核苷酸免于降解的其它方法包括但不限于添加末端氨基基团及使用修饰的核苷酸间键例如硫代磷酸酯、磷酸酰胺酯及O-甲基核糖或者脱氧核糖残基。
多核苷酸可以作为具有其它序列如复制起点、启动子和编码抗生素抗性基因的载体分子的一部分导入细胞中。此外,供体多核苷酸可以作为裸核酸、作为与如脂质体或泊洛沙姆(poloxamer)等制剂的核酸复合物导入,或者可以通过病毒(例如腺病毒、AAV、疱疹病毒、逆转录病毒、慢病毒和整合酶缺陷的慢病毒(IDLV))导入。
供体通常是整合的,由此其表达由在整合位点的内源性启动子驱动,即驱动供体整合进其中的内源基因(例如NANOS)表达的启动子。然而,应意识到供体可包含启动子和/或增强子,例如组成型启动子或可诱导启动子或者组织特异性启动子。
而且,尽管不为表达所需要,外源序列也可以包括转录或翻译调节序列,例如启动子、增强子、绝缘子、内部核糖体进入位点、编码2A肽的序列和/或聚腺苷酸化信号。
在实施方案中可以以位点特异性方式整合进至少一个NANOS基因座中以修饰NANOS基因座的外源核酸包括例如但不限于:包含编码感兴趣的多肽的核苷酸序列的核酸,包含农业学基因的核酸,包含编码RNAi分子的核苷酸序列的核酸,或者破坏NANOS基因的核酸。
在一些实施方案中,外源核酸整合在NANOS基因座以修饰该NANOS基因座,其中所述核酸包含编码感兴趣的多肽的核苷酸序列,由此该核苷酸序列在宿主中从NANOS基因座表达。在一些实例中,感兴趣的多肽(例如外来蛋白质)从编码感兴趣的多肽的核苷酸序列中以商业数量表达。在这种实例中,感兴趣的多肽可以从宿主细胞、组织或生物量提取。
包含编码靶向内切核酸酶的核苷酸序列的核酸分子
在一些实施方案中,编码靶向内切核酸酶的核苷酸序列可以通过操纵(例如连接)编码包含于靶向内切核酸酶内的多肽的天然核苷酸序列而被工程化。例如,可以检查编码包含DNA结合多肽的蛋白质的基因的核苷酸序列以鉴别相应于DNA结合多肽的基因的核苷酸序列,及该核苷酸序列可用作编码包含DNA结合多肽的靶向内切核酸酶的核苷酸序列的元件。或者,靶向内切核酸酶的氨基酸序列可用于例如根据遗传密码简并而推导编码靶向内切核酸酶的核苷酸序列。
在示例的包含编码靶向内切核酸酶的核苷酸序列的核酸分子中,编码核酸酶多肽的第一多核苷酸序列的最后的密码子及编码DNA结合多肽的第二多核苷酸序列的第一个密码子可以间隔任何数目的核苷酸三联体,例如不编码内含子或者“STOP”。同样,编码编码DNA结合多肽的第一多核苷酸序列的核苷酸序列的最后的密码子及编码核酸酶多肽的第二多核苷酸序列的第一个密码子可以间隔任何数目的核苷酸三联体。在这些及进一步的实施方案中,编码核酸酶多肽的第一多核苷酸序列的最后(即核酸序列中的3’末端)的最后密码子及编码DNA结合多肽的第二多核苷酸序列可以与直接连续相连的或者由不超过如由合成的核苷酸接头(例如用于实现融合的核苷酸接头)编码的短肽序列间隔的进一步的多核苷酸编码序列的第一个密码子以符合读框(phase-register)融合。示例的这种进一步的多核苷酸序列包括例如但不限于标签、靶向肽及酶裂解位点。同样,第一和第二多核苷酸序列5’末端(在核酸序列中)的第一个密码子可以与直接连续相连的或者由不超过短肽序列间隔的进一步的多核苷酸编码序列的最后的密码子以符合读框融合。
间隔靶向内切核酸酶中编码功能性多肽(例如DNA结合多肽和核酸酶多肽)的多核苷酸序列的序列可以例如由任何序列组成,由此编码的氨基酸序列不大可能明显改变靶向内切核酸酶的翻译。由于已知核酸酶多肽及已知DNA结合多肽的自主性质,在实例中插入序列将不干扰这些结构的各自功能。
其它敲除方法
本领域已知的多种其它方法可用于失活基因以产生敲除动物和/或在动物中导入核酸构建体以产生创始(founder)动物及产生动物品系,其中敲除或核酸构建体被整合进基因组中。这种技术包括但不限于:前核显微注射(美国专利号4,873,191),逆转录病毒介导的基因转移进种系(Van der Putten et al.(1985)Proc.Natl.Acad.Sci.USA 82,6148-1652),基因靶向进入胚胎干细胞(Thompson et al.(1989)Cell 56,313-321),胚胎电穿孔(Lo(1983)Mol.Cell.Biol.3,1803-1814),精子介导的基因转移(Lavitrano et al.(2002)Proc.Natl.Acad.Sci.USA 99,14230-14235;Lavitrano et al.(2006)Reprod.Fert.Develop.18,19-23),及体细胞如卵丘细胞或乳腺细胞、成年、胎儿或胚胎干细胞的体内转化,随后核移植(Wilmut et al.(1997)Nature 385,810-813;和Wakayama etal.(1998)Nature 394,369-374)。前核显微注射、精子介导的基因转移和体细胞核转移是特别有用的技术。经遗传修饰的动物是其中所有细胞包括其种系细胞均具有遗传修饰的动物。当使用的方法产生在其遗传修饰中是嵌合的动物时,可以使所述动物近亲交配及可以选择基因组修饰的后代。例如,如果细胞在胚泡阶段被修饰,则克隆技术可用于产生嵌合动物,或者在修饰单细胞时可进行基因组修饰。根据使用的特定方法,被修饰使得其不是性成熟的动物可以对于修饰是纯合或杂合的。如果特定基因由于敲除修饰而失活,通常要求纯合性。如果特定基因由于RNA干扰或显性阴性(dominant negative)策略而失活,则杂合性通常是足够的。
典型地,在胚胎/受精卵显微注射中,将核酸构建体或mRNA导入受精卵中;将1或2个细胞受精卵用作含有来自精子头部的遗传材料的前核,所述卵在原生质中可见。前核阶段的受精卵可以在体外或体内(即通过手术从供体动物输卵管中获取)获得。体外受精卵可以如下所述产生。例如,在屠宰场收集猪卵巢,在运输期间保持在22-28℃。洗涤并分离卵巢以抽吸卵泡,可以使用18号针头及在真空下将4-8mm的卵泡抽吸置于50mL锥形离心管中。卵泡液和抽吸的卵母细胞可以通过具有商业TL-HEPES的预滤器(Minitube,Verona,Wis.)漂洗。可以选择周围环绕紧密的卵丘团的卵母细胞并置于TCM-199卵母细胞成熟培养基(Minitube,Verona,Wis.)中在湿润空气中在38.7℃和5%CO2条件下保温大约22小时,所述培养基补加了0.1mg/mL半胱氨酸、10ng/mL表皮生长因子、10%猪卵泡液、50μM 2-巯基乙醇、0.5mg/ml cAMP、10IU/mL每种孕马血清促性腺激素(PMSG)和人绒毛膜促性腺激素(hCG)。随后,将卵母细胞移至不含有cAMP、PMSG或hCG的新鲜TCM-199成熟培养基中,另外保温22小时。通过在0.1%透明质酸酶中涡旋1分钟可以将成熟卵母细胞的卵丘细胞剥离。
对于猪,成熟卵母细胞可以在Minitube 5孔受精培养皿中的500μl MinitubePORCPRO IVF培养基系统(Minitube,Verona,Wis.)中受精。在体外受精(IVF)的准备中,新鲜收集的或冷冻的公猪精液可以洗涤并重悬浮于PORCPRO IVF培养基中,数量为4×105个精子。精子浓度可以通过计算机辅助精液分析系统(SPERMVISION,Minitube,Verona,Wis.)分析。最终体外授精可以根据公猪情况在10μl体积终浓度为大约40个活动精子/卵母细胞进行。将所有的受精卵母细胞在38.7℃在5.0%CO2大气条件下保温6小时。在授精后6小时,可以将推定的受精卵在NCSU-23中洗涤两次,并移至0.5mL相同培养基中。这个系统在具有10-30%多精授精率的大多数公猪可以常规产生20-30%胚泡。
线性化核酸构建体或mRNA可以注射入前核之一或细胞质中。然后可以将注射的卵移至受体雌性动物中(例如受体雌性动物的输卵管中),使其在受体雌性动物中发育以产生转基因动物。特别地,体外授精的胚胎可以在15,000g离心5分钟以沉淀脂质,使得前核可见。可以使用Eppendorf FEMTOJET注射器注射胚胎,及可以培养胚胎直至胚泡形成。可以记录胚胎分裂和胚泡形成的速度和质量。
胚胎可以经手术移至不同步(asynchronous)受体的子宫内。典型地,可以使用5.5英寸导管将100-200个(例如150-200个)胚胎保存在输卵管壶腹-峡部接合处。在手术后,可以进行实时超声检查妊娠情况。
在体细胞核转移中,可以将包括上述核酸构建体的转基因细胞(例如转基因猪细胞或牛细胞)如胚胎卵裂球、胎儿成纤维细胞、成年耳成纤维细胞或者颗粒细胞导入无核卵母细胞中以建立组合的细胞。卵母细胞可以通过在极体附近的透明带部分分离术然后在剥离区压紧细胞质而去核。典型地,使用具有尖锐斜面尖端的注射移液管将转基因细胞注射进在减数分裂2阶段停滞的无核卵母细胞中。在一些惯例中,在减数分裂-2阶段停滞的卵母细胞称作卵。在产生猪或牛胚胎后(例如通过融合并激活卵母细胞),在激活后大约20-24小时将胚胎移至受体雌性动物的输卵管。见例如Cibelli et al.(1998)Science 280,1256-1258和美国专利号6,548,741。对于猪,在转移胚胎后大约20-21天可以检查受体雌性动物的妊娠情况。
可以使用标准育种技术产生对于来自初始杂合创始动物的外源核酸是纯合的动物。然而,可以不要求纯合性。本发明描述的转基因猪可以与其它感兴趣的猪繁殖。
在一些实施方案中,感兴趣的核酸和可选择标记可以提供在单独的转座子上,及以不同量提供给胚胎或细胞,其中含有可选择标记的转座子的量远超过(超过5-10倍)含有感兴趣的核酸的转座子的量。表达感兴趣的核酸的转基因细胞或动物可以基于可选择标记的存在和表达而分离。由于转座子将以精确和分开的方式(单独的转座事件)整合进基因组中,因此感兴趣的核酸和可选择的标记不是遗传连锁的且可以通过标准育种方法通过遗传隔离而易于分离。因此,可以产生转基因动物,考虑到公共安全观点,其在随后的世代中不强迫保留可选择标记。
一旦转基因动物已经产生,则使用标准技术评估外源核酸的表达。初始筛选可以通过Southern印迹分析以确定所述构建体整合是否已经发生而完成。关于Southern分析的描述见Sambrook et al.,1989,Molecular Cloning,A Laboratory Manual,secondedition,Cold Spring Harbor Press,Plainview;N.Y.的章节9.37-9.52。聚合酶链反应(PCR)技术也可用于初始筛选中。PCR是指其中靶核酸被扩增的程序或技术。通常,来自感兴趣的区域末端或更远处的序列信息用于设计寡核苷酸引物,其与被扩增的模板的相反链的序列相同或相似。PCR可用于从DNA以及RNA包括来自全部基因组DNA或全部细胞RNA的序列中扩增特定序列。引物典型长度为14-40个核苷酸,但是范围可以是长度为10个核苷酸至几百个核苷酸。PCR在例如PCR Primer:A Laboratory Manual,ed.Dieffenbach andDveksler,Cold Spring Harbor Laboratory Press,1995中描述。核酸也可以通过连接酶链反应、链置换扩增、自主序列复制或者基于核酸序列的扩增。见例如Lewis(1992)GeneticEngineering News 12,1;Guatelli et al.(1990)Proc.Natl.Acad.Sci.USA 87:1874;及Weiss(1991)Science 254:1292所述。在胚泡阶段,胚胎可以单独处理以通过PCR、Southern杂交和splinkerette PCR进行分析(见例如Dupuy et al.Proc Natl Acad Sci USA(2002)99:4495)。
编码多肽的核酸序列在转基因猪的组织中的表达可以使用如下技术评估,所述技术包括例如对得自所述动物的组织样品进行Northern印迹分析,原位杂交分析,Western分析,免疫测定如酶联免疫吸附测定,及逆转录酶PCR(RT-PCR)。
干扰RNA
已知许多干扰RNA(RNAi)系统。双链RNA(dsRNA)诱导同源基因转录物的序列特异性降解。RNA诱导的沉默复合物(RISC)使dsRNA代谢为小的21-23个核苷酸的小干扰RNA(siRNA)。RISC含有双链RNAse(dsRNase,例如Dicer)和ssRNase(例如Argonaut 2或Ago2)。RISC利用反义链作为指导以发现可裂解靶。siRNA和微小RNA(miRNA)均已知。在遗传编辑的动物中失活基因的方法包括诱导针对靶基因和/或核酸的RNA干扰,由此靶基因和/或核酸的表达被降低。
例如,外源核酸序列可以诱导针对编码多肽的核酸的RNA干扰。例如,与靶DNA同源的双链小干扰RNA(siRNA)或小发夹RNA(shRNA)可用于降低该DNA的表达。siRNA构建体可如下述参考文献所述产生,例如Fire et al.(1998)Nature 391:806,Romano and Masino(1992)Mol.Microbiol.6:3343,Cogoni et al.(1996)EMBO J.15:3153,Cogoni andMasino(1999)Nature 399:166,Misquitta and Paterson(1999)Proc.Natl.Acad.Sci.USA96:1451,及Kennerdell and Carthew(1998)Cell 95:1017。shRNA构建体可如McIntyreand Fanning(2006)BMC Biotechnology 6:1所述产生。通常,shRNA被转录为含有互补区的单链RNA分子,其可以退火并形成短发夹。
发现针对特定基因的单一的个体功能性siRNA或miRNA的可能性很高。特定siRNA序列的可预测性例如为大约50%,但是可以产生许多具有良好可信度的干扰RNA,其中至少一个将是有效的。
实施方案包括体外细胞、体内细胞及经遗传编辑的动物如牲畜,其表达针对性成熟选择性的神经内分泌基因的RNAi。一个实施方案是针对Gpr54、Kiss1和GnRH1中的基因的RNAi。RNAi可例如选自siRNA、shRNA、dsRNA、RISC和miRNA。
可诱导系统
可诱导系统用于控制性成熟基因的表达。本领域已知各种可诱导系统,其可以在时间与空间上控制基因表达。一些系统已经证实在转基因动物体内是功能性的。
可诱导系统的一个实例是四环素(tet)-on启动子系统,其可用于调节核酸的转录。在这个系统中,突变的Tet阻抑物(TetR)与单纯疱疹病毒VP 16反式激活蛋白的激活结构域融合,产生四环素控制的转录激活物(tTA),其由tet或多西环素(dox)调节。在不存在抗生素的条件下,转录是最低限度的,而在存在tet或dox的条件下,转录被诱导。另一种可诱导系统包括蜕皮激素或雷帕霉素系统。蜕皮激素是一种昆虫蜕皮激素,其产生受蜕皮激素受体与超螺旋(ultraspiracle)基因(USP)产物的异源二聚体的控制。通过用蜕皮激素或者蜕皮激素的类似物如muristerone A处理而诱导表达。给予动物以触发可诱导系统的物质称作诱导剂。
四环素可诱导系统和Cre/loxP重组酶系统(组成型或可诱导的)是最常用的可诱导系统。四环素可诱导系统包括四环素控制的反式激活蛋白(tTA)/反向(rtTA)。在体内使用这些系统的方法包括产生两个品系的遗传编辑的动物。一个动物品系在选择的启动子控制下表达激活物(tTA、rtTA或Cre重组酶)。另一组转基因动物表达接受体,其中感兴趣基因(或者被修饰的基因)的表达在tTA/rtTA反式激活蛋白的靶序列的控制下(或者两侧是loxP序列)。这两个品系的小鼠交配提供了对基因表达的控制。
四环素依赖性调节系统(tet系统)依赖于两种成分,即四环素控制的反式激活蛋白(tTA或rtTA)及tTA/rtTA依赖性启动子,所述启动子以四环素依赖性方式控制下游cDNA的表达。在不存在四环素或其衍生物(如多西环素)条件下,tTA结合tetO序列,使得tTA依赖性启动子转录激活。然而,在存在多西环素条件下,tTA不能与其靶相互作用及不发生转录。使用tTA的tet系统称作tet-OFF,因为四环素或多西环素使得转录下调。给予四环素或者其衍生物使得可以在体内时间控制转基因表达。rtTA是tTA的变体,其在不存在多西环素条件下是无功能的,但是需要存在反式激活的配体。这种tet系统因此称作tet-ON。所述tet系统已经用于在体内编码例如报道基因、癌基因或者参与信号级联的蛋白的一些转基因的可诱导表达。
Cre/lox系统使用Cre重组酶,其通过两个远离的Cre识别序列即loxP位点之间的交叉而催化位点特异性重组。导入两个loxP序列之间的DNA序列(称作foxed DNA)通过Cre介导的重组切除。使用空间控制(使用组织或细胞特异性启动子)或者时间控制(使用可诱导系统)对转基因动物中Cre表达进行的控制导致在两个loxP位点之间DNA切除的控制。一种应用是条件性基因失活(条件性敲除)。另一种方法是蛋白质过表达,其中foxed终止密码子插入在启动子序列与感兴趣的DNA之间。遗传编辑的动物不表达转基因直至Cre被表达,导致floxed终止密码子切除。这个系统已经用于组织特异性瘤形成及在B淋巴细胞中受控的反基因受体表达。可诱导的Cre重组酶也已经揭示。可诱导的Cre重组酶仅由给予外源配体而激活。可诱导的Cre重组酶是含有原始Cre重组酶和一个特异性配体结合结构域的融合蛋白。Cre重组酶的功能活性依赖于能结合融合蛋白中这个特异性结构域的外部配体。
实施方案包括体外细胞、体内细胞及遗传编辑的动物如包含在可诱导系统控制下的性成熟选择性神经内分泌基因的牲畜。对动物的遗传修饰可以是基因组或嵌合修饰。一个实施方案是由Gpr54、Kiss1和GnRH1组成的一组中的基因,其在可诱导系统的控制下。可诱导系统可以例如选自Tet-On、Tet-Off、Cre-lox和Hif1alpha。
载体和核酸
为了敲除目的、失活基因、获得基因表达或者其它目的,可以将多种核酸导入细胞中。如本文所用,术语核酸包括DNA、RNA及核酸类似物,及双链或单链的核酸(即有义或反义单链)。可以在碱基部分、糖部分或者磷酸酯主链修饰核酸类似物,以改良例如核酸的稳定性、杂交或者溶解性。在碱基部分的修饰包括脱氧尿苷代替脱氧胸苷,及5-甲基-2'-脱氧胞苷和5-溴-2'-脱氧胞苷代替脱氧胞苷。糖部分的修饰包括在核糖的2’羟基进行修饰以形成2'-O-甲基或者2'-O-烯丙基糖。可以修饰脱氧核糖磷酸酯主链以产生吗啉代核酸,其中每个碱基部分与六个成员的吗啉代环或者肽核酸连接,其中脱氧磷酸酯主链由伪肽主链置换并保留四种碱基。见Summerton and Weller(1997)Antisense Nucleic Acid Drug Dev.7(3):187;及Hyrup et al.(1996)Bioorgan.Med.Chem.4:5所述。此外,脱氧磷酸酯主链可以用例如硫代磷酸酯或者二硫代磷酸酯主链、磷酸亚酰胺(phosphoroamidite)或者烷基磷酸三酯主链置换。
靶核酸序列可以与调节区如启动子可操纵地连接。调节区可以是猪调节区或者可以来自其它物种。如本文所用,可操纵地连接是指调节区相对于核酸序列定位,以此方式允许或促进靶核酸转录。
任何类型启动子均可以与靶核酸序列可操纵地连接。示例的启动子包括但不限于组织特异性启动子、组成型启动子、可诱导启动子及应答或不应答特定刺激的启动子。合适的组织特异性启动子可以导致核酸转录物在β细胞中优先表达,包括例如人胰岛素启动子。其它组织特异性启动子可导致在例如肝细胞或心脏组织中优先表达,分别可包括白蛋白或α肌球蛋白重链启动子。在其它实施方案中,可以使用促进核酸分子表达而无明显组织或时间特异性的启动子(即组成型启动子)。例如,可以使用β肌动蛋白启动子如鸡β肌动蛋白基因启动子、遍在蛋白启动子、miniCAG启动子、甘油醛-3-磷酸脱氢酶(GAPDH)启动子或者3-磷酸甘油酸激酶(PGK)启动子,以及病毒启动子如单纯疱疹病毒胸苷激酶(HSV-TK)启动子、SV40启动子或者巨细胞病毒(CMV)启动子。在一些实施方案中,鸡β肌动蛋白基因启动子与CMV增强子的融合体用作启动子。见例如Xu et al.(2001)Hum.Gene Ther.12:563;及Kiwaki et al.(1996)Hum.Gene Ther.7:821所述。
可用于核酸构建体中的其它调节区包括但不限于聚腺苷酸化序列、翻译控制序列(例如内部核糖体进入节段,IRES)、增强子、可诱导元件或者内含子。尽管这种调节区可以通过影响转录、mRNA的稳定性、翻译效力等而增加表达,但是其可以不是必需的。这种调节区根据需要可以包含在核酸构建体中以获得核酸在细胞中的最佳表达。然而,有时不用这种额外的元件也可以获得足够的表达。
可以使用编码信号肽或者可选择标记的核酸构建体。可以使用信号肽,由此编码的多肽指向于特定细胞位置(例如细胞表面)。可选择标记的非限制性实例包括嘌呤霉素、更昔洛韦(ganciclovir)、腺苷脱氨酶(ADA)、氨基糖苷磷酸转移酶(neo,G418,APH)、二氢叶酸还原酶(DHFR)、潮霉素-B-磷酸转移酶、胸苷激酶(TK)及黄嘌呤-鸟嘌呤磷酸核糖转移酶(XGPRT)。这种标记可用于在培养物中选择稳定转化体。其它可选择标记包括荧光多肽,如绿色荧光蛋白或者黄色荧光蛋白。
在一些实施方案中,编码可选择标记的序列两侧可以是重组酶如Cre或Flp的识别序列。例如,可选择标记的两侧可以是loxP识别位点(由Cre重组酶识别的34-bp识别位点)或者FRT识别位点,由此所述可选择标记可以从构建体中切除。见Orban,et al.,Proc.Natl.Acad.Sci.(1992)89:6861关于Cre/lox技术的回顾及Brand and Dymecki,Dev.Cell(2004)6:7所述。含有由可选择标记基因中断的Cre或Flp可激活的转基因的转座子也可以用于获得具有转基因条件表达的转基因动物。例如,驱动标记/转基因表达的启动子可以是遍在的或组织特异性的,其导致所述标记在F0动物(例如猪)中遍在或组织特异性表达。转基因的组织特异性激活可以例如通过将遍在表达标记中断的转基因的猪与以组织特异性方式表达Cre或Flp的猪杂交、或者将以组织特异性方式表达标记中断的转基因的猪与遍在表达Cre或Flp重组酶的猪杂交而实现。转基因的控制表达或者标记的控制切除使得所述转基因表达。
在一些实施方案中,外源核酸编码多肽。编码多肽的核酸序列可包含标签序列,其编码设计为促进随后操纵(例如促进定位或检测)编码的多肽的“标签”。标签序列可以插入编码多肽的核酸序列中,由此编码的标签位于多肽的羧基末端或者氨基末端。编码的标签的非限制性实例包括谷胱甘肽S-转移酶(GST)和FLAGTM标签(Kodak,New Haven,Conn.)。
核酸构建体可以使用SssI CpG甲基化酶(New England Biolabs,Ipswich,Mass.)甲基化。通常,可以将核酸构建体与S-腺苷甲硫氨酸和SssI CpG-甲基化酶在缓冲液中37℃在保温。超甲基化可以通过将构建体与1单位HinP1I内切核酸酶在37℃保温1小时并通过琼脂糖凝胶电泳分析而证实。
核酸构建体可以通过使用各种技术导入任何类型的胚胎、胎儿或成年动物细胞中,包括例如生殖细胞如卵母细胞或卵、祖细胞、成年或胚胎干细胞、原始生殖细胞、肾细胞如PK-15细胞、胰岛细胞、β细胞、肝细胞,或者成纤维细胞如真皮成纤维细胞。所述技术的非限制性实例包括使用转座子系统,可感染细胞的重组病毒,或者脂质体或者其它非病毒方法如电穿孔、显微注射或者磷酸钙沉淀,这些技术能将核酸输送至细胞。
在转座子系统中,核酸构建体的转录单位即与外源核酸序列可操纵地连接的调节区两侧是转座子反向重复序列。已经揭示了一些转座子系统包括例如Sleeping Beauty(见美国专利号6,613,752和美国专利公开号2005/0003542)、Frog Prince(Miskey et al.(2003)Nucleic Acids Res.31:6873)、Tol2(Kawakami(2007)Genome Biology 8(Suppl.1):S7;Minos(Pavlopoulos et al.(2007)Genome Biology 8(Suppl.1):S2)、Hsmar1(Miskey et al.(2007))Mol Cell Biol.27:4589)及Passport,以将核酸导入细胞包括小鼠、人和猪细胞中。Sleeping Beauty转座子特别有用。转座酶可以作为蛋白质输送,作为外源核酸在相同核酸构建体上编码,可以导入在单独的核酸构建体上,或者作为mRNA提供(例如在体外转录和加帽的mRNA)。
绝缘子元件也可以包含在核酸构建体中以保持外源核酸的表达及抑制不希望的宿主基因转录。见例如美国专利公开号2004/0203158所述。典型地,绝缘子元件在转录单位的每一侧及在转座子的反向重复序列内部。绝缘子元件的非限制性实例包括基质附着区(MAR)型绝缘子元件和边界型绝缘子元件。见例如美国专利号6,395,549、5,731,178、6,100,448和5,610,053及美国专利公开号2004/0203158所述。
核酸可以掺入载体中。载体是一个广义术语,包括设计为从运载体移至靶DNA中的任何特定DNA节段。载体可以称作表达载体或者载体系统,其是将DNA插入基因组或其它靶向DNA序列如游离基因、质粒或者甚至病毒/噬菌体DNA节段中需要的一系列成分。用于在动物中输送基因的载体系统如病毒载体(例如逆转录病毒、腺伴随病毒及整合噬菌体病毒)及非病毒载体(例如转座子)具有两种基本成分:1)包含DNA的载体(或者RNA,其被逆转录为cDNA),及2)转座酶、重组酶或者其它整合酶,其识别载体与DNA靶序列并将载体插入靶DNA序列中。载体通常含有一或多个表达盒,其包含一或多个表达控制序列,其中表达控制序列是分别控制并调节另一DNA序列或mRNA转录和/或翻译的DNA序列。
本领域已知许多不同类型的载体。例如已知质粒和病毒载体如逆转录病毒载体。哺乳动物表达质粒典型具有复制起点、合适的启动子及任选增强子、必需的核糖体结合位点、聚腺苷酸化位点、剪接供体和受体位点、转录终止序列,及5’侧翼非转录序列。示例的载体包括:质粒(其也可以是另一类型载体的运载体),腺病毒,腺伴随病毒(AAV),慢病毒(例如修饰的HIV-1、SIV或FIV)、逆转录病毒(例如ASV、ALV或MoMLV),以及转座子(例如Sleeping Beauty、P-元件、Tol-2、Frog Prince、piggyBac)。
如本文所用,术语核酸是指RNA和DNA,包括例如cDNA、基因组DNA、合成的(例如化学合成的)DNA,以及天然发生的及化学修饰的核酸,例如合成的碱基或者主链。核酸分子可以是双链或单链的(即有义或反义单链)。术语转基因在本文广泛使用,是指经遗传编辑的生物体或遗传工程化的生物体,其遗传材料已经使用遗传工程技术加以改变。敲除动物因此是转基因动物,无论外源基因或核酸在动物或其后代中是否表达。
创始动物、动物品系、性状和繁殖
创始动物可以通过本文描述的克隆及其它方法产生。创始动物对于遗传修饰可以是纯合的,与在受精卵或原始细胞经历纯合修饰的情况中一样。相似地,产生的创始动物也可以是杂合的。在NANOs敲除的情况中,创始动物优选是杂合的。创始动物可以经遗传修饰,是指所有细胞在基因组中均经历修饰。创始动物对于修饰可以是嵌合的,这在当多个载体导入胚胎、典型在胚泡阶段的多个细胞之一中时可发生。可以检测嵌合动物的后代以鉴别经遗传修饰的后代。当已经产生可以有性繁殖或者通过辅助生殖技术繁殖的一个动物集合时,建立动物品系,杂合或纯合后代一致地表达所述修饰。
在牲畜中,已知许多等位基因与多种性状连锁,如生产性状、品种性状、可加工性性状及其它功能性性状。技术人员习惯于监测及量化这些性状,例如Visscher et al.,Livestock Production Science,40(1994)123-137,美国专利号7,709,206、US 2001/0016315、US 2011/0023140和US 2005/0153317所述。动物品系可包括选自如下的性状:生产性状,品种性状,可加工性性状,生育力性状,母性性状及疾病抗性性状。进一步的性状包括重组基因产物的表达。
可以对具有希望的一或多个性状的动物进行修饰以防止其性成熟。由于动物在直至成熟时是不育的,因此可以调节性成熟度作为控制动物传播的手段。因此可以将已经繁殖或修饰为具有一或多个性状的动物提供给接受者,具有降低的接受者繁殖这些动物并且盗用性状价值的风险。本发明的实施方案包括遗传修饰动物基因组,所述修饰包括失活的性成熟基因,其中在野生型动物中性成熟基因表达性成熟选择性因子。实施方案包括通过给予补救由于所述基因表达丧失所致缺陷的一种化合物处理动物以在动物中诱导性成熟。
需要给予一种化合物以诱导性成熟的动物的繁殖可以在处理设备(treatmentfacility)有利地实现。所述处理设备可以对良好控制的原种执行标准化方案以有效地产生一致的动物。动物后代可以分配给多个地区培育。农场和农场主(包括牧场和牧场主)可因此定购希望数目的具有指定范围年龄和/或体重和/或性状的后代并在希望的时间和/或地区将其输送。接受者如农场主然后可以产生动物并根据需要将动物输送给市场。
实施方案包括输送(例如输送至一或多个地区,多个农场)具有性成熟选择性的失活的神经内分泌基因的经遗传编辑的牲畜。实施方案包括输送年龄为大约1天至大约180天的动物。所述动物可具有一或多种性状(例如表达希望的性状或高价值性状或者新性状或者重组性状)。实施方案进一步包括提供所述动物和/或繁殖所述动物。
本文引用的所有参考文献包括出版物、专利和专利申请均以该文献明确的详细描述一致的程度并入本文作参考,且以每个参考文献单独及特别指出并入参考的相同程度及以全部内容并入作参考。提供本文论述的参考文献只是因为其在本申请申请日之前公开。本文没有任何内容解释为承认发明人没有资格由于之前的发明而早于这些公开。提供如下实施例以举例说明某些特定特征和/或实施方案。实施例不应理解为将本发明限制于特定特征或示例的实施方案。
实施例1:猪NANOS2TALEN试剂的设计、构建和检测
猪NANOS2位于染色体6上,组成编码138个氨基酸的蛋白质的单一外显子。在单独的猪序列之间进行多序列对比以鉴别潜在的单核苷酸多态性(在图1中以红点表示),在选择TALEN结合位点期间尽可能避免这些。利用在www.zifit.partners.org可免费获得的工具鉴别结合猪NANOS2TALEN的潜在位点接近基因的5’末端。使用Golden Gate TALEN装配方案(Cermak et al,NAR 2011 39(12):e82)构建三个TALEN对。将右侧TALEN装配克隆进目的载体(destination vector)pCAG-T7-TALEN(Sangamo)-FokI-KKR-Destination,左侧装配克隆进pCAG-T7-TALEN(Sangamo)-FokI-ELD-Destination中。使用酶BspeI和StuI/AatII进行诊断性限制消化,通过DNA测序证实阳性克隆。
猪NANOS2TALEN
A SEQ ID NO:75
TGCCATGCAGCTGCCACCCTTTGACATGTGGAAGGACTACTTCAACCTGAGCCA 18:18:18
A左侧:5’TGCCATGCAG CTGCCACC SEQ ID NO:76
A右侧:5’TGGCTCAGGT TGAAGTAG SEQ ID NO:77
A左侧
1)NG1-NN2-HD3-HD4-NI5-NG6-NN7-HD8-NI9-NN10--pFUS_A
2)HD1-NG2-NN3-HD4-HD5-NI6-HD7--pFUS_B7
A右侧
1)NG1-NN2-NN3-HD4-NG5-HD6-NI7-NN8-NN9-NG10--pFUS_A
2)NG1-NN2-NI3-NI4-NN5-NG6-NI7--pFUS_B7
B SEQ ID NO:78
TTTGACATGTGGAAGGACTACTTCAACCTGAGCCAGGTGGTGTTGGGACTGA 18:16:18
B左侧:5’TTTGACATGT GGAAGGAC SEQ ID NO:79
B右侧:5’TCAGTCCCAA CACCACCT SEQ ID NO:80
B左侧
1)NG1-NG2-NG3-NN4-NI5-HD6-NI7-NG8-NN9-NG10--pFUS_A
2)NN1-NN2-NI3-NI4-NN5-NN6-NI7--pFUS_B7
B右侧
1)NG1-HD2-NI3-NN4-NG5-HD6-HD7-HD8-NI9-NI10--pFUS_A
2)HD1-NI2-HD3-HD4-NI5-HD6-HD7--pFUS_B7
C SEQ ID NO:81
TCAACCTGAGCCAGGTGGTGTTGGGACTGATCCAGAATCGTCGACAAGGGCCA 18:17:18
C左侧:5’TCAACCTGAG CCAGGTGG SEQ ID NO:82
C右侧:5’TGGCCCTTGT CGACGATT SEQ ID NO:83
C左侧
1)NG1-HD2-NI3-NI4-HD5-HD6-NG7-NN8-NI9-NN10—pFUS_A
2)HD1-HD2-NI3-NN4-NN5-NG6-NN7—pFUS_B7
C右侧
1)NG1-NN2-NN3-HD4-HD5-HD6-NG7-NG8-NN9-NG10—pFUS_A
2)HD1-NN2-NI3-HD4-NN5-NI6-NG7—pFUS_B7
将猪肾PK15细胞在补加了10%胎牛血清、100U/ml青霉素和100ug/ml链霉素的高浓度葡萄糖DMEM(Life Technologies,#31966)中在湿润温箱中在37℃及5%CO2条件下培养。使用Neon电穿孔仪设定在1400mV进行2次脉冲每次20ms,将编码各一半TALEN对A、B或C的1μg无内毒素maxiprep质粒DNA与编码CMV-驱动的eGFP的1μg质粒一起共转染进6×105PK15细胞中。转染的细胞在没有抗生素的完全培养基中恢复。在转染后24小时,将细胞从37℃移至30℃温箱中,在此保持48小时。通过荧光激活细胞分选技术分离GFP+ve细胞,通过培养扩增,使用Qiagen Dneasy血液和组织试剂盒制备基因组DNA。使用Accuprime高保真聚合酶及PCR引物oSL9和oSL10对基因组DNA进行PCR。
如厂商(Transgenomic)推荐对PCR产物进行细胞分析。将消化的PCR产物在2%TAE琼脂糖凝胶上解析(图2)。令人惊奇地,TALEN对在其靶位点能诱导NHEJ事件的效力显著不同。注意到TALEN对A显示低活性(绿色箭头,图2),TALEN对B显示无可检测的活性,TALEN对C显示活性最佳(红色箭头,图2)。
猪NANOS2CRISPR试剂的设计、构建和检测
潜在的小指导RNA靶位点最初是基于在猪NANOS2基因编码序列内存在前间区序列邻近基序(PAM)而鉴别的(通过在所述编码序列内存在有义或反义方向的两个连续鸟嘌呤残基而确定)。排除跨越一个潜在SNP(在图1中以红点表示)的由此鉴别的位点进行进一步分析。使用BLAST算法(ncbi.nlm.nih.gov)分析猪基因组的序列匹配,对剩余的每个位点分析潜在的脱靶结合情况。选择一个sgRNA结合位点,其呈现出对于猪基因组内NANOS2基因具有高特异性。这个20个碱基对的序列意外地在每个方向均具有PAM序列。
NANOS2结合位点
5’ccagaatcgtcgacaagggccagagg.3’(SEQ ID NO:86)
3’ggtcttagcagctgttcccggtctcc 5’(SEQ ID NO:87)
下划线处的序列是有义和反义方向的猪NANOS2指导序列的结合位点(SEQ ID NO86和87)。在有义链上,PAM以序列agg 3’至靶位点表示。在反义链上,PAM以序列tgg 3’至靶位点表示。
设计鉴别的指导RNA结合序列的正向和反向版本,并定制为gBlocks(IDT),其具有驱动sgRNA结合序列表达的人U6启动子,指导RNA支架(也称作Cas9结合结构域)及终止子序列(poly T)(图3A和3B)。将gBlock DNA克隆进质粒中并制备无内毒素的质粒DNA(Qiagen)(图3C)。使用Neon电穿孔仪设定在1400mV进行2次脉冲每次20ms,将分别编码sgRNA序列、CAG驱动的Cas9及CMV驱动的eGFP的三个质粒共转染进6×105PK15细胞中。转染的细胞在无抗生素的完全培养基中恢复。在转染后3天,GFP阳性细胞通过荧光激活细胞分选方法分离,通过培养扩增及使用Qiagen DNeasy血液和组织试剂盒制备基因组DNA。使用Accuprime高保真聚合酶及PCR引物oSL9和oSL10,对这个基因组DNA进行PCR。如厂商(Transgenomic)推荐,对PCR产物进行细胞分析。消化的PCR产物在2%TAE琼脂糖凝胶上解析(图4)。虽然这两个指导序列均导致在靶位点切割及NHEJ形成(通过存在细胞消化产物而表明,图4,红色箭头),但是令人惊奇地发现相对于编码序列反向的sgRNA序列比其有义对应物实质上更有效。
实施例2:牛NANOS2CRISPR试剂的设计、构建和检测
sgRNA的潜在靶位点最初基于在牛NANOS2基因编码序列内或者在紧邻编码序列两侧的序列内存在PAM序列而鉴别。通过使用BLAST算法(ncbi.nlm.nih.gov)分析牛基因组序列匹配情况,分析每个潜在位点的潜在脱靶结合情况。选择9个潜在的sgRNA结合位点(3个5’至编码序列,3个在编码序列内,及3个3’至终止密码子),其呈现出对于牛基因组内NANOS2基因具有高特异性。
对于每个鉴别的sgRNA结合位点,设计2个指导序列;一个是20-聚体的结合序列,一个是19-、18-或17-聚体的结合序列。见表1和图12。
表1
作为一对寡核苷酸构建指导RNA序列,其一旦退火时可以克隆进质粒px458的BbsI位点(图5A、5B和5C)。这产生了具有人U6驱动的sgRNA序列及随后的具有2A可裂解的GFP的CAG驱动的Cas9的单一质粒。质粒列表在表2中示出,见图12。
表2
使用Neon电穿孔仪设定在1800mV单次脉冲20ms,将1微克质粒miniprep DNA(Qiagen)转染进6×105牛胚胎成纤维细胞(BEF)中。在转染2天后,使用Qiagen DNeasy血液和组织试剂盒制备基因组DNA。使用Accuprime高保真聚合酶及PCR引物oSL86和oSL87对这个基因组DNA进行PCR。
根据厂商(NEB)推荐,对纯化的PCR产物进行T7内切核酸酶分析。消化的PCR产物在1.4%TAE琼脂糖凝胶上解析(图6A和6B)。令人惊奇地,在sgRNA在其靶位点能诱导NHEJ形成的效力中发现显著不同(通过存在T7内切核酸酶消化产物而表明,图6A和6B,红色箭头)。
根据T7内切核酸酶测定确定对于NHEJ具有最高活性的指导序列成对组合,由此在细胞内的这两个靶位点的裂解具有导致间插序列缺失的潜力。将1微克每种质粒pSL32+pSL38、pSL32+pSL39、pSL32+pSL42、pSL33+pSL38、pSL33+pSL39或pSL33+pSL42转染进6×105BEF细胞中。如上述进行转染、培养及从BEF细胞制备DNA。使用Accuprime高保真聚合酶及PCR引物oSL86和oSL87对基因组DNA进行PCR,将产物在1.4%TAE琼脂糖凝胶上解析(图7)。所有六个质粒组合证实,除了全长PCR产物之外,转染的细胞群还具有截短的NANOS2基因片段,其大小特异于应用的sgRNA序列组合(红色箭头,图7)。
将这些截短的片段从凝胶中切除,通过将凝胶切片在Spin-X Centrifuge TubeFilter(Costar#8163)中离心从琼脂糖中分离DNA。使用测序的TOPO TA克隆试剂盒(Invitrogen#45-0030)将纯化的产物克隆进pCR 4-TOPO载体中并转化进XL-1Blue感受态细胞(Agilent Technologies#200249)中。将转化的细菌铺板于含有100μg/ml氨苄青霉素的LB琼脂平板上,在37℃培养过夜。从每个平板中选择5个集落并在含有50μg/ml氨苄青霉素的LB培养基中扩增过夜。使用PureYield Plasmid Miniprep系统(Promega#A1223)分离质粒并使用引物oSL86进行测序(Edinburgh Genomics)。序列对比表明在每种情况中已发生靶序列内的缺失(图8)。缺失的片段的末端之间的精确末端连接在每次转染的至少一个克隆中检测,而其它克隆表示更多不精确事件,表明对序列的其它修饰在末端结合期间发生。从pSL33+pSL38组合测序的克隆均示出相同的精确的末端连接事件。
这种方法表明在靶基因中产生特异性缺失是可能的且合意的,导致编码的蛋白质表达的丧失或降低或者所得翻译的蛋白质的功能改变,作为诱导NHEJ及随之的移码突变的另一策略。
实施例3:进行遗传去除的CRISPR/Cas系统
如图4所示,在细胞培养物中成功确认后,使用T7启动子装配指导序列并根据IDT技术合成为G-block。具有T7驱动构建体的装配是体外转录和产生RNA必需的。简而言之,使用T7体外转录试剂盒(Ambion)转录sgRNA。同样,Cas9质粒得自Addgene(质粒#42234;名称:pMJ920),使用T7Megascript体外转录试剂盒转录Cas9mRNA(图9A)。
使用Eppendorf Femtojet注射器以连续流设置,将Cas9mRNA(100ng/μl)和sgRNA靶向NANOS2(50ng/μl)均注射进1-细胞猪受精卵中。使注射的胚胎进展为胚泡阶段(图9C)另加6天,收集DNA,在靶位点周围进行PCR扩增。靶基因缺失的存在(由于NHEJ修复的结果)通过PCR扩增子测序评定。如图9D所示,证实成功靶向NANOS2基因座。使用基因特异性引物扩增NANOS2中CRISPR靶位点周围的序列,克隆进PCR2.1载体(Invitrogen),转化进DH5α细胞(NEB)中,基于卡那霉素抗性选择转化体。将菌落培养过夜,微量制备并通过Sanger测序法对质粒进行测序。在图9中,“N”表示NANOS2等位基因,第一个数字是胚泡号,第二个带连字符的数字表示含有扩增的NANOS2的细菌克隆。在图中,示出克隆的代表序列,标示在预测的CRISPR切割位点周围的缺失“-”。来自8个不同胚泡的序列示出NANOS2开放读框的成功缺失和破坏,产生敲除等位基因,如图9D所示。
也选择NANOS2的第二个sgRNA序列。GAAGACACCGGAGGGCGTGGTGG(SEQ ID NO:7)。将这个靶序列及较早的靶序列GAATCGTCGACAAGGGCCAGAGG(SEQ ID NO:8)一起共注射进单细胞胚胎中并培养至胚泡,对胚泡的DNA分析证实NANOS2等位基因的缺失和敲除,见图10。
使用切口酶对进行基因靶向
Cas9核酸酶在DNA中导入双链断裂。相比之下,Cas9切口酶仅切割(或切口)DNA两条链之一。当针对相反链紧密靠近的靶进行设计时,成对的切口酶可以导入双链断裂,及因此可产生高精度缺失。使用成对的切口酶相对于核酸酶的优势是即使Cas9切口酶展示出脱靶结合,两条链中仅一条链被切口,这可以被有效修复而不导致在脱靶位点不希望的修饰。然而,当紧密邻近处组合使用时,切口酶导入靶向的DNA裂解。设计一对切口酶以靶向猪NANOS2基因。然而,切口酶在导入突变中无效(图11)。设计一对单一指导RNA以靶向相反链。这两个sgRNA均在图11方框中示出,相反链以黄色高亮标示。这两个sgRNA的PAM基序以绿色高亮标示。在靶位点周围鉴别到无修饰。
NANOS2缺陷猪模型的产生
将候选的CRISPR sgRNA和Cas9:GFP mRNA注射进在体外授精的猪胚胎中(图9C)。简而言之,来自母猪的成熟卵母细胞购自ART Inc.(Madison,WI)并在其商业成熟培养基#1中连夜运输至实验室。在置于成熟培养基#1(由ART提供)中之后24小时,将50-75个卵丘细胞-卵母细胞复合物(COC)置于含有0.14%PVA、10ng/ml表皮生长因子、0.57mM半胱氨酸、0.5IU/ml猪FSH和0.5IU/ml绵羊LH的500μl组织培养基199(TCM 199)中,在38.5℃和5%CO2大气及100%湿度条件下再培养20小时。将COC在含有0.01%PVA的0.1%透明质酸酶的HEPES缓冲培养基中涡旋4分钟以在成熟后除去卵丘细胞。将30-35个成熟的剥脱的卵母细胞组置于100μl修改的Tris缓冲培养基(mTBM)中并使用新鲜扩增的公猪精液根据确定的方案授精。简而言之,将1-2ml扩增的精液与含有1mg/ml BSA的Dulbecco’s磷酸盐缓冲盐水(DPBS)混合至终体积为10ml,在1000×g、25℃离心4分钟;将精子在DPBS中洗涤共3次。在最后一次洗涤后,将精子重悬于mTBM培养基中,加入卵母细胞至终浓度为5×105精子/ml,在38.5℃和5%CO2条件下共保温5小时。在授精后5小时,为推定的受精卵注射Cas9mRNA和靶向NANOS2的sgRNA,及通过腹中线切口暴露生殖道,将完整的胚胎经手术转移至同步的雌性接受动物的输卵管中。使动物从手术中恢复并在BARC-USDA设施中饲养。
另一选项是使用体内授精的1-细胞胚胎进行CRISPR介导的NANOS2靶向及产生编辑的动物。使胚胎供体动物同步发情期及通过首先用喂食14-16天Regumate(Alterenogest)、随后在第17天皮下注射PG600(5ml)及在第20天皮下注射1000IU的hCG以进行超数排卵。使动物繁育3次,一次在站立发情(standing estrus)(第20天),另两次在第21天间隔8小时授精。动物在第22天人道主义处死,通过冲洗输卵管收获胚胎。如上述为胚胎注射CRISPR mRNA并在同一天经手术移至同步的受体动物(或代孕动物)体内。
实施例4:动物的筛选及繁殖
筛选动物
如下所述对在移植了遗传编辑的胚胎之后活产动物确定基因型。取组织样品(例如毛囊、耳槽(ear notches)、剪尾(tail clips)、血液)并提取DNA。使用合适引物扩增NANOS2基因并测序。将动物经鉴定为未编辑的、杂合编辑的或者纯合编辑的。
纯合NANOS2编辑的雌性动物的生育力
监测纯合的NANOS2编辑的雌性动物的初情期及排出能育的卵母细胞的能力。检测在体外受精后卵母细胞产生胚泡的能力。示例的纯合NANOS2编辑的雌性动物将经历半卵巢切除术(hemiovariectomy),及检验卵巢的正常卵子发生功能。雌性动物也进行繁殖并监测妊娠的确立。最后,纯合的NANOS2编辑的雌性动物生育力通过存活的健康后代的产生而确定。我们预期纯合NANOS2编辑的雌性动物具有正常的生育力。
杂合和纯合NANOS2编辑的雄性动物的睾丸结构和功能
在杂合及纯合NANOS2编辑的雄性动物中监测睾丸生长和直径。我们预期杂合雄性动物具有正常的睾丸生长和直径,而期望纯合雄性动物示出降低的睾丸生长及由于缺乏生殖细胞导致在初情期呈现小睾丸。示例的杂合和纯合NANOS2编辑的雄性动物经历半去势并对睾丸进行细胞学检测。我们预期杂合雄性动物示出具有Sertoli细胞和生殖细胞居于其中的生精小管的正常睾丸结构,而预期纯合雄性动物仅具有Sertoli细胞形态学且完全不存在生殖细胞。在收集适当精液后(例如假阴道法,手握法,电刺激射精),检验精液体积和成分。我们预期杂合雄性动物具有正常精液体积和精子数量,而期望纯合雄性动物示出完全不存在精细胞。
将SSC移植进纯合NANOS2编辑的雄性动物的睾丸中
从合适的供体如Duroc猪中收获SSC并增殖,将SSC注射进不同年龄的纯合NANOS2编辑的受体雄性动物如大白猪(Large White)×兰德瑞斯猪(Landrace)杂交繁育的猪的睾丸网中。在初情期或者在移植SSC至少3个月后,收集精液并检测精子细胞的存在情况。如果存在精子细胞,则确定精子细胞浓度、形态学和运动性。还要确定存在的精子细胞是来自供体SSC而不是来自受体动物,例如示出对于猪实例在MC1R基因中存在Duroc特异性SNP。我们将确定对于最大精子细胞产量的接受动物猪的最佳的接受年龄,这应与接受动物睾丸的SSC建群效力相关。
繁殖产生作为SSC接受动物的纯合NANOS2编辑的雄性动物
一定量的纯合NANOS2编辑的雄性动物可以通过纯合NANOS2编辑的雌性动物与杂合编辑的雄性动物繁育而产生。这种交配将产生相等数量的纯合及杂合编辑的雄性动物和雌性动物。纯合编辑的雄性动物用作SSC接受动物,纯合雌性动物和杂合雄性动物用作替代种畜以产生进一步的纯合NANOS2编辑的雄性动物作为SSC接受动物及剔除杂合雌性动物。
实施例5:通过胚胎注射产生NANOS2编辑的动物
基于由MIT的Dr.Feng Zhang(crispr.mit.edu)开发的免费软件设计靶向外显子-1的猪NANOS2的候选嵌合sgRNA。在胚胎注射研究中使用的指导RNA是:GATCAGTCCCAACACCACCTGG(SEQ ID NO:160)。在NANOS2ORF(SEQ ID NO:1和2)内的CRISPR指导RNA序列(SEQ ID NO:160)和CRISPR靶序列(SEQ ID NO:161)在图13中示出。
将在Cas9:GFP mRNA旁边的候选CRISPR sgRNA使用T7mMessage Machine试剂盒(Ambion)在体外转录,通过Megaclear试剂盒(Ambion)净化并注射进体内受精的猪1-细胞胚胎中。将一群8-9个月龄的12个动物同步发情期并用于实验中。繁殖8个同步的动物作为胚胎供体,而剩余4个动物同步但不繁殖以作为代孕动物。通过喂食14天5ml孕酮类似物Regumate(或Matrix)同步发情期。在最后一次喂食Regumate之后24小时,经皮下注射给予动物PMSG(1200IU,Sigma),及通过皮下注射给予HCG(1000IU,Chorulon,Merck)72小时后诱导排卵。发情旺期的供体动物(n=8)用公猪精液(由PIC Genetics提供)进行人工授精。来自供体动物的体内胚胎在AI后24小时通过用无菌PVA TL-Hepes介质逆行冲洗从输卵管中经手术取出。然后为此在体内产生的胚胎注射Cas9:GFP mRNA和靶向NANOS2的sgRNA,在PZM3培养基58中培养过夜。在显微注射后一天,将30个胚胎经手术移至每个代孕动物的输卵管中。
对于胚胎转移,将供体和代孕猪用氯胺酮/赛拉嗪的混合物(6.6mg/kg和1-2mg/kgIM)麻醉,背面置于手术台上。通过监测心率、体温、完全的节奏呼吸、收缩的瞳孔及降低或不存在眼睑反射进行评估足够的麻醉深度。通过腹中线切口暴露麻醉的母猪的生殖道。仅暴露输卵管和子宫顶部。在供体动物中,将胚胎通过子宫-输卵管接合处逆行冲洗,并从输卵管口收集胚胎。对于将胚胎移至代孕动物,将含有胚胎的tom-cat导管经由漏斗放置并将胚胎置于输卵管中。在使用可吸收缝合线(USP#3body wall,#3fat,#1sub-q)对切口进行三层缝合后,使动物复醒。通过未恢复到发情期(21天)及在移植胚胎后第28天进行超声检查证实怀孕。首次胚胎移植获得4个代孕动物中3个动物确立怀孕,出生18个经遗传编辑的小猪(图14)。所有这18个小猪均示出NANOS2单一或双等位基因修饰,显示出我们的方法非常高效。
实施例6:通过体细胞核转移(SCNT)产生NANOS2编辑的动物
从自妊娠D35的Duroc猪胎儿建立猪胎儿成纤维细胞(PFF)。将候选的雄性和雌性PFF细胞系用CMV启动子驱动的Cas9:GFP质粒(Addgene)及由hU6启动子驱动的靶向NANOS2的单一指导RNA组成的PCR片段(SEQ ID NO:162)进行核转染。在核转染后一天,将核转染的细胞在96孔平板的每个孔中逐一分选。为细胞供应放射的成纤维细胞条件化生长培养基,使得形成集落。在培养1周后,在细胞内开始出现集落。将细胞克隆增殖、提取DNA并使用DNA测序法筛选突变。将对于NANOS2是纯合无效的细胞通过体细胞核转移克隆,产生NANOS2无效雄性和雌性小猪。从这些最初的SCNT尝试中,产生一个存活的雄性动物及三个雌性小猪,见图15。
实施例7:NANOS-2编辑的动物的睾丸表型
在3个月龄,将两个双等位基因Nanos2纯合敲除小猪的睾丸进行活检及形态学检测。基于使用光学显微镜观测活检组织的横截面(图16),曲细精管索是完整的,且存在体细胞支持细胞。尽管一些生殖细胞仍存在于纯合敲除动物中,但是数目与在这个年龄的野生型动物中典型观测到的数目相比显著减少。实际上,纯合动物的一些精索中看起来缺乏生殖细胞。纯合动物中剩余的生殖细胞的细胞核看起来是固缩的(picnotic),指示凋亡。在3个月龄,野生型猪的曲细精管索典型含有多层发育中的生殖细胞,这表示活性的精子发生。在Nanos2敲除动物中无一精索含有多层生殖细胞,强力提示缺乏内源性种系。总之,这些观测结果提示Nanos2丧失功能的表型在动物中是保守的,包括在早期发育阶段丧失雄性种系,导致仅存在Sertoli细胞的表型。对小鼠的研究已经表明具有这种表型的雄性动物是在移植精原细胞后再生供体种系的极佳宿主。
实施例8:用Nanos2纯合敲除受体移植
在4个月龄时,两个纯合敲除小猪接受分离自21天龄Duroc供体雄性小猪睾丸的精原细胞移植。简而言之,将供体细胞悬浮于1ml体积的注射介质中,密度为1.4×106细胞/ml,并将600-900μl体积通过超声指导的注射进睾丸网输注进输精管中。为每个动物的一个睾丸移植所述供体细胞,对侧睾丸作为不注射对照。
实施例9:NANOS基因
NANOS1野猪(Sus scrofa)
SEQ ID NO:6
MEAFPWAPRSPRRGRVPPPMALVPSARYVSAQGPAHPQPFSSWNDYLGLATLITKAVDGEPRFGCARGEDGGGGGGSPPSSSSSSCCSPHAGAGPGALGPALGPPDYDEDDDDDSDEPGSRGRYLGGTLELRALELCADPSEAGLLEERFAELSPFAGRATAVLLGWAPATAATAEAAPREERAPAWAAEPRLHAAFGAAGARLLKPELQVCVFCRNNKEAVALYTTHILKGPDGRVLCPVLRRYTCPLCGASGDNAHTIKYCPLSKVPPPRSVRDGLPGKKLR
SEQ ID NO:5ORIGIN
1cgcagggggc agggccgcgg cagcgaggcc ggggggcggg gaggagcggg gcccgataaa
61aggcagcgag gcggccccac cccgctgcag gccggcgggc aggctcggcg cgtcctttcc
121gtccggcccg cgccggcggc ggggaggcgg cgcgcgcggc ccgcagcccg cccatggagg
181ctttcccctg ggcgccccgc tcgccccgcc gcggccgcgt ccccccgccc atggcgctcg
241tgcccagcgc ccgctacgtg agcgcccagg gcccggcgca cccgcaaccc ttcagctcgt
301ggaacgacta cctgggactc gccacgctca tcaccaaggc ggtggacggc gagccgcgct
361ttggctgcgc ccgcggcgag gacggcggcg gcggcggcgg ctccccaccc tcctcttcct
421cctcgtcgtg ctgctccccc cacgcggggg ccgggcctgg ggcgctgggg cccgcgctgg
481ggccacccga ctacgacgag gacgacgacg acgacagcga cgagccgggg tcccggggcc
541gctacctggg gggcacgctg gagctgcgcg cgctggagct gtgcgcggac ccctcggagg
601ccgggctgct ggaggagcgc ttcgccgagc tgagcccgtt cgcgggtcgc gccaccgctg
661tgctgctggg ctgggcaccc gccactgccg ccaccgccga ggcggcaccg cgcgaggagc
721gggccccggc gtgggcggcc gagccccggc tgcacgcagc ctttggggcg gccggcgccc
781ggctgctcaa gcccgagctg caggtgtgtg tgttttgccg gaacaacaag gaggcggtgg
841cgctctacac cacccacatc ttgaagggac ccgacgggcg agtgctgtgc cccgtgctgc
901gccgctacac gtgtcccctg tgcggcgcca gcggcgacaa cgcgcacacc atcaagtact
961gcccgctctc caaagtgccg ccgccgcgca gcgtcaggga cggcctgccc ggcaagaagc
1021tgcgctgagg gcccggactc cggtctgcta ctgccacctg acgccaccag ggtcgccgcc
1081tgcccaatgt ctagtttggc ctgcgcacca tctctctctc tcgctgctga ggagcgtgga
1141gctcagctgt tggttgaact tgagatgtac tgattttttt tttttttttt tcaaaagaac
1201ccggcggtac tgagtccttt cctgtcgaag agcgcttaag actagaagct aaaatcttga
1261tttgtttatc tctagtttgt gcacatccag acggtgaagg ctgggtgttc gttccactaa
1321ctgaaatgtg gcaacttaga agtgtttatt tactctatac gtcaacctat tttagatgcg
1381catcagtata tgaaattgtc tcaatctaat cttggatgtt taattttatg aatggaggca
1441ctttactagg cctagaatat ttttttaaaa gcctctaaac tgaacttaac tggcgatttt
1501atggaatgtc agcaaaatga cttttattgt ttgaaacaag taataatatt tctgttgtcc
1561ttaatcagtt attctaattc caggtgaagc aaccctcacc tgcctggtag catcattaag
1621tgaaggctta gtaaactttc cagtgttagt ttgggtgggt gttccccccg tggcttgttt
1681ctgtcctagc tggaggtgta aagatgtaca atctgtggca ggtagaatac agctccttat
1741ccttttatgt accacatctt ttattactga acgagcaact agcgtttccc atctttcaaa
1801gtcgtgccag gttatataat attgtgtata cacttggaaa tggtgctgtt taaaagaatt
1861tgtgtattta tacagtaaca gtatatgaat tcattaatct tgtctt
NANOS2野猪
SEQ ID NO:2
MQLPPFDMWKDYFNLSQVVLGLIQNRRQGPEAPGTGEPRPEPPLEQDQGPGERGASGGLATLCNFCKHNGESRHVYSSHQLKTPEGVVVCPILRHYVCPLCGATGDQAHTLKYCPLNGGQQSLYRRSGRNSAGRKVKR
SEQ ID NO:1(CRISPR靶位点以下划线示出)
1atgcagctgc caccctttga catgtggaag gactacttca acctgagcca ggtggtgttg
61ggactgatcc agaatcgtcg acaagggcca gaggccccgg gcaccgggga gccaagacct
121gagcccccac tggagcagga ccagggcccg ggagagcggg gggccagcgg ggggctggcc
181accctgtgca acttttgcaa acacaatggg gaatctcgcc acgtgtactc ctcgcaccag
241ctgaagacac cggagggcgt ggtggtgtgt cccatcctac gacactatgt gtgtcccctg
301tgcggggcca ccggtgacca ggctcacaca ctcaagtact gcccgctcaa cggcggccag
361cagtctctct atcgccgcag tgggcgcaat tcagccggcc gcaaggtcaa gcgctga
NANOS3野猪
SEQ ID NO:4
MHSFGRCIFGGAAASPPVTIRNLPQPAPPSSHPLGGIRRELTAQTPGLQREKGRGRGKGIEGRSLGWLGFFSLSALSPGTLCPAMGTFNLWTDYLGLARLVGALRGEEEPETRLDPQPAPVPGPEGQRPSPESSPAPERLCSFCKHNGESRAIYQSHVLKDEAGRVLCPILRDYVCPQCGATRERAHTRRFCPLTSQGYTSVYSYTTRNSAGKKLARPDKARTQDSGHRRGGGGGGASTGSKGAGKSSGTSPSPCCPSTSA
SEQ ID NO:3
1cagcccaccc agggaccatg cattcctttg gcaggtgcat ttttggagga gcagcagcaa
61gcccccctgt gacaataagg aacctcccac agcctgctcc tccctcttca cacccccttg
121gaggtataag gagggaactg acagcccaga ctcctgggct ccagagagag aaagggaggg
181gcagggggaa ggggatagaa ggacgatctt tggggtggct gggtttcttc tctctctctg
241ccctttcacc tggtacactt tgcccagcca tggggacctt caacctgtgg acagattacc
301tgggtttggc acgcctggtg ggggctctgc gtggggaaga ggaacctgag acgaggctgg
361acccccagcc agcaccagtg ccaggaccag agggtcagag gcccagcccg gaatcctcac
421cagctcctga acgcctgtgc tctttctgca aacataatgg cgaatcccgg gccatctacc
481agtcccacgt gctcaaggat gaagcgggcc gagttctgtg ccccattctt cgagactacg
541tgtgccccca gtgcggtgcc acacgcgagc gtgcccatac ccgccgcttc tgccctctca
601ccagccaggg ctacacctct gtctacagct acaccacccg caactcggcc ggcaagaagc
661tggcccgccc ggacaaggcg aggacacagg actctggaca tcggcgagga ggaggaggag
721gaggtgccag cacaggttcc aaaggtgccg ggaagtcttc tggaacttct ccgtctccct
781gctgtccctc cacttctgcc taagaggctg gcgcgagcag gacggagatg ctgccttcac
841ctggggatgg ggacccaggc tcagtggagg ctgggtttca gggacgacct acccttcgcg
901gatccgcccc tgcccccagc ctgggagccc tgcaagggag ccaggcctgg aagctcggcc
961aaaagagagc cgctcctttc tccccatctc ccaccccaag aaaggaggtg gtcctctggc
1021aaccctgccc tccttcccca gcgctgggca cccagttagc actcaataaa tac
牛NANOS2NM_001281904
SEQ ID NO:10
MQLPPFDMWKDYFNLSQVVLALIQSRGQGLETQGTGEPRPGPHVEQDQGQGGRGAGGGLATLCNFCKHNGESRHVYSSHQLKTPEGVVVCPILRHYVCPLCGATGDQAHTLKYCPLNGGQQSLYRRSGRNSAGRKVKR
SEQ ID NO:9
1tcagctgctc ctgtctgcgg gcccccagcc cacttctctc cagccaccca ccaccaacac
61tcccccgggt gccatgcagc tgccaccctt tgacatgtgg aaggactact tcaacctgag
121ccaagtggtg ctggcactga tccagagtcg ggggcaaggg ttggagaccc aagggactgg
181ggagccgaga cccgggcccc atgtggagca ggatcagggg cagggcggac gcggggctgg
241cgggggcctg gccaccctgt gcaacttttg caaacacaat ggagagtctc gccacgtgta
301ctcctcacac cagctgaaga ccccggaggg cgtggtggtg tgtcccattc tgcggcatta
361tgtatgtccc ctgtgcgggg ccaccgggga ccaggcccac acactcaagt actgcccact
421caacggagga cagcagtctc tctaccgccg cagtgggcgc aactcagccg gccgcaaggt
481caagcgctga agaccgtcag gtacccaccc gctgcagccc caaccctccc tggttcagcc
541ctcccaag
NANOS 1牛
XM_005225796
SEQ IDNO:12
AAAAATAEAAPREERAPAWAAEPKLHAASGAAAARLLKPELQVCVFCRNNKEAVALYTTHILKGPDGRVLCPVLRRYTCPLCGASGDNAHTIKYCPLSKVPPPPAARPPPRSARDGLPGKKLR
SEQ ID NO:11
1gccgccgccg cggccaccgc cgaagcagca ccgcgagagg agcgggcccc ggcgtgggcg
61gccgagccca agctgcacgc cgcctccggg gcggccgccg cccggctgct caagcccgag
121ctgcaggtgt gcgtgttttg ccggaacaac aaggaggcgg tggcgctcta caccacccac
181atcctgaagg gacccgacgg gcgggtgctg tgccccgtgc tgcgccggta cacgtgtccc
241ctgtgcggtg ccagcggcga caacgcgcac accatcaagt actgcccgct ttccaaagtg
301ccgccgccgc ctgcagcccg cccgccgccg cgcagcgccc gggacggcct gcccggcaag
361aagctgcgct aagggcccgg accccggtct gctgctgcca cctgatgcca ctggggtagc
421cgcccgccca ctctcgtgtt tggtctgcgc accatctctt cctcgctgcc ggggagtgtg
481gagctcgtct tggtttttcc agaggaagcc gacggtaccg agtattttcc taacgaagag
541cagttgagac tagacgttaa aattttgatt aatgtttcta gtttgtgcac atccagatgg
601tgaaggctgg gtattccact aactgaaatg tggcaactta gaggcgctgt ggtttattta
661tacgtcgacc tattttagat gcgcatcagt atgaaattgt ctcagtctaa tcttggatgt
721ttaattttat gaatggaggc actttactag gtctagaata tttttttaaa agcctctcaa
781ctgaacttaa aactggcgat tttatggagt gtcagcaaaa tgactatttt attgtctgaa
841acaatatttc tgttgtcctt acccagttgt aattccaggt gaagccctgc gtggtagcat
901cattaagtga agacttggta tgctttacag tgttagtttg ggtgggtgtt ccctccttgt
961ggcttgtttt tgtcctagct ggagatgtat aaaatgtaca atttgtaggt agcaggtaga
1021atacagctca tgtaccagat ctttttatta ctgaacgagc aactactacc gtttttcccc
1081tttaaaaata gtgccaagtt ataatcatat tgtgtataca cttgaaaatg gtgctgttta
1141aaaaaattgt gtatttatac agtaacagta tatgaattca ttaaccttgc ctttaactct
1201acttggcttt ttctttatgc cccttcctat tccagttctt caaaaatatg tgatacttaa
1261gatcaaacgg gtgcaataac tcattcactc tgaattgctc catttcaggg tctctaaata
1321gtggaaatct cattccagct gttgcctctc agactaaatg taagatggaa tcctttgagc
1381tctggaaggt taatgaaaca actggtgttc aggaaggttc cactctggac tgtgtcagct
1441ttaaaccatc acagaagtcc tcaaaccagt ataagtacca attaaaggaa ctgactgggt
1501gtaggggggg taacacaagg aacacagcct ccatctattg tgttcccatt ctcattagaa
1561gacaaccctt ctggaatccc accagttatt ttcatcggtg agattaaatc taatcttggg
1621caaa
牛NANOS1(ALT)
XM_001787922
SEQ ID NO:14
RYVSTQGPAHPQPFSSWNDYLGLATLITKAVDGEPRFGCARGGDGGGDGSPPSSSSSSCCSPHVGAGPGALGPALGPPDYDEDDDDDDSDDPGSRSRYLGGALELRALELCADPAEAGLLEERFAELSPFAGRAAAVLLGCAPAAAAAATAEAAPREERAPAWAAEPKLHAASGAAAARLLKPELQVCVFCRNNKEAVALYTTHILKGPDGRVLCPVLRRYTCPLCGASGDNAHTIKYCPLSKVPPPPAARPPPRSARDGLPGKKLR
SEQ ID NO:13
1cgctacgtga gcacccaggg cccggcgcac ccgcagccct tcagctcgtg gaacgactat
61ctgggactcg ccacgctcat caccaaggcg gtggacggcg agccgcgctt cggctgcgcc
121cgcggcgggg acggcggcgg ggacggctcc ccgccttctt cttcctcctc gtcgtgctgc
181tccccccacg tgggggccgg gcctggggcg ctggggcccg cgctggggcc gcccgactac
241gacgaggacg acgacgacga cgacagcgac gatccggggt cccggagccg ctacctgggg
301ggcgcgctgg agctgcgcgc gctggagctg tgcgcggacc ctgccgaggc cgggctgctg
361gaggagcgtt tcgctgagct gagcccgttc gctggtcgcg ccgctgccgt gcttctgggc
421tgcgcacccg ccgccgccgc cgcggccacc gccgaagcag caccgcgaga ggagcgggcc
481ccggcgtggg cggccgagcc caagctgcac gccgcctccg gggcggccgc cgcccggctg
541ctcaagcccg agctgcaggt gtgcgtgttt tgccggaaca acaaggaggc ggtggcgctc
601tacaccaccc acatcctgaa gggacccgac gggcgggtgc tgtgccccgt gctgcgccgg
661tacacgtgtc ccctgtgcgg tgccagcggc gacaacgcgc acaccatcaa gtactgcccg
721ctttccaaag tgccgccgcc gcctgcagcc cgcccgccgc cgcgcagcgc ccgggacggc
781ctgcccggca agaagctgcg ctaagggccc ggaccccggt ctgctgctgc cacctgatgc
841cactggggta gccgcccgcc cactctcgtg tttggtctgc gcaccatctc ttcctcgctg
901ccggggagtg tggagctcgt cttggttttt ccagaggaag ccgacggtac cgagtatttt
961cctaacgaag agcagttgag actagacgtt aaaattttga ttaatgtttc tagtttgtgc
1021acatccagat ggtgaaggct gggtattcca ctaactgaaa tgtggcaact tagaggcgct
1081gtggtttatt tatacgtcga cctattttag atgcgcatca gtatgaaatt gtctcagtct
1141aatcttggat gtttaatttt atgaatggag gcactttact aggtctagaa tattttttta
1201aaagcctctc aactgaactt aaaactggcg attttatgga gtgtcagcaa aatgactatt
1261ttattgtctg aaacaatatt tctgttgtcc ttacccagtt gtaattccag gtgaagccct
1321gcgtggtagc atcattaagt gaagacttgg tatgctttac agtgttagtt tgggtgggtg
1381ttccctcctt gtggcttgtt tttgtcctag ctggagatgt ataaaatgta caatttgtag
1441gtagcaggta gaatacagct catgtaccag atctttttat tactgaacga gcaactacta
1501ccgtttttcc cctttaaaaa tagtgccaag ttataatcat attgtgtata cacttgaaaa
1561tggtgctgtt taaaaaaatt gtgtatttat acagtaacag tatatgaatt cattaacctt
1621gcctttaact ctacttggct ttttctttat gccccttcct attccagttc ttcaaaaata
1681tgtgatactt aagatcaaac gggtgcaata actcattcac tctgaattgc tccatttcag
1741ggtctctaaa tagtggaaat ctcattccag ctgttgcctc tcagactaaa tgtaagatgg
1801aatcctttga gctctggaag gttaatgaaa caactggtgt tcaggaaggt tccactctgg
1861actgtgtcag ctttaaacca tcacagaagt cctcaaacca gtataagtac caattaaagg
1921aactgactgg gtgtaggggg ggtaacacaa ggaacacagc ctccatctat tgtgttccca
1981ttctcattag aagacaaccc ttctggaatc ccaccagtta ttttcatcgg tgagattaaa
2041tctaatcttg ggcaaa
本文引用的所有参考文献均以其全部内容并入作参考。本文揭示的实施例为举例提供,不试图限制本发明的范围。
序列表
序列表
<110> 华盛顿州立大学
马里兰大学
爱丁堡大学董事会
<120> 消除种系细胞的NANOS敲除
<130> P11030WO01
<150> 62/023,996
<151> 2014-07-14
<160> 204
<170> PatentIn version 3.5
<210> 1
<211> 417
<212> DNA
<213> Sus scrofa
<400> 1
atgcagctgc caccctttga catgtggaag gactacttca acctgagcca ggtggtgttg 60
ggactgatcc agaatcgtcg acaagggcca gaggccccgg gcaccgggga gccaagacct 120
gagcccccac tggagcagga ccagggcccg ggagagcggg gggccagcgg ggggctggcc 180
accctgtgca acttttgcaa acacaatggg gaatctcgcc acgtgtactc ctcgcaccag 240
ctgaagacac cggagggcgt ggtggtgtgt cccatcctac gacactatgt gtgtcccctg 300
tgcggggcca ccggtgacca ggctcacaca ctcaagtact gcccgctcaa cggcggccag 360
cagtctctct atcgccgcag tgggcgcaat tcagccggcc gcaaggtcaa gcgctga 417
<210> 2
<211> 138
<212> PRT
<213> Sus scrofa
<400> 2
Met Gln Leu Pro Pro Phe Asp Met Trp Lys Asp Tyr Phe Asn Leu Ser
1 5 10 15
Gln Val Val Leu Gly Leu Ile Gln Asn Arg Arg Gln Gly Pro Glu Ala
20 25 30
Pro Gly Thr Gly Glu Pro Arg Pro Glu Pro Pro Leu Glu Gln Asp Gln
35 40 45
Gly Pro Gly Glu Arg Gly Ala Ser Gly Gly Leu Ala Thr Leu Cys Asn
50 55 60
Phe Cys Lys His Asn Gly Glu Ser Arg His Val Tyr Ser Ser His Gln
65 70 75 80
Leu Lys Thr Pro Glu Gly Val Val Val Cys Pro Ile Leu Arg His Tyr
85 90 95
Val Cys Pro Leu Cys Gly Ala Thr Gly Asp Gln Ala His Thr Leu Lys
100 105 110
Tyr Cys Pro Leu Asn Gly Gly Gln Gln Ser Leu Tyr Arg Arg Ser Gly
115 120 125
Arg Asn Ser Ala Gly Arg Lys Val Lys Arg
130 135
<210> 3
<211> 1073
<212> DNA
<213> Sus scrofa
<400> 3
cagcccaccc agggaccatg cattcctttg gcaggtgcat ttttggagga gcagcagcaa 60
gcccccctgt gacaataagg aacctcccac agcctgctcc tccctcttca cacccccttg 120
gaggtataag gagggaactg acagcccaga ctcctgggct ccagagagag aaagggaggg 180
gcagggggaa ggggatagaa ggacgatctt tggggtggct gggtttcttc tctctctctg 240
ccctttcacc tggtacactt tgcccagcca tggggacctt caacctgtgg acagattacc 300
tgggtttggc acgcctggtg ggggctctgc gtggggaaga ggaacctgag acgaggctgg 360
acccccagcc agcaccagtg ccaggaccag agggtcagag gcccagcccg gaatcctcac 420
cagctcctga acgcctgtgc tctttctgca aacataatgg cgaatcccgg gccatctacc 480
agtcccacgt gctcaaggat gaagcgggcc gagttctgtg ccccattctt cgagactacg 540
tgtgccccca gtgcggtgcc acacgcgagc gtgcccatac ccgccgcttc tgccctctca 600
ccagccaggg ctacacctct gtctacagct acaccacccg caactcggcc ggcaagaagc 660
tggcccgccc ggacaaggcg aggacacagg actctggaca tcggcgagga ggaggaggag 720
gaggtgccag cacaggttcc aaaggtgccg ggaagtcttc tggaacttct ccgtctccct 780
gctgtccctc cacttctgcc taagaggctg gcgcgagcag gacggagatg ctgccttcac 840
ctggggatgg ggacccaggc tcagtggagg ctgggtttca gggacgacct acccttcgcg 900
gatccgcccc tgcccccagc ctgggagccc tgcaagggag ccaggcctgg aagctcggcc 960
aaaagagagc cgctcctttc tccccatctc ccaccccaag aaaggaggtg gtcctctggc 1020
aaccctgccc tccttcccca gcgctgggca cccagttagc actcaataaa tac 1073
<210> 4
<211> 261
<212> PRT
<213> Sus scrofa
<400> 4
Met His Ser Phe Gly Arg Cys Ile Phe Gly Gly Ala Ala Ala Ser Pro
1 5 10 15
Pro Val Thr Ile Arg Asn Leu Pro Gln Pro Ala Pro Pro Ser Ser His
20 25 30
Pro Leu Gly Gly Ile Arg Arg Glu Leu Thr Ala Gln Thr Pro Gly Leu
35 40 45
Gln Arg Glu Lys Gly Arg Gly Arg Gly Lys Gly Ile Glu Gly Arg Ser
50 55 60
Leu Gly Trp Leu Gly Phe Phe Ser Leu Ser Ala Leu Ser Pro Gly Thr
65 70 75 80
Leu Cys Pro Ala Met Gly Thr Phe Asn Leu Trp Thr Asp Tyr Leu Gly
85 90 95
Leu Ala Arg Leu Val Gly Ala Leu Arg Gly Glu Glu Glu Pro Glu Thr
100 105 110
Arg Leu Asp Pro Gln Pro Ala Pro Val Pro Gly Pro Glu Gly Gln Arg
115 120 125
Pro Ser Pro Glu Ser Ser Pro Ala Pro Glu Arg Leu Cys Ser Phe Cys
130 135 140
Lys His Asn Gly Glu Ser Arg Ala Ile Tyr Gln Ser His Val Leu Lys
145 150 155 160
Asp Glu Ala Gly Arg Val Leu Cys Pro Ile Leu Arg Asp Tyr Val Cys
165 170 175
Pro Gln Cys Gly Ala Thr Arg Glu Arg Ala His Thr Arg Arg Phe Cys
180 185 190
Pro Leu Thr Ser Gln Gly Tyr Thr Ser Val Tyr Ser Tyr Thr Thr Arg
195 200 205
Asn Ser Ala Gly Lys Lys Leu Ala Arg Pro Asp Lys Ala Arg Thr Gln
210 215 220
Asp Ser Gly His Arg Arg Gly Gly Gly Gly Gly Gly Ala Ser Thr Gly
225 230 235 240
Ser Lys Gly Ala Gly Lys Ser Ser Gly Thr Ser Pro Ser Pro Cys Cys
245 250 255
Pro Ser Thr Ser Ala
260
<210> 5
<211> 1906
<212> DNA
<213> Sus scrofa
<400> 5
cgcagggggc agggccgcgg cagcgaggcc ggggggcggg gaggagcggg gcccgataaa 60
aggcagcgag gcggccccac cccgctgcag gccggcgggc aggctcggcg cgtcctttcc 120
gtccggcccg cgccggcggc ggggaggcgg cgcgcgcggc ccgcagcccg cccatggagg 180
ctttcccctg ggcgccccgc tcgccccgcc gcggccgcgt ccccccgccc atggcgctcg 240
tgcccagcgc ccgctacgtg agcgcccagg gcccggcgca cccgcaaccc ttcagctcgt 300
ggaacgacta cctgggactc gccacgctca tcaccaaggc ggtggacggc gagccgcgct 360
ttggctgcgc ccgcggcgag gacggcggcg gcggcggcgg ctccccaccc tcctcttcct 420
cctcgtcgtg ctgctccccc cacgcggggg ccgggcctgg ggcgctgggg cccgcgctgg 480
ggccacccga ctacgacgag gacgacgacg acgacagcga cgagccgggg tcccggggcc 540
gctacctggg gggcacgctg gagctgcgcg cgctggagct gtgcgcggac ccctcggagg 600
ccgggctgct ggaggagcgc ttcgccgagc tgagcccgtt cgcgggtcgc gccaccgctg 660
tgctgctggg ctgggcaccc gccactgccg ccaccgccga ggcggcaccg cgcgaggagc 720
gggccccggc gtgggcggcc gagccccggc tgcacgcagc ctttggggcg gccggcgccc 780
ggctgctcaa gcccgagctg caggtgtgtg tgttttgccg gaacaacaag gaggcggtgg 840
cgctctacac cacccacatc ttgaagggac ccgacgggcg agtgctgtgc cccgtgctgc 900
gccgctacac gtgtcccctg tgcggcgcca gcggcgacaa cgcgcacacc atcaagtact 960
gcccgctctc caaagtgccg ccgccgcgca gcgtcaggga cggcctgccc ggcaagaagc 1020
tgcgctgagg gcccggactc cggtctgcta ctgccacctg acgccaccag ggtcgccgcc 1080
tgcccaatgt ctagtttggc ctgcgcacca tctctctctc tcgctgctga ggagcgtgga 1140
gctcagctgt tggttgaact tgagatgtac tgattttttt tttttttttt tcaaaagaac 1200
ccggcggtac tgagtccttt cctgtcgaag agcgcttaag actagaagct aaaatcttga 1260
tttgtttatc tctagtttgt gcacatccag acggtgaagg ctgggtgttc gttccactaa 1320
ctgaaatgtg gcaacttaga agtgtttatt tactctatac gtcaacctat tttagatgcg 1380
catcagtata tgaaattgtc tcaatctaat cttggatgtt taattttatg aatggaggca 1440
ctttactagg cctagaatat ttttttaaaa gcctctaaac tgaacttaac tggcgatttt 1500
atggaatgtc agcaaaatga cttttattgt ttgaaacaag taataatatt tctgttgtcc 1560
ttaatcagtt attctaattc caggtgaagc aaccctcacc tgcctggtag catcattaag 1620
tgaaggctta gtaaactttc cagtgttagt ttgggtgggt gttccccccg tggcttgttt 1680
ctgtcctagc tggaggtgta aagatgtaca atctgtggca ggtagaatac agctccttat 1740
ccttttatgt accacatctt ttattactga acgagcaact agcgtttccc atctttcaaa 1800
gtcgtgccag gttatataat attgtgtata cacttggaaa tggtgctgtt taaaagaatt 1860
tgtgtattta tacagtaaca gtatatgaat tcattaatct tgtctt 1906
<210> 6
<211> 284
<212> PRT
<213> Sus scrofa
<400> 6
Met Glu Ala Phe Pro Trp Ala Pro Arg Ser Pro Arg Arg Gly Arg Val
1 5 10 15
Pro Pro Pro Met Ala Leu Val Pro Ser Ala Arg Tyr Val Ser Ala Gln
20 25 30
Gly Pro Ala His Pro Gln Pro Phe Ser Ser Trp Asn Asp Tyr Leu Gly
35 40 45
Leu Ala Thr Leu Ile Thr Lys Ala Val Asp Gly Glu Pro Arg Phe Gly
50 55 60
Cys Ala Arg Gly Glu Asp Gly Gly Gly Gly Gly Gly Ser Pro Pro Ser
65 70 75 80
Ser Ser Ser Ser Ser Cys Cys Ser Pro His Ala Gly Ala Gly Pro Gly
85 90 95
Ala Leu Gly Pro Ala Leu Gly Pro Pro Asp Tyr Asp Glu Asp Asp Asp
100 105 110
Asp Asp Ser Asp Glu Pro Gly Ser Arg Gly Arg Tyr Leu Gly Gly Thr
115 120 125
Leu Glu Leu Arg Ala Leu Glu Leu Cys Ala Asp Pro Ser Glu Ala Gly
130 135 140
Leu Leu Glu Glu Arg Phe Ala Glu Leu Ser Pro Phe Ala Gly Arg Ala
145 150 155 160
Thr Ala Val Leu Leu Gly Trp Ala Pro Ala Thr Ala Ala Thr Ala Glu
165 170 175
Ala Ala Pro Arg Glu Glu Arg Ala Pro Ala Trp Ala Ala Glu Pro Arg
180 185 190
Leu His Ala Ala Phe Gly Ala Ala Gly Ala Arg Leu Leu Lys Pro Glu
195 200 205
Leu Gln Val Cys Val Phe Cys Arg Asn Asn Lys Glu Ala Val Ala Leu
210 215 220
Tyr Thr Thr His Ile Leu Lys Gly Pro Asp Gly Arg Val Leu Cys Pro
225 230 235 240
Val Leu Arg Arg Tyr Thr Cys Pro Leu Cys Gly Ala Ser Gly Asp Asn
245 250 255
Ala His Thr Ile Lys Tyr Cys Pro Leu Ser Lys Val Pro Pro Pro Arg
260 265 270
Ser Val Arg Asp Gly Leu Pro Gly Lys Lys Leu Arg
275 280
<210> 7
<211> 23
<212> DNA
<213> Sus scrofa
<400> 7
gaagacaccg gagggcgtgg tgg 23
<210> 8
<211> 23
<212> DNA
<213> Sus scrofa
<400> 8
gaatcgtcga caagggccag agg 23
<210> 9
<211> 548
<212> DNA
<213> Bovine
<400> 9
tcagctgctc ctgtctgcgg gcccccagcc cacttctctc cagccaccca ccaccaacac 60
tcccccgggt gccatgcagc tgccaccctt tgacatgtgg aaggactact tcaacctgag 120
ccaagtggtg ctggcactga tccagagtcg ggggcaaggg ttggagaccc aagggactgg 180
ggagccgaga cccgggcccc atgtggagca ggatcagggg cagggcggac gcggggctgg 240
cgggggcctg gccaccctgt gcaacttttg caaacacaat ggagagtctc gccacgtgta 300
ctcctcacac cagctgaaga ccccggaggg cgtggtggtg tgtcccattc tgcggcatta 360
tgtatgtccc ctgtgcgggg ccaccgggga ccaggcccac acactcaagt actgcccact 420
caacggagga cagcagtctc tctaccgccg cagtgggcgc aactcagccg gccgcaaggt 480
caagcgctga agaccgtcag gtacccaccc gctgcagccc caaccctccc tggttcagcc 540
ctcccaag 548
<210> 10
<211> 138
<212> PRT
<213> Bovine
<400> 10
Met Gln Leu Pro Pro Phe Asp Met Trp Lys Asp Tyr Phe Asn Leu Ser
1 5 10 15
Gln Val Val Leu Ala Leu Ile Gln Ser Arg Gly Gln Gly Leu Glu Thr
20 25 30
Gln Gly Thr Gly Glu Pro Arg Pro Gly Pro His Val Glu Gln Asp Gln
35 40 45
Gly Gln Gly Gly Arg Gly Ala Gly Gly Gly Leu Ala Thr Leu Cys Asn
50 55 60
Phe Cys Lys His Asn Gly Glu Ser Arg His Val Tyr Ser Ser His Gln
65 70 75 80
Leu Lys Thr Pro Glu Gly Val Val Val Cys Pro Ile Leu Arg His Tyr
85 90 95
Val Cys Pro Leu Cys Gly Ala Thr Gly Asp Gln Ala His Thr Leu Lys
100 105 110
Tyr Cys Pro Leu Asn Gly Gly Gln Gln Ser Leu Tyr Arg Arg Ser Gly
115 120 125
Arg Asn Ser Ala Gly Arg Lys Val Lys Arg
130 135
<210> 11
<211> 1624
<212> DNA
<213> Bovine
<400> 11
gccgccgccg cggccaccgc cgaagcagca ccgcgagagg agcgggcccc ggcgtgggcg 60
gccgagccca agctgcacgc cgcctccggg gcggccgccg cccggctgct caagcccgag 120
ctgcaggtgt gcgtgttttg ccggaacaac aaggaggcgg tggcgctcta caccacccac 180
atcctgaagg gacccgacgg gcgggtgctg tgccccgtgc tgcgccggta cacgtgtccc 240
ctgtgcggtg ccagcggcga caacgcgcac accatcaagt actgcccgct ttccaaagtg 300
ccgccgccgc ctgcagcccg cccgccgccg cgcagcgccc gggacggcct gcccggcaag 360
aagctgcgct aagggcccgg accccggtct gctgctgcca cctgatgcca ctggggtagc 420
cgcccgccca ctctcgtgtt tggtctgcgc accatctctt cctcgctgcc ggggagtgtg 480
gagctcgtct tggtttttcc agaggaagcc gacggtaccg agtattttcc taacgaagag 540
cagttgagac tagacgttaa aattttgatt aatgtttcta gtttgtgcac atccagatgg 600
tgaaggctgg gtattccact aactgaaatg tggcaactta gaggcgctgt ggtttattta 660
tacgtcgacc tattttagat gcgcatcagt atgaaattgt ctcagtctaa tcttggatgt 720
ttaattttat gaatggaggc actttactag gtctagaata tttttttaaa agcctctcaa 780
ctgaacttaa aactggcgat tttatggagt gtcagcaaaa tgactatttt attgtctgaa 840
acaatatttc tgttgtcctt acccagttgt aattccaggt gaagccctgc gtggtagcat 900
cattaagtga agacttggta tgctttacag tgttagtttg ggtgggtgtt ccctccttgt 960
ggcttgtttt tgtcctagct ggagatgtat aaaatgtaca atttgtaggt agcaggtaga 1020
atacagctca tgtaccagat ctttttatta ctgaacgagc aactactacc gtttttcccc 1080
tttaaaaata gtgccaagtt ataatcatat tgtgtataca cttgaaaatg gtgctgttta 1140
aaaaaattgt gtatttatac agtaacagta tatgaattca ttaaccttgc ctttaactct 1200
acttggcttt ttctttatgc cccttcctat tccagttctt caaaaatatg tgatacttaa 1260
gatcaaacgg gtgcaataac tcattcactc tgaattgctc catttcaggg tctctaaata 1320
gtggaaatct cattccagct gttgcctctc agactaaatg taagatggaa tcctttgagc 1380
tctggaaggt taatgaaaca actggtgttc aggaaggttc cactctggac tgtgtcagct 1440
ttaaaccatc acagaagtcc tcaaaccagt ataagtacca attaaaggaa ctgactgggt 1500
gtaggggggg taacacaagg aacacagcct ccatctattg tgttcccatt ctcattagaa 1560
gacaaccctt ctggaatccc accagttatt ttcatcggtg agattaaatc taatcttggg 1620
caaa 1624
<210> 12
<211> 123
<212> PRT
<213> Bovine
<400> 12
Ala Ala Ala Ala Ala Thr Ala Glu Ala Ala Pro Arg Glu Glu Arg Ala
1 5 10 15
Pro Ala Trp Ala Ala Glu Pro Lys Leu His Ala Ala Ser Gly Ala Ala
20 25 30
Ala Ala Arg Leu Leu Lys Pro Glu Leu Gln Val Cys Val Phe Cys Arg
35 40 45
Asn Asn Lys Glu Ala Val Ala Leu Tyr Thr Thr His Ile Leu Lys Gly
50 55 60
Pro Asp Gly Arg Val Leu Cys Pro Val Leu Arg Arg Tyr Thr Cys Pro
65 70 75 80
Leu Cys Gly Ala Ser Gly Asp Asn Ala His Thr Ile Lys Tyr Cys Pro
85 90 95
Leu Ser Lys Val Pro Pro Pro Pro Ala Ala Arg Pro Pro Pro Arg Ser
100 105 110
Ala Arg Asp Gly Leu Pro Gly Lys Lys Leu Arg
115 120
<210> 13
<211> 2056
<212> DNA
<213> Bovine
<400> 13
cgctacgtga gcacccaggg cccggcgcac ccgcagccct tcagctcgtg gaacgactat 60
ctgggactcg ccacgctcat caccaaggcg gtggacggcg agccgcgctt cggctgcgcc 120
cgcggcgggg acggcggcgg ggacggctcc ccgccttctt cttcctcctc gtcgtgctgc 180
tccccccacg tgggggccgg gcctggggcg ctggggcccg cgctggggcc gcccgactac 240
gacgaggacg acgacgacga cgacagcgac gatccggggt cccggagccg ctacctgggg 300
ggcgcgctgg agctgcgcgc gctggagctg tgcgcggacc ctgccgaggc cgggctgctg 360
gaggagcgtt tcgctgagct gagcccgttc gctggtcgcg ccgctgccgt gcttctgggc 420
tgcgcacccg ccgccgccgc cgcggccacc gccgaagcag caccgcgaga ggagcgggcc 480
ccggcgtggg cggccgagcc caagctgcac gccgcctccg gggcggccgc cgcccggctg 540
ctcaagcccg agctgcaggt gtgcgtgttt tgccggaaca acaaggaggc ggtggcgctc 600
tacaccaccc acatcctgaa gggacccgac gggcgggtgc tgtgccccgt gctgcgccgg 660
tacacgtgtc ccctgtgcgg tgccagcggc gacaacgcgc acaccatcaa gtactgcccg 720
ctttccaaag tgccgccgcc gcctgcagcc cgcccgccgc cgcgcagcgc ccgggacggc 780
ctgcccggca agaagctgcg ctaagggccc ggaccccggt ctgctgctgc cacctgatgc 840
cactggggta gccgcccgcc cactctcgtg tttggtctgc gcaccatctc ttcctcgctg 900
ccggggagtg tggagctcgt cttggttttt ccagaggaag ccgacggtac cgagtatttt 960
cctaacgaag agcagttgag actagacgtt aaaattttga ttaatgtttc tagtttgtgc 1020
acatccagat ggtgaaggct gggtattcca ctaactgaaa tgtggcaact tagaggcgct 1080
gtggtttatt tatacgtcga cctattttag atgcgcatca gtatgaaatt gtctcagtct 1140
aatcttggat gtttaatttt atgaatggag gcactttact aggtctagaa tattttttta 1200
aaagcctctc aactgaactt aaaactggcg attttatgga gtgtcagcaa aatgactatt 1260
ttattgtctg aaacaatatt tctgttgtcc ttacccagtt gtaattccag gtgaagccct 1320
gcgtggtagc atcattaagt gaagacttgg tatgctttac agtgttagtt tgggtgggtg 1380
ttccctcctt gtggcttgtt tttgtcctag ctggagatgt ataaaatgta caatttgtag 1440
gtagcaggta gaatacagct catgtaccag atctttttat tactgaacga gcaactacta 1500
ccgtttttcc cctttaaaaa tagtgccaag ttataatcat attgtgtata cacttgaaaa 1560
tggtgctgtt taaaaaaatt gtgtatttat acagtaacag tatatgaatt cattaacctt 1620
gcctttaact ctacttggct ttttctttat gccccttcct attccagttc ttcaaaaata 1680
tgtgatactt aagatcaaac gggtgcaata actcattcac tctgaattgc tccatttcag 1740
ggtctctaaa tagtggaaat ctcattccag ctgttgcctc tcagactaaa tgtaagatgg 1800
aatcctttga gctctggaag gttaatgaaa caactggtgt tcaggaaggt tccactctgg 1860
actgtgtcag ctttaaacca tcacagaagt cctcaaacca gtataagtac caattaaagg 1920
aactgactgg gtgtaggggg ggtaacacaa ggaacacagc ctccatctat tgtgttccca 1980
ttctcattag aagacaaccc ttctggaatc ccaccagtta ttttcatcgg tgagattaaa 2040
tctaatcttg ggcaaa 2056
<210> 14
<211> 267
<212> PRT
<213> Bovine
<400> 14
Arg Tyr Val Ser Thr Gln Gly Pro Ala His Pro Gln Pro Phe Ser Ser
1 5 10 15
Trp Asn Asp Tyr Leu Gly Leu Ala Thr Leu Ile Thr Lys Ala Val Asp
20 25 30
Gly Glu Pro Arg Phe Gly Cys Ala Arg Gly Gly Asp Gly Gly Gly Asp
35 40 45
Gly Ser Pro Pro Ser Ser Ser Ser Ser Ser Cys Cys Ser Pro His Val
50 55 60
Gly Ala Gly Pro Gly Ala Leu Gly Pro Ala Leu Gly Pro Pro Asp Tyr
65 70 75 80
Asp Glu Asp Asp Asp Asp Asp Asp Ser Asp Asp Pro Gly Ser Arg Ser
85 90 95
Arg Tyr Leu Gly Gly Ala Leu Glu Leu Arg Ala Leu Glu Leu Cys Ala
100 105 110
Asp Pro Ala Glu Ala Gly Leu Leu Glu Glu Arg Phe Ala Glu Leu Ser
115 120 125
Pro Phe Ala Gly Arg Ala Ala Ala Val Leu Leu Gly Cys Ala Pro Ala
130 135 140
Ala Ala Ala Ala Ala Thr Ala Glu Ala Ala Pro Arg Glu Glu Arg Ala
145 150 155 160
Pro Ala Trp Ala Ala Glu Pro Lys Leu His Ala Ala Ser Gly Ala Ala
165 170 175
Ala Ala Arg Leu Leu Lys Pro Glu Leu Gln Val Cys Val Phe Cys Arg
180 185 190
Asn Asn Lys Glu Ala Val Ala Leu Tyr Thr Thr His Ile Leu Lys Gly
195 200 205
Pro Asp Gly Arg Val Leu Cys Pro Val Leu Arg Arg Tyr Thr Cys Pro
210 215 220
Leu Cys Gly Ala Ser Gly Asp Asn Ala His Thr Ile Lys Tyr Cys Pro
225 230 235 240
Leu Ser Lys Val Pro Pro Pro Pro Ala Ala Arg Pro Pro Pro Arg Ser
245 250 255
Ala Arg Asp Gly Leu Pro Gly Lys Lys Leu Arg
260 265
<210> 15
<211> 482
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic polynucleotide
<400> 15
agttaactaa gctttgtaca aaaaagcagg ctttaaagga accaattcag tcgactggat 60
ccggtaccaa ggtcgggcag gaagagggcc tatttcccat gattccttca tatttgcata 120
tacgatacaa ggctgttaga gagataatta gaattaattt gactgtaaac acaaagatat 180
tagtacaaaa tacgtgacgt agaaagtaat aatttcttgg gtagtttgca gttttaaaat 240
tatgttttaa aatggactat catatgctta ccgtaacttg aaagtatttc gatttcttgg 300
ctttatatat cttgtggaaa ggacgaaaca ccgaatcgtc gacaagggcc aggttttaga 360
gctagaaata gcaagttaaa ataaggctag tccgttatca acttgaaaaa gtggcaccga 420
gtcggtgctt tttttctaga cccagctttc ttgtacaaag ttggcattac tcgagatcca 480
ct 482
<210> 16
<211> 482
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic polynucleotide
<400> 16
agttaactaa gctttgtaca aaaaagcagg ctttaaagga accaattcag tcgactggat 60
ccggtaccaa ggtcgggcag gaagagggcc tatttcccat gattccttca tatttgcata 120
tacgatacaa ggctgttaga gagataatta gaattaattt gactgtaaac acaaagatat 180
tagtacaaaa tacgtgacgt agaaagtaat aatttcttgg gtagtttgca gttttaaaat 240
tatgttttaa aatggactat catatgctta ccgtaacttg aaagtatttc gatttcttgg 300
ctttatatat cttgtggaaa ggacgaaaca ccgaatcgtc gacaagggcc aggttttaga 360
gctagaaata gcaagttaaa ataaggctag tccgttatca acttgaaaaa gtggcaccga 420
gtcggtgctt tttttctaga cccagctttc ttgtacaaag ttggcattac tcgagatcca 480
ct 482
<210> 17
<211> 482
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic polynucleotide
<400> 17
agttaactaa gctttgtaca aaaaagcagg ctttaaagga accaattcag tcgactggat 60
ccggtaccaa ggtcgggcag gaagagggcc tatttcccat gattccttca tatttgcata 120
tacgatacaa ggctgttaga gagataatta gaattaattt gactgtaaac acaaagatat 180
tagtacaaaa tacgtgacgt agaaagtaat aatttcttgg gtagtttgca gttttaaaat 240
tatgttttaa aatggactat catatgctta ccgtaacttg aaagtatttc gatttcttgg 300
ctttatatat cttgtggaaa ggacgaaaca ccgtggccct tgtcgacgat tcgttttaga 360
gctagaaata gcaagttaaa ataaggctag tccgttatca acttgaaaaa gtggcaccga 420
gtcggtgctt tttttctaga cccagctttc ttgtacaaag ttggcattac tcgagatcca 480
ct 482
<210> 18
<211> 318
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic polynucleotide
<400> 18
tgtacaaaaa agcaggcttt aaaggaacca attcagtcga ctggatccgg taccaaggtc 60
gggcaggaag agggcctatt tcccatgatt ccttcatatt tgcatatacg atacaaggct 120
gttagagaga taattagaat taatttgact gtaaacacaa agatattagt acaaaatacg 180
tgacgtagaa agtaataatt tcttgggtag tttgcagttt taaaattatg ttttaaaatg 240
gactatcata tgcttaccgt aacttgaaag tatttcgatt tcttggcttt atatatcttg 300
tggaaaggac gaaacacc 318
<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide
<400> 19
gtggcccttg tcgacgattc 20
<210> 20
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic polynucleotide
<400> 20
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtgc 76
<210> 21
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide
<220>
<221> misc_feature
<222> (8)..(10)
<223> n is a, c, g, or t
<400> 21
tttttttnnn 10
<210> 22
<211> 360
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic polynucleotide
<400> 22
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300
gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttg ttttagagct 360
<210> 23
<211> 240
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide
<400> 23
tttcccatga ttccttcata tttgcatata cgatacaagg ctgttagaga gataattgga 60
attaatttga ctgtaaacac aaagatatta gtacaaaata cgtgacgtag aaagtaataa 120
tttcttgggt agtttgcagt tttaaaatta tgttttaaaa tggactatca tatgcttacc 180
gtaacttgaa agtatttcga tttcttggct ttatatatct tgtggaaagg acgaaacacc 240
<210> 24
<211> 76
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide
<400> 24
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtgc 76
<210> 25
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide
<220>
<221> misc_feature
<222> (7)..(10)
<223> n is a, c, g, or t
<400> 25
ttttttnnnn 10
<210> 26
<211> 61
<212> DNA
<213> Sus scrofa
<400> 26
cccggtgccc ggggcctctg gcccttgtcg acgattctgg atcagtccca acaccacctg 60
g 61
<210> 27
<211> 61
<212> DNA
<213> Sus scrofa
<400> 27
cccggtgccc ggggcccttg tcgacgatca gcccttctgg atcagtccca acaccacctg 60
g 61
<210> 28
<211> 356
<212> DNA
<213> Sus scrofa
<400> 28
tcagcgcttg accttgcggc cggctgaatt gcgcccactg cggcgataga gagactgctg 60
gccgccgttg agcgggcagt acttgagtgt gtgagcctgg tcaccggtgg ccccgcacag 120
gggacacaca tagtgtcgta ggatgggaca caccaccacg ccctccggtg tcttcagctg 180
gtgcgaggag tacacgtggc gagattcccc attgtgtttg caaaagttgc acagggtggc 240
cagccccccg ctggcccccc gctctcccgg gccctggtcc tgctccagtg ggggctcagg 300
tcttggctcc tcaggttgaa gtagtccttc cacatgtcaa agggtggcag ctgcat 356
<210> 29
<211> 56
<212> DNA
<213> Sus scrofa
<400> 29
ttggctcccc ggtgcccggg gcctctggcc cttgtcgacg attctggatc agtccc 56
<210> 30
<211> 56
<212> DNA
<213> Sus scrofa
<400> 30
ttggctcccc ggtgcccggg gcctctggcc cttgtcgacg attctggatc agtccc 56
<210> 31
<211> 49
<212> DNA
<213> Sus scrofa
<400> 31
ttggctcccc ggtgcccggg gcctctgtcg acgattctgg atcagtccc 49
<210> 32
<211> 49
<212> DNA
<213> Sus scrofa
<400> 32
ttggctcccc ggtgcccggg gcctctgtcg acgattctgg atcagtccc 49
<210> 33
<211> 55
<212> DNA
<213> Sus scrofa
<400> 33
ttggctcccg gtgcccgggg cctctggccc ttgtcgacga ttctggatca gtccc 55
<210> 34
<211> 54
<212> DNA
<213> Sus scrofa
<400> 34
ttggctcccc ggtgcccggg gcctctgccc ttgtccacaa ttctggatca tccc 54
<210> 35
<211> 49
<212> DNA
<213> Sus scrofa
<400> 35
ttggctcccc ggtgcccggg gcctctgtcg acgattctgg atcagtccc 49
<210> 36
<211> 49
<212> DNA
<213> Sus scrofa
<400> 36
ttggctcccc ggtgcccggt gcccttgtcg acgattctgg atcagtccc 49
<210> 37
<211> 49
<212> DNA
<213> Sus scrofa
<400> 37
ttggctcccc ggtgcccggg gcccttgtcg acgattctgg atcagtccc 49
<210> 38
<211> 54
<212> DNA
<213> Sus scrofa
<400> 38
ttggctcccc ggtgcccggg gcctctgcct tgtcgacgat tctggatcag tccc 54
<210> 39
<211> 49
<212> DNA
<213> Sus scrofa
<400> 39
ttggctcccc ggtgcccggg gcctctgtcg acgattctgg atcagtccc 49
<210> 40
<211> 50
<212> DNA
<213> Sus scrofa
<400> 40
ttggctcccc ggtgcccggg gccccttgtc gacgattctg gatcagtccc 50
<210> 41
<211> 55
<212> DNA
<213> Sus scrofa
<400> 41
ttggctcccc ggtgcccggg gcctctgccc ttgtcgtcaa ttctggatca gtccc 55
<210> 42
<211> 49
<212> DNA
<213> Sus scrofa
<400> 42
ttggctcccc ggtgcccggg gcctctgtcg acaattctgg atcagtccc 49
<210> 43
<211> 9289
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic polynucleotide
<400> 43
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300
gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttg ttttagagct 360
agaaatagca agttaaaata aggctagtcc gtttttagcg cgtgcgccaa ttctgcagac 420
aaatggctct agaggtaccc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 480
ccaacgaccc ccgcccattg acgtcaatag taacgccaat agggactttc cattgacgtc 540
aatgggtgga gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc 600
caagtacgcc ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tgtgcccagt 660
acatgacctt atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta 720
ccatggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac 780
ccccaatttt gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg 840
ggggggggcg cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga 900
gaggtgcggc ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc 960
ggcggcggcg gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgacgc 1020
tgccttcgcc ccgtgccccg ctccgccgcc gcctcgcgcc gcccgccccg gctctgactg 1080
accgcgttac tcccacaggt gagcgggcgg gacggccctt ctcctccggg ctgtaattag 1140
ctgagcaaga ggtaagggtt taagggatgg ttggttggtg gggtattaat gtttaattac 1200
ctggagcacc tgcctgaaat caatgacgat aagatggccc caaagaagaa gcggaaggtc 1260
ggtatccacg gagtcccagc agccgacaag aagtacagca tcggcctgga catcggcacc 1320
aactctgtgg gctgggccgt gatcaccgac gagtacaagg tgcccagcaa gaaattcaag 1380
gtgctgggca acaccgaccg gcacagcatc aagaagaacc tgatcggagc cctgctgttc 1440
gacagcggcg aaacagccga ggccacccgg ctgaagagaa ccgccagaag aagatacacc 1500
agacggaaga accggatctg ctatctgcaa gagatcttca gcaacgagat ggccaaggtg 1560
gacgacagct tcttccacag actggaagag tccttcctgg tggaagagga taagaagcac 1620
gagcggcacc ccatcttcgg caacatcgtg gacgaggtgg cctaccacga gaagtacccc 1680
accatctacc acctgagaaa gaaactggtg gacagcaccg acaaggccga cctgcggctg 1740
atctatctgg ccctggccca catgatcaag ttccggggcc acttcctgat cgagggcgac 1800
ctgaaccccg acaacagcga cgtggacaag ctgttcatcc agctggtgca gacctacaac 1860
cagctgttcg aggaaaaccc catcaacgcc agcggcgtgg acgccaaggc catcctgtct 1920
gccagactga gcaagagcag acggctggaa aatctgatcg cccagctgcc cggcgagaag 1980
aagaatggcc tgttcggaaa cctgattgcc ctgagcctgg gcctgacccc caacttcaag 2040
agcaacttcg acctggccga ggatgccaaa ctgcagctga gcaaggacac ctacgacgac 2100
gacctggaca acctgctggc ccagatcggc gaccagtacg ccgacctgtt tctggccgcc 2160
aagaacctgt ccgacgccat cctgctgagc gacatcctga gagtgaacac cgagatcacc 2220
aaggcccccc tgagcgcctc tatgatcaag agatacgacg agcaccacca ggacctgacc 2280
ctgctgaaag ctctcgtgcg gcagcagctg cctgagaagt acaaagagat tttcttcgac 2340
cagagcaaga acggctacgc cggctacatt gacggcggag ccagccagga agagttctac 2400
aagttcatca agcccatcct ggaaaagatg gacggcaccg aggaactgct cgtgaagctg 2460
aacagagagg acctgctgcg gaagcagcgg accttcgaca acggcagcat cccccaccag 2520
atccacctgg gagagctgca cgccattctg cggcggcagg aagattttta cccattcctg 2580
aaggacaacc gggaaaagat cgagaagatc ctgaccttcc gcatccccta ctacgtgggc 2640
cctctggcca ggggaaacag cagattcgcc tggatgacca gaaagagcga ggaaaccatc 2700
accccctgga acttcgagga agtggtggac aagggcgctt ccgcccagag cttcatcgag 2760
cggatgacca acttcgataa gaacctgccc aacgagaagg tgctgcccaa gcacagcctg 2820
ctgtacgagt acttcaccgt gtataacgag ctgaccaaag tgaaatacgt gaccgaggga 2880
atgagaaagc ccgccttcct gagcggcgag cagaaaaagg ccatcgtgga cctgctgttc 2940
aagaccaacc ggaaagtgac cgtgaagcag ctgaaagagg actacttcaa gaaaatcgag 3000
tgcttcgact ccgtggaaat ctccggcgtg gaagatcggt tcaacgcctc cctgggcaca 3060
taccacgatc tgctgaaaat tatcaaggac aaggacttcc tggacaatga ggaaaacgag 3120
gacattctgg aagatatcgt gctgaccctg acactgtttg aggacagaga gatgatcgag 3180
gaacggctga aaacctatgc ccacctgttc gacgacaaag tgatgaagca gctgaagcgg 3240
cggagataca ccggctgggg caggctgagc cggaagctga tcaacggcat ccgggacaag 3300
cagtccggca agacaatcct ggatttcctg aagtccgacg gcttcgccaa cagaaacttc 3360
atgcagctga tccacgacga cagcctgacc tttaaagagg acatccagaa agcccaggtg 3420
tccggccagg gcgatagcct gcacgagcac attgccaatc tggccggcag ccccgccatt 3480
aagaagggca tcctgcagac agtgaaggtg gtggacgagc tcgtgaaagt gatgggccgg 3540
cacaagcccg agaacatcgt gatcgaaatg gccagagaga accagaccac ccagaaggga 3600
cagaagaaca gccgcgagag aatgaagcgg atcgaagagg gcatcaaaga gctgggcagc 3660
cagatcctga aagaacaccc cgtggaaaac acccagctgc agaacgagaa gctgtacctg 3720
tactacctgc agaatgggcg ggatatgtac gtggaccagg aactggacat caaccggctg 3780
tccgactacg atgtggacca tatcgtgcct cagagctttc tgaaggacga ctccatcgac 3840
aacaaggtgc tgaccagaag cgacaagaac cggggcaaga gcgacaacgt gccctccgaa 3900
gaggtcgtga agaagatgaa gaactactgg cggcagctgc tgaacgccaa gctgattacc 3960
cagagaaagt tcgacaatct gaccaaggcc gagagaggcg gcctgagcga actggataag 4020
gccggcttca tcaagagaca gctggtggaa acccggcaga tcacaaagca cgtggcacag 4080
atcctggact cccggatgaa cactaagtac gacgagaatg acaagctgat ccgggaagtg 4140
aaagtgatca ccctgaagtc caagctggtg tccgatttcc ggaaggattt ccagttttac 4200
aaagtgcgcg agatcaacaa ctaccaccac gcccacgacg cctacctgaa cgccgtcgtg 4260
ggaaccgccc tgatcaaaaa gtaccctaag ctggaaagcg agttcgtgta cggcgactac 4320
aaggtgtacg acgtgcggaa gatgatcgcc aagagcgagc aggaaatcgg caaggctacc 4380
gccaagtact tcttctacag caacatcatg aactttttca agaccgagat taccctggcc 4440
aacggcgaga tccggaagcg gcctctgatc gagacaaacg gcgaaaccgg ggagatcgtg 4500
tgggataagg gccgggattt tgccaccgtg cggaaagtgc tgagcatgcc ccaagtgaat 4560
atcgtgaaaa agaccgaggt gcagacaggc ggcttcagca aagagtctat cctgcccaag 4620
aggaacagcg ataagctgat cgccagaaag aaggactggg accctaagaa gtacggcggc 4680
ttcgacagcc ccaccgtggc ctattctgtg ctggtggtgg ccaaagtgga aaagggcaag 4740
tccaagaaac tgaagagtgt gaaagagctg ctggggatca ccatcatgga aagaagcagc 4800
ttcgagaaga atcccatcga ctttctggaa gccaagggct acaaagaagt gaaaaaggac 4860
ctgatcatca agctgcctaa gtactccctg ttcgagctgg aacttttttt caggttggac 4920
cggtgccacc atggactata aggaccacga cggagactac aaggatcatg atattgatta 4980
caaagacgaa cggccggaag agaatgctgg cctctgccgg cgaactgcag aagggaaacg 5040
aactggccct gccctccaaa tatgtgaact tcctgtacct ggccagccac tatgagaagc 5100
tgaagggctc ccccgaggat aatgagcaga aacagctgtt tgtggaacag cacaagcact 5160
acctggacga gatcatcgag cagatcagcg agttctccaa gagagtgatc ctggccgacg 5220
ctaatctgga caaagtgctg tccgcctaca acaagcaccg ggataagccc atcagagagc 5280
aggccgagaa tatcatccac ctgtttaccc tgaccaatct gggagcccct gccgccttca 5340
agtactttga caccaccatc gaccggaaga ggtacaccag caccaaagag gtgctggacg 5400
ccaccctgat ccaccagagc atcaccggcc tgtacgagac acggatcgac ctgtctcagc 5460
tgggaggcga caaaaggccg gcggccacga aaaaggccgg ccaggcaaaa aagaaaaagg 5520
aattcggcag tggagagggc agaggaagtc tgctaacatg cggtgacgtc gaggagaatc 5580
ctggcccagt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc 5640
tggacggcga cgtaaacggc cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca 5700
cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagctgccc gtgccctggc 5760
ccaccctcgt gaccaccctg acctacggcg tgcagtgctt cagccgctac cccgaccaca 5820
tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag gagcgcacca 5880
tcttcttcaa ggacgacggc aactacaaga cccgcgccga ggtgaagttc gagggcgaca 5940
ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa ggaggacggc aacatcctgg 6000
ggcacaagct ggagtacaac tacaacagcc acaacgtcta tatcatggcc gacaagcaga 6060
agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc agcgtgcagc 6120
tcgccgacca ctaccagcag aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca 6180
accactacct gagcacccag tccgccctga gcaaagaccc caacgagaag cgcgatcaca 6240
tggtcctgct ggagttcgtg accgccgccg ggatcactct cggcatggac gagctgtaca 6300
aggaattcta actagagctc gctgatcagc ctcgactgtg ccttctagtt gccagccatc 6360
tgttgtttgc ccctcccccg tgccttcctt gaccctggaa ggtgccactc ccactgtcct 6420
ttcctaataa aatgaggaaa ttgcatcgca ttgtctgagt aggtgtcatt ctattctggg 6480
gggtggggtg gggcaggaca gcaaggggga ggattgggaa gagaatagca ggcatgctgg 6540
ggagcggccg caggaacccc tagtgatgga gttggccact ccctctctgc gcgctcgctc 6600
gctcactgag gccgggcgac caaaggtcgc ccgacgcccg ggctttgccc gggcggcctc 6660
agtgagcgag cgagcgcgca gctgcctgca ggggcgcctg atgcggtatt ttctccttac 6720
gcatctgtgc ggtatttcac accgcatacg tcaaagcaac catagtacgc gccctgtagc 6780
ggcgcattaa gcgcggcggg tgtggtggtt acgcgcagcg tgaccgctac acttgccagc 6840
gccctagcgc ccgctccttt cgctttcttc ccttcctttc tcgccacgtt cgccggcttt 6900
ccccgtcaag ctctaaatcg ggggctccct ttagggttcc gatttagtgc tttacggcac 6960
ctcgacccca aaaaacttga tttgggtgat ggttcacgta gtgggccatc gccctgatag 7020
acggtttttc gccctttgac gttggagtcc acgttcttta atagtggact cttgttccaa 7080
actggaacaa cactcaaccc tatctcgggc tattcttttg atttataagg gattttgccg 7140
atttcggcct attggttaaa aaatgagctg atttaacaaa aatttaacgc gaattttaac 7200
aaaatattaa cgtttacaat tttatggtgc actctcagta caatctgctc tgatgccgca 7260
tagttaagcc agccccgaca cccgccaaca cccgctgacg cgccctgacg ggcttgtctg 7320
ctcccggcat ccgcttacag acaagctgtg accgtctccg ggagctgcat gtgtcagagg 7380
ttttcaccgt catcaccgaa acgcgcgaga cgaaagggcc tcgtgatacg cctattttta 7440
taggttaatg tcatgataat aatggtttct tagacgtcag gtggcacttt tcggggaaat 7500
gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta tccgctcatg 7560
agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat gagtattcaa 7620
catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt ttttgctcac 7680
ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg agtgggttac 7740
atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga agaacgtttt 7800
ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg tattgacgcc 7860
gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt tgagtactca 7920
ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg cagtgctgcc 7980
ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg aggaccgaag 8040
gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga tcgttgggaa 8100
ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc tgtagcaatg 8160
gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc ccggcaacaa 8220
ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc ggcccttccg 8280
gctggctggt ttattgctga taaatctgga gccggtgagc gtggaagccg cggtatcatt 8340
gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac gacggggagt 8400
caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc actgattaag 8460
cattggtaac tgtcagacca agtttactca tatatacttt agattgattt aaaacttcat 8520
ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac caaaatccct 8580
taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa aggatcttct 8640
tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca 8700
gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt aactggcttc 8760
agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg ccaccacttc 8820
aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc agtggctgct 8880
gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt accggataag 8940
gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga gcgaacgacc 9000
tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg 9060
agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg cacgagggag 9120
cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca cctctgactt 9180
gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac 9240
gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgt 9289
<210> 44
<211> 61
<212> DNA
<213> Sus scrofa
<400> 44
ctcaggtctt ggctccccgg tgcccggggc ctctggccct tgtcgacgat tctggatcag 60
t 61
<210> 45
<211> 60
<212> DNA
<213> Sus scrofa
<400> 45
ctcaggtctt ggctccccgg tgcccggggc ctctgccctt gtcgacgatt ctggatcagt 60
<210> 46
<211> 60
<212> DNA
<213> Sus scrofa
<400> 46
ctcaggtctt ggctccccgg tgcccggtgc ccgggccctt gtcgacgatt ctggatcagt 60
<210> 47
<211> 60
<212> DNA
<213> Sus scrofa
<400> 47
ctcaggtctt ggctccccgg tgcccggtgc ccgggccctt gtcgacgatt ctggatcagt 60
<210> 48
<211> 54
<212> DNA
<213> Sus scrofa
<220>
<221> misc_feature
<222> (6)..(7)
<223> n is a, c, g, or t
<400> 48
atcagnnctt ggctccccgg tgcccggggc ctctggccac gattctggat cagt 54
<210> 49
<211> 54
<212> DNA
<213> Sus scrofa
<400> 49
ctcaggtctt ggctccccgg tgcccggggc ctctgtcgac gattctggat cagt 54
<210> 50
<211> 54
<212> DNA
<213> Sus scrofa
<400> 50
ctcaggtctt ggctccccgg tgcccggggc ctctgtcgac gattctggat cagt 54
<210> 51
<211> 59
<212> DNA
<213> Sus scrofa
<400> 51
ctcaggtctt ggctccccgg tgcccggggc ctctggccct tgtcgacttc tggatcagt 59
<210> 52
<211> 60
<212> DNA
<213> Sus scrofa
<400> 52
ctcaggtctt ggctccccgg tgcccggggc ctctgccctt gtcgacgatt ctggatcagt 60
<210> 53
<211> 24
<212> DNA
<213> Sus scrofa
<400> 53
gcaccagctg aagaccaccg gagg 24
<210> 54
<211> 23
<212> DNA
<213> Sus scrofa
<400> 54
gctggtgcga ggagtacacg tgg 23
<210> 55
<211> 65
<212> DNA
<213> Sus scrofa
<400> 55
gaatctcgcc acgtgtactc ctcgcaccag ctgaagacac cggagggcgt ggtggtgtgt 60
cccat 65
<210> 56
<211> 64
<212> DNA
<213> Sus scrofa
<400> 56
gaatctcgcc acgtgtactc ctcgcaccag ctgaagacac cggagggcgt ggtggtgttc 60
ccat 64
<210> 57
<211> 65
<212> DNA
<213> Sus scrofa
<400> 57
gaatctcgcc acgtgtactc ctcgcaccag ctgaagacac cggagggcgt ggtggtgtgt 60
cccat 65
<210> 58
<211> 64
<212> DNA
<213> Sus scrofa
<400> 58
gaatctcgcc acgtgtactc ctcgcaccag ctgaagacac cggagggcgt ggtggtgttc 60
ccat 64
<210> 59
<211> 65
<212> DNA
<213> Sus scrofa
<400> 59
gaatctcgcc acgtgtactc ctcgcaccag ctgaagacac cggagggcgt ggtggtgtgt 60
cccat 65
<210> 60
<211> 65
<212> DNA
<213> Sus scrofa
<400> 60
gaatctcgcc acgtgtactc ctcgcaccag ctgaagacac cggagggcgt ggtggtgtgt 60
cccat 65
<210> 61
<211> 65
<212> DNA
<213> Sus scrofa
<400> 61
gaatctcgcc acgtgtactc ctcgcaccag ctgaagacac cggagggcgt ggtggtgtgt 60
cccat 65
<210> 62
<211> 1000
<212> DNA
<213> Bovine
<400> 62
gaaggatggg ggtgggggcg tttgcagaca tgaagttttg ttgaaaggac agaaaaactg 60
aggcccaggg agacgggtct ttccagaggt cacagagcac cttgcaggcc aagcaagcac 120
cagagacaac aggaaagacc cccttccaca tctccatggg gaattaaagt cagaaggaat 180
caaaggtgag gagtgggccc tttaaatcct aagctccacc tttgcttaga agggtctttg 240
ggaatataaa agggggtgca gttcctctct gctcctgaaa accatcagct gctcctgtct 300
gcgggccccc agcccacttc tctccagcca cccaccacca acactccccc gggtgccatg 360
cagctgccac cctttgacat gtggaaggac tacttcaacc tgagccaagt ggtgctggca 420
ctgatccaga gtcgggggca agggttggag acccaaggga ctggggagcc gagacccggg 480
ccccatgtgg agcaggatca ggggcagggc ggacgcgggg ctggcggggg cctggccacc 540
ctgtgcaact tttgcaaaca caatggagag tctcgccacg tgtactcctc acaccagctg 600
aagaccccgg agggcgtggt ggtgtgtccc attctgcggc attatgtatg tcccctgtgc 660
ggggccaccg gggaccaggc ccacacactc aagtactgcc cactcaacgg aggacagcag 720
tctctctacc gccgcagtgg gcgcaactca gccggccgca aggtcaagcg ctgaagaccg 780
tcaggtaccc acccgctgca gccccaaccc tccctggttc agccctccca agcccctgga 840
ctctccccat ctatggactc gtcaggccct ttggaatgtc tgactctcag tacttgatcc 900
ctgctggatc ctggaacaac ggaggcagtg ggaagccagg ccaactccgc ggccccttag 960
aactctcagc tctccggact cttgtctgcg agtgtctgtg 1000
<210> 63
<211> 417
<212> DNA
<213> Bovine
<400> 63
atgcagctgc caccctttga catgtggaag gactacttca acctgagcca agtggtgctg 60
gcactgatcc agagtcgggg gcaagggttg gagacccaag ggactgggga gccgagaccc 120
gggccccatg tggagcagga tcaggggcag ggcggacgcg gggctggcgg gggcctggcc 180
accctgtgca acttttgcaa acacaatgga gagtctcgcc acgtgtactc ctcacaccag 240
ctgaagaccc cggagggcgt ggtggtgtgt cccattctgc ggcattatgt atgtcccctg 300
tgcggggcca ccggggacca ggcccacaca ctcaagtact gcccactcaa cggaggacag 360
cagtctctct accgccgcag tgggcgcaac tcagccggcc gcaaggtcaa gcgctga 417
<210> 64
<211> 20
<212> DNA
<213> Bovine
<400> 64
agacgggtct ttccagaggt 20
<210> 65
<211> 20
<212> DNA
<213> Bovine
<400> 65
aagctccacc tttgcttaga 20
<210> 66
<211> 21
<212> DNA
<213> Bovine
<400> 66
ctttgcttag aagggtcttt t 21
<210> 67
<211> 20
<212> DNA
<213> Bovine
<400> 67
ggtctttggg aatataaaag 20
<210> 68
<211> 19
<212> DNA
<213> Bovine
<400> 68
ggcaagggtt ggagaccca 19
<210> 69
<211> 20
<212> DNA
<213> Bovine
<400> 69
gccgagaccc gggccccatg 20
<210> 70
<211> 20
<212> DNA
<213> Bovine
<400> 70
cccatgtgga gcaggatcag 20
<210> 71
<211> 19
<212> DNA
<213> Bovine
<400> 71
tccccatctc tggactcgt 19
<210> 72
<211> 20
<212> DNA
<213> Bovine
<400> 72
tctggactcg tccggccctt 20
<210> 73
<211> 20
<212> DNA
<213> Bovine
<400> 73
tctcagtact tgatccctgc 20
<210> 74
<211> 20
<212> DNA
<213> Bovine
<400> 74
acaagagtcc ggagagctga 20
<210> 75
<211> 54
<212> DNA
<213> Sus scrofa
<400> 75
tgccatgcag ctgccaccct ttgacatgtg gaaggactac ttcaacctga gcca 54
<210> 76
<211> 18
<212> DNA
<213> Sus scrofa
<400> 76
tgccatgcag ctgccacc 18
<210> 77
<211> 18
<212> DNA
<213> Sus scrofa
<400> 77
tggctcaggt tgaagtag 18
<210> 78
<211> 52
<212> DNA
<213> Sus scrofa
<400> 78
tttgacatgt ggaaggacta cttcaacctg agccaggtgg tgttgggact ga 52
<210> 79
<211> 18
<212> DNA
<213> Sus scrofa
<400> 79
tttgacatgt ggaaggac 18
<210> 80
<211> 18
<212> DNA
<213> Sus scrofa
<400> 80
tcagtcccaa caccacct 18
<210> 81
<211> 53
<212> DNA
<213> Sus scrofa
<400> 81
tcaacctgag ccaggtggtg ttgggactga tccagaatcg tcgacaaggg cca 53
<210> 82
<211> 18
<212> DNA
<213> Sus scrofa
<400> 82
tcaacctgag ccaggtgg 18
<210> 83
<211> 16
<212> DNA
<213> Sus scrofa
<400> 83
gcccttgtcg acgatt 16
<210> 84
<211> 19
<212> DNA
<213> Sus scrofa
<400> 84
gcgggcagta cttgagtgt 19
<210> 85
<211> 20
<212> DNA
<213> Sus scrofa
<400> 85
ccagaaaacc ttctgctgct 20
<210> 86
<211> 26
<212> DNA
<213> Sus scrofa
<400> 86
ccagaatcgt cgacaagggc cagagg 26
<210> 87
<211> 26
<212> DNA
<213> Sus scrofa
<400> 87
ggtcttagca gctgttcccg gtctcc 26
<210> 88
<211> 24
<212> DNA
<213> Bovine
<400> 88
caccggtctt tgggaatata aaag 24
<210> 89
<211> 24
<212> DNA
<213> Bovine
<400> 89
aaacctttta tattcccaaa gacc 24
<210> 90
<211> 23
<212> DNA
<213> Bovine
<400> 90
caccgtcttt gggaatataa aag 23
<210> 91
<211> 23
<212> DNA
<213> Bovine
<400> 91
aaacctttta tattcccaaa gac 23
<210> 92
<211> 25
<212> DNA
<213> Bovine
<400> 92
caccgctttg cttagaaggg tcttt 25
<210> 93
<211> 25
<212> DNA
<213> Bovine
<400> 93
aaacaaagac ccttctaagc aaagc 25
<210> 94
<211> 23
<212> DNA
<213> Bovine
<400> 94
caccgttgct tagaagggtc ttt 23
<210> 95
<211> 22
<212> DNA
<213> Bovine
<400> 95
aacaaagacc cttctaagca ac 22
<210> 96
<211> 25
<212> DNA
<213> Bovine
<400> 96
caccgagctc cacctttgct tagaa 25
<210> 97
<211> 25
<212> DNA
<213> Bovine
<400> 97
aaacttctaa gcaaaggtgg agctc 25
<210> 98
<211> 23
<212> DNA
<213> Bovine
<400> 98
caccgctcca cctttgctta gaa 23
<210> 99
<211> 23
<212> DNA
<213> Bovine
<400> 99
aaacttctaa gcaaaggtgg agc 23
<210> 100
<211> 24
<212> DNA
<213> Bovine
<400> 100
caccggcaag ggttggagac ccaa 24
<210> 101
<211> 24
<212> DNA
<213> Bovine
<400> 101
aaacttgggt ctccaaccct tgcc 24
<210> 102
<211> 23
<212> DNA
<213> Bovine
<400> 102
caccgcaagg gttggagacc caa 23
<210> 103
<211> 23
<212> DNA
<213> Bovine
<400> 103
aaacttgggt ctccaaccct tgc 23
<210> 104
<211> 24
<212> DNA
<213> Bovine
<400> 104
caccgccgag acccgggccc catg 24
<210> 105
<211> 24
<212> DNA
<213> Bovine
<400> 105
aaaccatggg gcccgggtct cggc 24
<210> 106
<211> 21
<212> DNA
<213> Bovine
<400> 106
caccgagacc cgggccccat g 21
<210> 107
<211> 21
<212> DNA
<213> Bovine
<400> 107
aaaccatggg gcccgggtct c 21
<210> 108
<211> 25
<212> DNA
<213> Bovine
<400> 108
caccgcccat gtggagcagg atcag 25
<210> 109
<211> 25
<212> DNA
<213> Bovine
<400> 109
aaacctgatc ctgctccaca tgggc 25
<210> 110
<211> 23
<212> DNA
<213> Bovine
<400> 110
caccgcatgt ggagcaggat cag 23
<210> 111
<211> 23
<212> DNA
<213> Bovine
<400> 111
aaacctgatc ctgctccaca tgc 23
<210> 112
<211> 25
<212> DNA
<213> Bovine
<400> 112
caccgtcccc atctctggac tcgtc 25
<210> 113
<211> 25
<212> DNA
<213> Bovine
<400> 113
aaacgacgag tccagagatg gggac 25
<210> 114
<211> 23
<212> DNA
<213> Bovine
<400> 114
caccgcccat ctctggactc gtc 23
<210> 115
<211> 23
<212> DNA
<213> Bovine
<400> 115
aaacgacgag tccagagatg ggc 23
<210> 116
<211> 25
<212> DNA
<213> Bovine
<400> 116
caccgtctgg actcgtccgg ccctt 25
<210> 117
<211> 201
<212> DNA
<213> Bovine
<400> 117
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataaaagg 60
gggtgcagtt cctgagccaa gtggtgctgg cactgatcca gagtcggggg caagggttgg 120
agacccaagg gactggggag ccgagacccg gccccatgtg gagcaggatc aggggcaggg 180
cggacgcggg gccggcgggg g 201
<210> 118
<211> 132
<212> DNA
<213> Bovine
<400> 118
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacaag 60
ggactgggga gccgagaccc ggccccatgt ggagcaggat caggggcagg gcggacgcgg 120
ggccggcggg gg 132
<210> 119
<211> 132
<212> DNA
<213> Bovine
<400> 119
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacaag 60
ggactgggga gccgagaccc ggccccatgt ggagcaggat caggggcagg gcggacgcgg 120
ggccggcggg gg 132
<210> 120
<211> 119
<212> DNA
<213> Bovine
<400> 120
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga ctggggagcc 60
gagacccggc cccatgtgga gcaggatcag gggcagggcg gacgcggggc cggcggggg 119
<210> 121
<211> 119
<212> DNA
<213> Bovine
<400> 121
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga ctggggagcc 60
gagacccggc cccatgtgga gcaggatcag gggcagggcg gacgcggggc cggcggggg 119
<210> 122
<211> 112
<212> DNA
<213> Bovine
<400> 122
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga gccgagaccc 60
ggccccatgt ggagcaggat caggggcagg gcggacgcgg ggccggcggg gg 112
<210> 123
<211> 201
<212> DNA
<213> Bovine
<400> 123
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataaaagg 60
gggtgcagtt cctgagccaa gtggtgctgg cactgatcca gagtcggggg caagggttgg 120
agacccaagg gactggggag ccgagacccg gccccatgtg gagcaggatc aggggcaggg 180
cggacgcggg gccggcgggg g 201
<210> 124
<211> 129
<212> DNA
<213> Bovine
<400> 124
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttgggg gtgcagttcc 60
tgagccaagt ggtgctggca ctgatccaga gtcgggggca agggttggag acccaaggga 120
ctggggagc 129
<210> 125
<211> 103
<212> DNA
<213> Bovine
<400> 125
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacatg 60
tggagcagga tcaggggcag ggcggacgcg gggccggcgg ggg 103
<210> 126
<211> 104
<212> DNA
<213> Bovine
<400> 126
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataaacat 60
gtggagcagg atcaggggca gggcggacgc ggggccggcg gggg 104
<210> 127
<211> 106
<212> DNA
<213> Bovine
<400> 127
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga gtgcagttcc 60
atgtggagca ggatcagggg cagggcggac gcggggccgg cggggg 106
<210> 128
<211> 103
<212> DNA
<213> Bovine
<400> 128
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacatg 60
tggagcagga tcaggggcag ggcggacgcg gggccggcgg ggg 103
<210> 129
<211> 201
<212> DNA
<213> Bovine
<400> 129
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataaaagg 60
gggtgcagtt cctgagccaa gtggtgctgg cactgatcca gagtcggggg caagggttgg 120
agacccaagg gactggggag ccgagacccg gccccatgtg gagcaggatc aggggcaggg 180
cggacgcggg gccggcgggg g 201
<210> 130
<211> 48
<212> DNA
<213> Bovine
<400> 130
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctaagg 48
<210> 131
<211> 89
<212> DNA
<213> Bovine
<400> 131
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataatcag 60
gggcagggcg gacgcggggc cggcggggg 89
<210> 132
<211> 88
<212> DNA
<213> Bovine
<400> 132
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacagg 60
ggcagggcgg acgcggggcc ggcggggg 88
<210> 133
<211> 45
<212> DNA
<213> Bovine
<400> 133
tgggcccttt aaatcctaag ctccaccttt gctggccggg ggggg 45
<210> 134
<211> 62
<212> DNA
<213> Bovine
<400> 134
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gcggacgcgg ggccggcggg 60
gg 62
<210> 135
<211> 200
<212> DNA
<213> Bovine
<400> 135
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataaaagg 60
gggtgcagtt cctgagccaa gtggtgctgg cactgatcca gagtcggggg caagggttgg 120
agacccaagg gactggggag ccgagacccg gccccatgtg gagcaggatc aggggcaggg 180
cggacgcggg gccggcgggg 200
<210> 136
<211> 132
<212> DNA
<213> Bovine
<400> 136
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacaag 60
ggactgggga gccgagaccc ggccccatgt ggagcaggat caggggcagg gcggacgcgg 120
ggccggcggg gg 132
<210> 137
<211> 132
<212> DNA
<213> Bovine
<400> 137
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacaag 60
ggactgggga gccgagaccc ggccccatgt ggagcaggat caggggcagg gcggacgcgg 120
ggccggcggg gg 132
<210> 138
<211> 132
<212> DNA
<213> Bovine
<400> 138
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacaag 60
ggactgggga gccgagaccc ggccccatgt ggagcaggat caggggcagg gcggacgcgg 120
ggccggcggg gg 132
<210> 139
<211> 132
<212> DNA
<213> Bovine
<400> 139
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacaag 60
ggactgggga gccgagaccc ggccccatgt ggagcaggat caggggcagg gcggacgcgg 120
ggccggcggg gg 132
<210> 140
<211> 132
<212> DNA
<213> Bovine
<400> 140
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacaag 60
ggactgggga gccgagaccc ggccccatgt ggagcaggat caggggcagg gcggacgcgg 120
ggccggcggg gg 132
<210> 141
<211> 201
<212> DNA
<213> Bovine
<400> 141
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataaaagg 60
gggtgcagtt cctgagccaa gtggtgctgg cactgatcca gagtcggggg caagggttgg 120
agacccaagg gactggggag ccgagacccg gccccatgtg gagcaggatc aggggcaggg 180
cggacgcggg gccggcgggg g 201
<210> 142
<211> 98
<212> DNA
<213> Bovine
<400> 142
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atatgtggag 60
caggatcagg ggcagggcgg acgcggggcc ggcggggg 98
<210> 143
<211> 103
<212> DNA
<213> Bovine
<400> 143
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacatg 60
tggagcagga tcaggggcag ggcggacgcg gggccggcgg ggg 103
<210> 144
<211> 89
<212> DNA
<213> Bovine
<400> 144
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atatgatcag 60
gggcagggcg gacgcggggc cggcggggg 89
<210> 145
<211> 89
<212> DNA
<213> Bovine
<400> 145
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga gcaggatcag 60
gggcagggcg gacgcggggc cggcggggg 89
<210> 146
<211> 103
<212> DNA
<213> Bovine
<400> 146
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataacatg 60
tggagcagga tcaggggcag ggcggacgcg gggccggcgg ggg 103
<210> 147
<211> 201
<212> DNA
<213> Bovine
<400> 147
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttggga atataaaagg 60
gggtgcagtt cctgagccaa gtggtgctgg cactgatcca gagtcggggg caagggttgg 120
agacccaagg gactggggag ccgagacccg gccccatgtg gagcaggatc aggggcaggg 180
cggacgcggg gccggcgggg g 201
<210> 148
<211> 68
<212> DNA
<213> Bovine
<400> 148
tgggcccttt aaatcctaag ctccaccttt gcttctcagg ggcagggcgg acgcggggcc 60
ggcggggg 68
<210> 149
<211> 70
<212> DNA
<213> Bovine
<400> 149
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gtctttgggc ggacgcgggg 60
ccggcggggg 70
<210> 150
<211> 88
<212> DNA
<213> Bovine
<400> 150
gggcccttta aatcctaagc tccacctttg cttagaaggg tctttgggaa tataatcagg 60
ggcagggcgg acgcggggcc ggcggggg 88
<210> 151
<211> 67
<212> DNA
<213> Bovine
<400> 151
tgggcccttt aaatcctaag ctccaccttt gcttagaagg gcagggcgga cgcggggccg 60
gcggggg 67
<210> 152
<211> 125
<212> DNA
<213> Bovine
<400> 152
tgggcccttt aaatcctaag ctccaccttt gcttagaagt ggtgctggca ctgatccaga 60
gtcgggggca agggttggag acccaaggga ctggggagcc gagacccggc cccatgtgga 120
gcagg 125
<210> 153
<211> 25
<212> DNA
<213> Bovine
<400> 153
aaacaagggc cggacgagtc cagac 25
<210> 154
<211> 21
<212> DNA
<213> Bovine
<400> 154
caccggactc gtccggccct t 21
<210> 155
<211> 21
<212> DNA
<213> Bovine
<400> 155
aaacaagggc cggacgagtc c 21
<210> 156
<211> 25
<212> DNA
<213> Bovine
<400> 156
caccgtctca gtacttgatc cctgc 25
<210> 157
<211> 25
<212> DNA
<213> Bovine
<400> 157
aaacgcaggg atcaagtact gagac 25
<210> 158
<211> 23
<212> DNA
<213> Bovine
<400> 158
caccgtcagt acttgatccc tgc 23
<210> 159
<211> 23
<212> DNA
<213> Bovine
<400> 159
aaacgcaggg atcaagtact gac 23
<210> 160
<211> 22
<212> DNA
<213> Sus scrofa
<400> 160
gatcagtccc aacaccacct gg 22
<210> 161
<211> 22
<212> DNA
<213> Sus scrofa
<400> 161
ccaggtggtg ttgggactga tc 22
<210> 162
<211> 23
<212> DNA
<213> Sus scrofa
<400> 162
gaatcgtcga caagggccag agg 23
<210> 163
<211> 42
<212> DNA
<213> Sus scrofa
<400> 163
ctacttcaac ctgagccagg tggtgttggg actgatccag aa 42
<210> 164
<211> 37
<212> DNA
<213> Sus scrofa
<400> 164
ctacttcaac ctgagccagg ttgggactga tccagaa 37
<210> 165
<211> 39
<212> DNA
<213> Sus scrofa
<400> 165
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 166
<211> 39
<212> DNA
<213> Sus scrofa
<400> 166
ctacttcaac ctgagccagg gactgggact gatccagaa 39
<210> 167
<211> 43
<212> DNA
<213> Sus scrofa
<400> 167
ctacttcaac ctgagccagg tgggtgttgg gactgatcca gaa 43
<210> 168
<211> 41
<212> DNA
<213> Sus scrofa
<400> 168
ctacttcaac ctgagccagg tgtgttggga ctgatccaga a 41
<210> 169
<211> 37
<212> DNA
<213> Sus scrofa
<400> 169
ctacttcaac ctgagccagg ttgggaccga tccagaa 37
<210> 170
<211> 39
<212> DNA
<213> Sus scrofa
<400> 170
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 171
<211> 39
<212> DNA
<213> Sus scrofa
<400> 171
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 172
<211> 32
<212> DNA
<213> Sus scrofa
<400> 172
ctacttcaac ctgagccagg actgatccag aa 32
<210> 173
<211> 39
<212> DNA
<213> Sus scrofa
<400> 173
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 174
<211> 39
<212> DNA
<213> Sus scrofa
<400> 174
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 175
<211> 37
<212> DNA
<213> Sus scrofa
<400> 175
ctacttcaac ctgagccagg ttgggactga tccagaa 37
<210> 176
<211> 39
<212> DNA
<213> Sus scrofa
<400> 176
ctacttcaac ctgagtcagg tgttgggact gatccagaa 39
<210> 177
<211> 45
<212> DNA
<213> Sus scrofa
<400> 177
ctacttcaac ctaagccagg ttgaagtgtt gggactgatc cagaa 45
<210> 178
<211> 39
<212> DNA
<213> Sus scrofa
<400> 178
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 179
<211> 41
<212> DNA
<213> Sus scrofa
<400> 179
ctacttcaac ctgagccagg tgtgttggga ctgatccaga a 41
<210> 180
<211> 38
<212> DNA
<213> Sus scrofa
<400> 180
ctacctcaac ctgagccagg ggtgggactg atccagaa 38
<210> 181
<211> 41
<212> DNA
<213> Sus scrofa
<400> 181
ctacttcaac ctgagcctgg tgtgttggga ctgatccaga a 41
<210> 182
<211> 39
<212> DNA
<213> Sus scrofa
<400> 182
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 183
<211> 39
<212> DNA
<213> Sus scrofa
<400> 183
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 184
<211> 38
<212> DNA
<213> Sus scrofa
<400> 184
ctacttcaac ctgagccagg tctgggactg atccagaa 38
<210> 185
<211> 16
<212> DNA
<213> Sus scrofa
<400> 185
tgggactgat ccagaa 16
<210> 186
<211> 45
<212> DNA
<213> Sus scrofa
<400> 186
ctacttcaac ctgagccagg ttgaagtgtt gggactgatc cagaa 45
<210> 187
<211> 45
<212> DNA
<213> Sus scrofa
<400> 187
ctacttcaac ctgagccagg ttgaagtgtt gggactgatc cagaa 45
<210> 188
<211> 39
<212> DNA
<213> Sus scrofa
<400> 188
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 189
<211> 39
<212> DNA
<213> Sus scrofa
<400> 189
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 190
<211> 37
<212> DNA
<213> Sus scrofa
<400> 190
ctacttcaac ctgagccagg ttgggactga tccagaa 37
<210> 191
<211> 37
<212> DNA
<213> Sus scrofa
<400> 191
ctacttcaac ctgagccagg ttgggactga tccagaa 37
<210> 192
<211> 41
<212> DNA
<213> Sus scrofa
<400> 192
ctacttcaac ctgagccagg tgtgttggga ctgatcaata a 41
<210> 193
<211> 38
<212> DNA
<213> Sus scrofa
<400> 193
ctacttcaac ctgagccagt gttgggactg atccagaa 38
<210> 194
<211> 39
<212> DNA
<213> Sus scrofa
<400> 194
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 195
<211> 42
<212> DNA
<213> Sus scrofa
<400> 195
ctacttcaac ctgagccagg cggggttggg actgatccag aa 42
<210> 196
<211> 39
<212> DNA
<213> Sus scrofa
<400> 196
ctacttcaac ctgagccagg tgttgggact gatccagaa 39
<210> 197
<211> 37
<212> DNA
<213> Sus scrofa
<400> 197
ctacttcaac ctgagccagg ttgggactga tccagaa 37
<210> 198
<211> 41
<212> DNA
<213> Sus scrofa
<400> 198
ctacttcaac ctgagccagg tgtgttggga ctgatccaga a 41
<210> 199
<211> 21
<212> DNA
<213> Sus scrofa
<400> 199
ctacttcaac ctgagccaga a 21
<210> 200
<211> 51
<212> DNA
<213> Sus scrofa
<400> 200
atccagaatc gtcgacaagg gccagaggcc ccgggcaccg gggagccaag a 51
<210> 201
<211> 44
<212> DNA
<213> Sus scrofa
<400> 201
atccagaatc gtcgacaagg gccccgggca ccggggagcc aaga 44
<210> 202
<211> 44
<212> DNA
<213> Sus scrofa
<400> 202
atccagaatc gtcgacaagg gccccgggca ccggggagcc aaga 44
<210> 203
<211> 50
<212> DNA
<213> Sus scrofa
<400> 203
atccagaatc gtcgacgacg cgagaagccc cgggcaccgg ggagccaaga 50
<210> 204
<211> 40
<212> DNA
<213> Sus scrofa
<400> 204
atccagaatc gtcgaggccc cgggcaccgg ggagccaaga 40

Claims (45)

1.经遗传编辑的牲畜动物,其包含至少一个经编辑的编码NANOS蛋白的染色体序列。
2.权利要求1的经遗传编辑的牲畜动物,其中所述经编辑的染色体序列是失活的、修饰的,和/或包含整合或缺失的序列。
3.权利要求1的经遗传编辑的牲畜动物,其中所述经编辑的染色体序列是失活的,由此产生极少的NANOS蛋白活性或者无功能性NANOS蛋白活性,且所述动物产生减少的种系细胞或者无种系细胞,但是保留体细胞功能。
4.权利要求1的经遗传编辑的牲畜动物,其中所述经编辑的染色体序列不包含外源导入的序列。
5.权利要求1的经遗传编辑的牲畜动物,其中所述NANOS蛋白选自NANOS1、NANOS2或者NANOS3。
6.权利要求1的经遗传编辑的牲畜动物,其中NANOS蛋白是NANOS2。
7.权利要求1的经遗传编辑的牲畜动物,进一步包含用于所述NANOS蛋白条件表达的条件敲除系统。
8.权利要求1的经遗传编辑的牲畜动物,其中所述经编辑的染色体序列包含整合的报道基因序列。
9.权利要求1的经遗传编辑的牲畜动物,其中所述动物对于所述至少一个经编辑的染色体序列是杂合或纯合的。
10.权利要求1的经遗传编辑的动物,其中所述动物选自菜牛、乳牛、猪、绵羊、山羊、马、骡、驴、野牛、骆驼、鸡、火鸡、鸭、鹅、珍珠鸡和鸽。
11.权利要求1的经遗传编辑的动物,其中所述动物是猪或牛。
12.权利要求11的经遗传编辑的动物,其中所述动物是猪。
13.权利要求12的经遗传编辑的动物,其中所述动物包括经编辑的NANOS2基因,包括SEQ ID NO:27、28、30、31、32、33、34、35、36、37、38、39、40、41、42、45、46、47、48、49、50、51、52、56、57、58、59、60、61、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、201、202、203或204。
14.权利要求11的经遗传修饰的动物,其中所述动物是牛。
15.权利要求14的经遗传编辑的动物,其中所述动物包括SEQ ID NO:118、119、120、121、122、124、125、126、127、128、130、131、132、133、134、136、137、138、139、140、142、143、144、145、146、148、149、150、151或152所示的经编辑的NANOS2基因。
16.权利要求1的经遗传编辑的动物,进一步包含移植的精原细胞以产生受体种系消除的替代雄性动物。
17.权利要求16的受体种系消除的替代雄性动物。
18.来自权利要求17的受体替代雄性动物的精子。
19.经遗传编辑的牲畜动物细胞,所述细胞包含至少一个经编辑的编码NANOS蛋白的染色体序列。
20.权利要求19的经遗传编辑的牲畜动物细胞,其中所述经编辑的染色体序列是失活的、修饰的,或者包含整合的序列。
21.权利要求19的经遗传编辑的牲畜动物细胞,其中所述经编辑的染色体序列是失活的,由此调节NANOS蛋白功能。
22.权利要求21的经遗传编辑的牲畜动物细胞,其中所述NANOS蛋白是NANOS1、NANOS2或NANOS3中的一或多个。
23.权利要求22的经遗传编辑的牲畜动物细胞,其中所述NANOS蛋白是NANOS 2。
24.权利要求19的经遗传编辑的牲畜动物细胞,其中所述细胞对于所述至少一个经编辑的染色体序列是杂合或纯合的。
25.权利要求19的经遗传编辑的牲畜动物细胞,其中所述细胞是源于如下一或多种动物的细胞:牛、猪、绵羊、山羊、马、骡、驴、野牛、骆驼、鸡、火鸡、鸭、鹅、珍珠鸡或者鸽。
26.权利要求25的经遗传编辑的牲畜动物细胞,其中所述细胞源于猪。
27.权利要求26的经遗传编辑的牲畜动物细胞,其中所述胚胎包括SEQ ID NO:27、28、30、31、32、33、34、35、36、37、38、39、40、41、42、45、46、47、48、49、50、51、52、56、57、58、59、60、61、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、201、202、203或204所示的经编辑的NANOS2基因。
28.权利要求25的经遗传编辑的牲畜动物细胞,其中所述细胞源于牛。
29.权利要求28的经遗传编辑的牲畜动物,其中所述动物包括经编辑的NANOS2基因,其包括SEQ ID NO:118、119、120、121、122、124、125、126、127、128、130、131、132、133、134、136、137、138、139、140、142、143、144、145、146、148、149、150、151或152所示序列。
30.权利要求19的经遗传编辑的牲畜动物细胞,其中所述失活的染色体序列不包含外源导入的序列。
31.权利要求19的经遗传编辑的牲畜动物细胞,进一步包含用于所述NANOS蛋白条件表达的条件敲除系统。
32.权利要求19的经遗传编辑的牲畜动物细胞,其中所述经编辑的染色体序列包含整合的报道基因序列。
33.一种育种牲畜动物的方法,包括:
从权利要求17的种系消除的替代雄性动物受体收集精子,并将该精子导入雌性动物,使得所述雌性动物怀孕。
34.通过权利要求33的方法产生的牲畜动物。
35.权利要求33的方法,其中所述导入是通过人工授精。
36.一种产生具有无功能性精原细胞的牲畜动物的方法,包括:
修饰NANOS基因表达,以便NANOS蛋白功能被降低或消除。
37.权利要求36的方法,其中所述动物不产生明显数量的精原细胞。
38.权利要求36的方法,其中所述修饰是通过使用TALEN、锌指核酸酶和/或重组酶融合蛋白进行基因编辑。
39.权利要求36的方法,其中所述NANOS基因被编辑以包括导致基因失活的插入或缺失。
40.权利要求36的方法,其中所述基因编辑修饰步骤包括使用NANOS指导RNA,及能引起NANOS靶裂解或整合的多肽。
41.权利要求36的方法,其中所述NANOS是NANOS2。
42.权利要求36的方法,其中所述基因编辑修饰方法是RNA指导的CRISPR/Cas9。
43.一种生产受体雄性动物的方法,所述动物作为产生供体衍生精子的替代动物,以通过自然或人工繁殖方式将供体基因型传递至后代,所述方法包括:
从希望的雄性动物供体收集供体SSC,之后
将供体SSC移植至NANOS2-/-受体,以产生生精群体。
44.权利要求43的方法,其中所述NANOS2-/-受体雄性动物包括SEQ ID NO:27、28、30、31、32、33、34、35、36、37、38、39、40、41、42、45、46、47、48、49、50、51、52、56、57、58、59、60、61、118、119、120、121、122、124、125、126、127、128、130、131、132、133、134、136、137、138、139、140、142、143、144、145、146、148、149、150、151、152、164、165、166、167、168、169、170、171、172、173、174、175、176、177、178、179、180、181、182、183、184、185、186、187、188、189、190、191、192、193、194、195、196、197、198、199、201、202、203或204所示的基因编辑的NANOS序列。
45.一种生产牲畜动物的方法,包括:
将雌性牲畜动物与来自权利要求43的受体NANOS2-/-雄性动物的精子交配。
CN201580049047.XA 2014-07-14 2015-07-14 消除种系细胞的nanos敲除 Active CN107072183B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462023996P 2014-07-14 2014-07-14
US62/023,996 2014-07-14
PCT/US2015/040379 WO2016011029A2 (en) 2014-07-14 2015-07-14 Nanos knock-out that ablates germline cells

Publications (2)

Publication Number Publication Date
CN107072183A true CN107072183A (zh) 2017-08-18
CN107072183B CN107072183B (zh) 2022-01-04

Family

ID=55079156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580049047.XA Active CN107072183B (zh) 2014-07-14 2015-07-14 消除种系细胞的nanos敲除

Country Status (15)

Country Link
US (2) US20170142942A1 (zh)
EP (2) EP3169778B1 (zh)
JP (1) JP2017521079A (zh)
CN (1) CN107072183B (zh)
AU (3) AU2015289799B2 (zh)
BR (1) BR112017000925B1 (zh)
CA (1) CA2955203C (zh)
DK (1) DK3169778T3 (zh)
EA (1) EA039787B1 (zh)
ES (1) ES2965286T3 (zh)
FI (1) FI3169778T3 (zh)
MX (1) MX2017000555A (zh)
NZ (2) NZ744832A (zh)
PT (1) PT3169778T (zh)
WO (1) WO2016011029A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608370A (zh) * 2019-09-19 2021-04-06 中国科学院遗传与发育生物学研究所 短柄草Bsr1蛋白及其编码基因与应用
CN112626128A (zh) * 2012-04-20 2021-04-09 联邦科学技术研究组织 细胞转染方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230287340A1 (en) 2020-07-27 2023-09-14 Washington State University Methods for spermatogonial culture
WO2023196818A1 (en) * 2022-04-04 2023-10-12 The Regents Of The University Of California Genetic complementation compositions and methods
WO2024086514A1 (en) * 2022-10-21 2024-04-25 Abs Global, Inc. Production of livestock animals from embryonic stem cells

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858354A (en) * 1991-12-06 1999-01-12 The Trustees Of The University Of Pennsylvania Repopulation of testicular Seminiferous tubules with foreign cells, corresponding resultant germ cells, and corresponding resultant animals and progeny
JP2006028041A (ja) * 2004-07-13 2006-02-02 Ltt Bio-Pharma Co Ltd 核酸含有ナノ粒子
US20070042485A1 (en) * 2005-08-17 2007-02-22 Japan Science And Technology Agency Modified TRAP protein for producing nano-scale electrical devices, and a method for producing such a protein
CN101528924A (zh) * 2006-08-11 2009-09-09 陶氏益农公司 锌指核酸酶介导的同源重组
WO2010010862A1 (ja) * 2008-07-22 2010-01-28 独立行政法人科学技術振興機構 Rna-蛋白質複合体相互作用モチーフを利用して人工rnpナノ構造体を構築する方法
US20120192298A1 (en) * 2009-07-24 2012-07-26 Sigma Aldrich Co. Llc Method for genome editing
CN102638971A (zh) * 2009-07-08 2012-08-15 科马布有限公司 动物模型及治疗分子
CN102911987A (zh) * 2002-04-09 2013-02-06 协和发酵麒麟株式会社 基因组被修饰的细胞
US20130298269A1 (en) * 2010-12-27 2013-11-07 The Jackson Laboratory Compositions and methods relating to non-human animals modified to promote production of selected gametes

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US102597A (en) * 1870-05-03 Apparatus
US789538A (en) 1904-11-11 1905-05-09 Colin E Ham Dumb-bell.
US4873191A (en) 1981-06-12 1989-10-10 Ohio University Genetic transformation of zygotes
US5731178A (en) 1990-03-21 1998-03-24 Behringwerke Aktiengesellschaft Attachment-elements for stimulation of eukaryotic expression systems
EP0619838A4 (en) * 1991-12-06 1996-04-17 Univ Pennsylvania Repopulation of testicular seminiferous tubules with foreign cells.
US5487994A (en) 1992-04-03 1996-01-30 The Johns Hopkins University Insertion and deletion mutants of FokI restriction endonuclease
US5356802A (en) 1992-04-03 1994-10-18 The Johns Hopkins University Functional domains in flavobacterium okeanokoites (FokI) restriction endonuclease
US5436150A (en) 1992-04-03 1995-07-25 The Johns Hopkins University Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease
US5610053A (en) 1993-04-07 1997-03-11 The United States Of America As Represented By The Department Of Health And Human Services DNA sequence which acts as a chromatin insulator element to protect expressed genes from cis-acting regulatory sequences in mammalian cells
DE69425903T2 (de) 1993-12-09 2001-02-15 Thomas Jefferson University Ph Verbindungen und verfahren zur ortsspezifischen mutation in eukaryotischen zellen
US6140466A (en) 1994-01-18 2000-10-31 The Scripps Research Institute Zinc finger protein derivatives and methods therefor
US6242568B1 (en) 1994-01-18 2001-06-05 The Scripps Research Institute Zinc finger protein derivatives and methods therefor
CA2681922C (en) 1994-01-18 2012-05-15 The Scripps Research Institute Zinc finger protein derivatives and methods therefor
ATE407205T1 (de) 1994-08-20 2008-09-15 Gendaq Ltd Verbesserung in bezug auf bindungsproteine bei der erkennung von dna
GB9824544D0 (en) 1998-11-09 1999-01-06 Medical Res Council Screening system
US5789538A (en) 1995-02-03 1998-08-04 Massachusetts Institute Of Technology Zinc finger proteins with high affinity new DNA binding specificities
EP0821070A1 (en) 1996-07-22 1998-01-28 Carelli, Claude Marcel Henri Pit-1 gene polymorphism and trait selection in animals
US6037525A (en) 1996-08-01 2000-03-14 North Carolina State University Method for reducing expression variability of transgenes in plant cells
US5925523A (en) 1996-08-23 1999-07-20 President & Fellows Of Harvard College Intraction trap assay, reagents and uses thereof
GB9703369D0 (en) 1997-02-18 1997-04-09 Lindqvist Bjorn H Process
GB2338237B (en) 1997-02-18 2001-02-28 Actinova Ltd In vitro peptide or protein expression library
GB9710809D0 (en) 1997-05-23 1997-07-23 Medical Res Council Nucleic acid binding proteins
GB9710807D0 (en) 1997-05-23 1997-07-23 Medical Res Council Nucleic acid binding proteins
US6087166A (en) 1997-07-03 2000-07-11 Basf Aktiengesellschaft Transcriptional activators with graded transactivation potential
US6410248B1 (en) 1998-01-30 2002-06-25 Massachusetts Institute Of Technology General strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites
WO1999045132A1 (en) 1998-03-02 1999-09-10 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
US6140815A (en) 1998-06-17 2000-10-31 Dover Instrument Corporation High stability spin stand platform
AU6218899A (en) 1998-10-12 2000-05-01 Geron Bio-Med Limited Porcine oocytes with improved developmental competence
US6140081A (en) 1998-10-16 2000-10-31 The Scripps Research Institute Zinc finger binding domains for GNN
AU1128400A (en) 1998-10-22 2000-05-08 Medical College Of Georgia Institute, Inc. Long terminal repeat, enhancer, and insulator sequences for use in recombinant vectors
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7070934B2 (en) 1999-01-12 2006-07-04 Sangamo Biosciences, Inc. Ligand-controlled regulation of endogenous gene expression
US6599692B1 (en) 1999-09-14 2003-07-29 Sangamo Bioscience, Inc. Functional genomics using zinc finger proteins
US6453242B1 (en) 1999-01-12 2002-09-17 Sangamo Biosciences, Inc. Selection of sites for targeting by zinc finger proteins and methods of designing zinc finger proteins to bind to preselected sites
US6794136B1 (en) 2000-11-20 2004-09-21 Sangamo Biosciences, Inc. Iterative optimization in the design of binding proteins
US7030215B2 (en) 1999-03-24 2006-04-18 Sangamo Biosciences, Inc. Position dependent recognition of GNN nucleotide triplets by zinc fingers
AU1100201A (en) 1999-10-28 2001-05-08 Board Of Trustees Of The Leland Stanford Junior University Methods of in vivo gene transfer using a sleeping beauty transposon system
AU776576B2 (en) 1999-12-06 2004-09-16 Sangamo Biosciences, Inc. Methods of using randomized libraries of zinc finger proteins for the identification of gene function
DE60143192D1 (de) 2000-02-08 2010-11-18 Sangamo Biosciences Inc Zellen zur entdeckung von medikamenten
US20020061512A1 (en) 2000-02-18 2002-05-23 Kim Jin-Soo Zinc finger domains and methods of identifying same
WO2001088197A2 (en) 2000-05-16 2001-11-22 Massachusetts Institute Of Technology Methods and compositions for interaction trap assays
JP2002060786A (ja) 2000-08-23 2002-02-26 Kao Corp 硬質表面用殺菌防汚剤
US7067317B2 (en) 2000-12-07 2006-06-27 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
GB0108491D0 (en) 2001-04-04 2001-05-23 Gendaq Ltd Engineering zinc fingers
EP1421177A4 (en) 2001-08-20 2006-06-07 Scripps Research Inst ZINC FINGER FASTENING DOMAINS FOR CNN
US7262054B2 (en) 2002-01-22 2007-08-28 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
JP2004065040A (ja) * 2002-08-02 2004-03-04 Japan Science & Technology Corp マウスナノス様遺伝子
US7361635B2 (en) 2002-08-29 2008-04-22 Sangamo Biosciences, Inc. Simultaneous modulation of multiple genes
ZA200506094B (en) 2002-12-31 2006-11-29 Mmi Genomics Inc Compositions, methods and systems for inferring bovine traits
WO2004065581A2 (en) 2003-01-15 2004-08-05 Discovery Genomics, Inc. Transposon-insulator element delivery systems
US7985739B2 (en) 2003-06-04 2011-07-26 The Board Of Trustees Of The Leland Stanford Junior University Enhanced sleeping beauty transposon system and methods for using the same
US7888121B2 (en) 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US8409861B2 (en) 2003-08-08 2013-04-02 Sangamo Biosciences, Inc. Targeted deletion of cellular DNA sequences
WO2005040400A2 (en) 2003-10-24 2005-05-06 Mmi Genomics, Inc. Methods and systems for inferring traits to manage non-beef livestock
US7972854B2 (en) 2004-02-05 2011-07-05 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
EP1737498A2 (en) 2004-04-08 2007-01-03 Sangamo Biosciences Inc. Zinc finger proteins for treatment of neuropathic pain
AU2005232665B2 (en) 2004-04-08 2010-05-13 Sangamo Therapeutics, Inc. Methods and compositions for treating neuropathic and neurodegenerative conditions
JP2006115767A (ja) * 2004-10-21 2006-05-11 Kyoto Univ フィーダー細胞の不在下で精原幹細胞を増殖させる方法
CA2607104A1 (en) 2005-05-05 2006-11-16 The Arizona Board Of Regents On Behalf Of The University Of Arizona Sequence enabled reassembly (seer) - a novel method for visualizing specific dna sequences
CN101273141B (zh) 2005-07-26 2013-03-27 桑格摩生物科学股份有限公司 外源核酸序列的靶向整合和表达
WO2007139898A2 (en) 2006-05-25 2007-12-06 Sangamo Biosciences, Inc. Variant foki cleavage half-domains
JP2008104401A (ja) * 2006-10-25 2008-05-08 Kyoto Univ 精原幹細胞のインビトロ増殖方法
EP3070169B1 (en) 2006-12-14 2018-05-09 Dow AgroSciences LLC Optimized non-canonical zinc finger proteins
NL1033850C2 (nl) 2007-05-15 2008-11-18 3Force B V Brandersysteem met voorgemengde branders en vlam-overdrachtsmiddelen.
AU2009238629C1 (en) 2008-04-14 2015-04-30 Sangamo Therapeutics, Inc. Linear donor constructs for targeted integration
CA2734235C (en) 2008-08-22 2019-03-26 Sangamo Biosciences, Inc. Methods and compositions for targeted single-stranded cleavage and targeted integration
US20110023140A1 (en) 2008-12-04 2011-01-27 Sigma-Aldrich Co. Rabbit genome editing with zinc finger nucleases
US8586526B2 (en) 2010-05-17 2013-11-19 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
CN102695798A (zh) * 2009-11-23 2012-09-26 水慷科技公司 母系诱导的动物不育
EP4328304A2 (en) 2010-02-08 2024-02-28 Sangamo Therapeutics, Inc. Engineered cleavage half-domains
EP2660318A1 (en) 2010-02-09 2013-11-06 Sangamo BioSciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
US20140359796A1 (en) * 2013-05-31 2014-12-04 Recombinetics, Inc. Genetically sterile animals
EP3068216B1 (en) * 2013-11-15 2024-04-10 University of Maryland at Baltimore County Method of producing infertile fish and egg-producing aquatic animals and of delivering compounds into eggs and embryos
CN103805606B (zh) * 2014-02-28 2016-07-06 青岛农业大学 一对特异识别绵羊DKK1基因的sgRNA及其编码DNA和应用
KR102636332B1 (ko) * 2015-04-08 2024-02-14 내셔날 페더레이션 오브 애그리컬쳐 코오퍼레이티브 어소우시에이션스 이개체 유래의 배우자를 생산하는 비인간 대형 포유 동물 또는 어류의 작출 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858354A (en) * 1991-12-06 1999-01-12 The Trustees Of The University Of Pennsylvania Repopulation of testicular Seminiferous tubules with foreign cells, corresponding resultant germ cells, and corresponding resultant animals and progeny
CN102911987A (zh) * 2002-04-09 2013-02-06 协和发酵麒麟株式会社 基因组被修饰的细胞
JP2006028041A (ja) * 2004-07-13 2006-02-02 Ltt Bio-Pharma Co Ltd 核酸含有ナノ粒子
US20070042485A1 (en) * 2005-08-17 2007-02-22 Japan Science And Technology Agency Modified TRAP protein for producing nano-scale electrical devices, and a method for producing such a protein
CN101528924A (zh) * 2006-08-11 2009-09-09 陶氏益农公司 锌指核酸酶介导的同源重组
WO2010010862A1 (ja) * 2008-07-22 2010-01-28 独立行政法人科学技術振興機構 Rna-蛋白質複合体相互作用モチーフを利用して人工rnpナノ構造体を構築する方法
CN102638971A (zh) * 2009-07-08 2012-08-15 科马布有限公司 动物模型及治疗分子
US20120192298A1 (en) * 2009-07-24 2012-07-26 Sigma Aldrich Co. Llc Method for genome editing
US20130298269A1 (en) * 2010-12-27 2013-11-07 The Jackson Laboratory Compositions and methods relating to non-human animals modified to promote production of selected gametes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAI ET AL: "One-step generation of knockout by zygote injection of CRISPR/Cas system", 《CELL RESEARCH》 *
SASD ET AL: "The RNA-binging protein NANOS2 is required to maintain murine spermatogonial stem cells", 《SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112626128A (zh) * 2012-04-20 2021-04-09 联邦科学技术研究组织 细胞转染方法
CN112608370A (zh) * 2019-09-19 2021-04-06 中国科学院遗传与发育生物学研究所 短柄草Bsr1蛋白及其编码基因与应用

Also Published As

Publication number Publication date
EP4335926A2 (en) 2024-03-13
EA201790190A1 (ru) 2017-10-31
MX2017000555A (es) 2017-08-10
EP3169778A2 (en) 2017-05-24
EP3169778B1 (en) 2023-10-25
AU2015289799B2 (en) 2018-07-26
US20170142942A1 (en) 2017-05-25
DK3169778T3 (da) 2023-12-18
EP3169778A4 (en) 2018-06-27
AU2020267283A1 (en) 2020-12-10
US20200253174A1 (en) 2020-08-13
FI3169778T3 (fi) 2023-12-13
BR112017000925A2 (pt) 2018-01-16
AU2018204794A1 (en) 2018-07-19
CA2955203A1 (en) 2016-01-21
WO2016011029A3 (en) 2016-03-10
AU2018204794B2 (en) 2020-08-20
CN107072183B (zh) 2022-01-04
WO2016011029A2 (en) 2016-01-21
EP4335926A3 (en) 2024-06-12
CA2955203C (en) 2022-01-04
PT3169778T (pt) 2024-01-29
EA039787B1 (ru) 2022-03-14
AU2015289799A1 (en) 2017-02-02
ES2965286T3 (es) 2024-04-12
AU2020267283B2 (en) 2022-12-15
JP2017521079A (ja) 2017-08-03
BR112017000925B1 (pt) 2023-10-10
NZ728159A (en) 2018-08-31
NZ744832A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
US20210112790A1 (en) Pathogen-resistant animals having modified cd163 genes
AU2013296901B2 (en) Production of FMDV-resistant livestock by allele substitution
JP2020010692A (ja) 遺伝子改変動物、およびそれを作製する方法
CN108431225A (zh) 细胞基因组的诱导型修饰
CN107072183B (zh) 消除种系细胞的nanos敲除
AU2023200913A1 (en) Pathogen-resistant animals having modified cd163 genes
US20190223417A1 (en) Genetically modified animals having increased heat tolerance
EP4243609A1 (en) Influenza a-resistant animals having edited anp32 genes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant