CN107069036B - 一种含氢富碳材料及其应用 - Google Patents

一种含氢富碳材料及其应用 Download PDF

Info

Publication number
CN107069036B
CN107069036B CN201710227923.4A CN201710227923A CN107069036B CN 107069036 B CN107069036 B CN 107069036B CN 201710227923 A CN201710227923 A CN 201710227923A CN 107069036 B CN107069036 B CN 107069036B
Authority
CN
China
Prior art keywords
hydrogen
benzene
containing carbon
substrate
trialkynyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710227923.4A
Other languages
English (en)
Other versions
CN107069036A (zh
Inventor
黄长水
何建江
王宁
吕青
杨泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority to CN201710227923.4A priority Critical patent/CN107069036B/zh
Publication of CN107069036A publication Critical patent/CN107069036A/zh
Application granted granted Critical
Publication of CN107069036B publication Critical patent/CN107069036B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属材料应用领域,具体涉及一种新型的含氢富碳材料及其应用。材料由苯环以及炔键构成,苯环的间位与炔键相连,苯环与苯环之间存在两个炔键,苯环的另外三个间位与氢相连。具有该结构的薄膜其晶体结构是二维的,通过层间作用力组装成为三维薄膜,其在储能器件领域具有潜在的应用前景。

Description

一种含氢富碳材料及其应用
技术领域
本发明属材料应用领域,具体涉及一种新型的含氢富碳材料及其应用。
背景技术
自2004年石墨烯作为单层二维晶体被发现以来,二维材料在近十年引起了人们的广泛关注。由于二维材料通常具有比表面积大、较好的化学稳定性、电导率和热导率高、柔性以及厚度可控等优点,使其在光电子学、自旋电子学、催化、化学和生物传感器、超级电容器、太阳能电池以及锂离子二次电池等领域展现了优异的性能(F.Bonaccorso,L.Colombo,G.Yu,M.Stoller,V.Tozzini,A.C.Ferrari,R.S.Ruoff,V.Pellegrini,Science 2015,347,1246501.)。目前二维材料的合成方式仍主要是采用自上而下剥离的方法,这也就决定了目前所研究的二维材料主要为自然界存在的物质,限定了我们所合成材料的空间。另一方面,目前已知的二维材料往往具有致密的分子层状结构,这也就使得离子、气体、液体等物质很难从其层间穿过,进而影响反应动力学(M.Xu,T.Liang,M.Shi,H.Chen,Chem.Rev.2013,113,3766.)。因此,采用新的合成方法进而设计出新的二维材料将大大拓展二维材料的研究领域。石墨炔正是在这种需求下被合成出来。石墨炔是一种采用偶联法合成的全新碳材料,其结构中除了苯环之外还有炔键的成分,这也使其层状结构中含有孔道(G.Li,Y.Li,H.Liu,Y.Guo,Y.Li,D.Zhu,Chem.Commun.2010,46,3256;李玉良,一种制备石墨炔薄膜的方法,中国专利:201010102048.5,2010-01-27。)。这种炔键的成分以及孔道的结构将赋予这种新型的二维碳材料独特的性质,如较小的禁带宽度以及较好的离子和分子透过性,另外,由于炔键的存在,这种材料对金属离子还有一定的亲和性。基于以上性质,石墨炔在多个领域初步展现出了优异的性能,如光催化、电子、太阳能电池、锂离子二次电池和电容器等领域(C.Huang,S.Zhang,H.Liu,Y.Li,G.Cui,Y.Li,Nano Energy 2015,11,481;李玉良,石墨炔在金属离子电池和电容器中的应用,中国专利:201410119705.5,2014-03-27。)。但石墨炔在电池应用过程中也会出现两方面问题,其一,石墨炔本身结构中的孔径较小,且易于发生Bernal堆积,使得二维结构中的孔道易于堵塞,进而抑制离子的扩散和存储。其二,石墨炔为全碳材料,能量密度较低。在此基础上,我们设计合成了一种新型含氢富碳材料,通过改变单体的结构制备了具有更大孔道的二维材料,给锂、钠等离子的传输提供了便利。另外,通过引入碳氢键不仅提高了材料的柔性,更重要的是引入了碳氢键活性位点,这也为提高新型含氢富碳材料的能量密度打下了坚实的基础。实验结果表明,新型的含氢富碳材料的能量密度和功率密度较石墨炔相比得到了大幅度的提高(参见应用例1)。
发明内容
本发明的目的是合成一种结构中含有较大离子或分子传输孔道并且拥有更多活性位点的含氢富碳材料及其应用。
为实现上述目的,本发明采用技术方案为:
一种含氢富碳材料,材料为具有自支撑能力的结构,禁带宽度为0.75-2.5eV,电导率为0.02-1.02×10-3Sm-1,该材料由单体三炔基苯制备而成,其结构中存在苯环、炔键和碳氢键,以及由三种键所构成的六边形孔道,孔径为1.23-1.63nm。
所述材料由单体中苯环与苯环间存在的炔键相连构成二维平面晶体结构,通过层间作用力组装成为三维自支撑结构。
所述的苯环由sp2杂化的碳构成,其间位被炔键所取代;化学结构如图1所示。
上述材料是以铜片或任意表面覆盖有铜薄膜层的基底作为基底,以三炔基苯为单体,在铜的催化下于溶剂中发生偶联反应,在所述基底的表面得到由苯环、炔键和碳氢键相连构成二维平面晶体结构的材料薄膜;所述的溶剂为吡啶。
所述的三炔基苯单体与所述的基底的面积关系为0.01-2mg/cm2;所述的三炔基苯单体与所述的溶剂的体积关系为0.02-4mg/mL;所述的偶联反应中,温度为50-180℃,时间为3-7天。
一种含氢富碳材料的应用,所述材料在储能器件中的应用。
所述含氢富碳材料作为柔性电极材料在储能器件中的应用,所述储能器件为金属离子电池或超级电容器,其中,材料可直接使用、将其粉碎或其他形式使用。
所述金属离子电池电极材料的金属选自锂、钠、钾、镁、钙、锌、镉、镍、钴中的一种。
本发明的有益效果:
本发明新型含氢富碳材料采用偶联的方法将单体偶联成为二维材料,通过控制单体的加入量,可以合成不同面积和不同厚度的柔性薄膜。与现有材料相对比,本发明通过设计不同的单体合成了具有不同孔道大小的结构,并且创造性的将碳氢键引入全碳材料,不仅通过结构中的孔道控制离子和分子的传输速度以及材料的禁带宽度,而且增加了材料的活性位点,提高了材料的柔性以及稳定性,进而拓展材料在催化、气体或液体分离、二次电池负极以及电子器件等领域的应用。实验结果表明:本发明所得超薄柔性薄膜在实验室的合成面积已经可以达到4*4cm2,厚度在100纳米至20微米,具有较强的自支撑能力。禁带宽度为0.75eV左右,电导率为1.02×10-3Sm-1,在储能器件领域展现了比石墨炔更为优异的性能。
附图说明
图1为新型含氢富碳材料的化学结构式。
图2为本发明实施例1所制备的新型含氢富碳材料的光学图片。
图3为本发明实施例1所制备的新型含氢富碳材料的截面扫描电镜图片。
图4为本发明实施例1所制备的新型含氢富碳材料的扫描电镜图片。
图5为本发明实施例1所制备的新型含氢富碳材料的透射电镜图片。
图6为本发明实施例1所制备的新型含氢富碳材料的拉曼光谱。
图7为本发明实施例1所制备的新型含氢富碳材料的红外光谱。
图8为本发明实施例1所制备的新型含氢富碳材料的I-V曲线。
图9为本发明应用例1所制备的扣式电池的倍率图。
图10为本发明应用例1所制备的扣式电池在0.1A/g电流下的循环性能图。
图11为本发明应用例1所制备的扣式电池在0.1A/g电流下的充放电曲线图。
图12为本发明应用例1所制备的扣式电池循环前后的扫描电镜图。
具体实施方式
本发明含氢富碳材料通过单体偶联设计合成的材料,将具有较小的禁带宽度、较大的比表面积以及有序的孔道结构,并且可以自组装成为柔性薄膜,因此,在催化、电子、气体或液体分离、二次电池负极以及电子器件等领域拥有广阔的应用前景,特别是在柔性电极材料中的应用。
具体,材料由苯环以及炔键构成,苯环的间位与炔键相连,苯环与苯环之间存在两个炔键,苯环的另外三个间位与氢相连。具有该结构的薄膜其晶体结构是二维的,通过层间作用力组装成为三维薄膜,其实验室合成面积可达4*4cm2,具有较强的自支撑能力,禁带宽度为0.75eV左右,电导率在1.02×10-3Sm-1左右。
本发明合成了一种新型含氢富碳材料,通过改变单体的结构制备了具有更大孔道的二维材料,给锂、钠等离子的传输提供了便利。另外,通过引入碳氢键不仅提高了材料的柔性,更重要的是引入了碳氢键活性位点,这也为提高新型含氢富碳材料的能量密度打下了坚实的基础。实验结果表明,新型的含氢富碳材料的能量密度和功率密度较石墨炔相比得到了大幅度的提高。
下面结合具体实施例对本发明做进一步说明,但本发明并不限于以下实施例。
下述实施例中用于制备三炔基苯(化合物3)的反应物化合物2,是按照下述文献提供的方法由三溴苯(化合物1)和三甲基硅炔制得:该反应的化学方程式如下:
Figure BDA0001265751190000041
实施例1
在6℃时,向含有48.7mg(0.133mmol)化合物2的四氢呋喃(THF)溶液中加入0.4mL四丁基氟化铵(TBAF)(1mol/L四氢呋喃溶液,0.4mmol),在氩气保护下搅拌反应30分钟。之后的反应产物用二氯甲烷稀释,水洗涤,无水硫酸钠干燥,旋蒸干燥得到三炔基苯(化合物3)(15mg,75%)。用25mL吡啶溶解化合物3,在氩气保护下慢慢滴加于盛有50-180mL吡啶和50-300cm2铜基底的两口瓶中,反应温度50-180℃,滴加时间为4-24小时。然后于50-180℃继续搅拌反应2-5天。反应结束后在铜片上生成一层淡黄色的膜,经盐酸腐蚀铜片后得到淡黄色透明薄膜即为新型含氢富碳材料薄膜(10mg,66.7%)。化学反应方程式如下:
Figure BDA0001265751190000042
宏观图像(图2)表明,用该方法制备所得的新型富碳二维材料薄膜表面均匀,大小约为4*4cm2,呈淡黄色,有一定的柔性和自支撑能力。
截面扫描电镜(图3)表明薄膜的厚度约为700nm。
扫描电镜(图4)表明新型含氢富碳材料的微观形貌为二维结构通过层间作用力组装成为三维框架结构,结构中含有大量孔道。
透射电镜(图5)表明三维框架结构是由层状薄膜组成的。
拉曼光谱(图6)表明薄膜的分子结构中含有碳碳单键、芳香环以及碳碳三键。
红外光谱(图7)表明薄膜的分子结构中还含有芳香环的碳氢键。
I-V曲线(图8)表明薄膜的电导率为1.02×10-3Sm-1
应用例1
将上述实施例1从铜片表面腐蚀制备得到的新型含氢富碳材料薄膜裁剪成合适大小,随后在120℃真空条件下烘干12小时,用于作为锂离子电池的负极(工作电极),锂片作为对电极,采用1mol/L六氟磷酸锂(LiPF6)/(溶剂是碳酸乙烯酯(EC):碳酸二甲酯(DMC),体积比为1:1)作为电解液,在充满氩气的手套箱里组装成2032型扣式电池进行电化学性能测试(参见图9-12)。
倍率性能(图9)表明新型含氢富碳材料柔性电极在5A/g的大电流下,容量仍能达到570mAh/g,说明了电极拥有很好的倍率性能。且展现了比石墨炔更优的倍率性能(见CN201410119705.5)。
循环性能(图10)表明新型含氢富碳材料柔性电极在0.1A/g的电流下循环100圈,其容量仍能保持在1050mAh/g。与此同时,石墨炔的容量为450mAh/g(见CN201410119705.5)。
充放电曲线(图11)表明新型含氢富碳材料作为柔性电极大部分的放电容量在1V以下,是理想的负极材料,从图中还可以看出电池在经历前几圈充放电形成SEI膜后,拥有非常稳定的电化学性能。
循环前后的扫描电镜(图12)表明含氢富碳材料薄膜电极的表面在循环过程中形成了非常稳定的SEI膜。
应用例2
将按照上述实施例从铜片表面腐蚀制备得到的新型含氢富碳材料薄膜裁剪成合适大小,随后在120℃真空条件下烘干12小时,用于作为钠离子电池的负极(工作电极),钠片作为对电极,采用1mol/L高氯酸钠(NaClO4)/(溶剂是碳酸乙烯酯(EC):碳酸二甲酯(DMC),体积比为1:1,添加体积比为5%的FEC)作为电解液,在充满氩气的手套箱里组装成2032型扣式电池进行电化学性能测试。
同时,将按照上述实施例从铜片表面腐蚀制备得到的新型含氢富碳材料薄膜在其他金属离子电池中使用,含氢富碳材料作为工作电极,金属片作为对电极,选取可用的电解液,装配2032型纽扣电池也具有上述特性。

Claims (5)

1.一种含氢富碳材料,其特征在于:材料为具有自支撑能力的柔性材料,禁带宽度为0.75-2.5 eV,电导率为0.02-1.02×10-3 S m-1,该材料由单体三炔基苯制备而成,其结构中存在苯环、炔键和碳氢键,以及由三种键所构成的六边形孔道,孔径为1.23-1.63 nm;
制备方法为:
以铜片或任意表面覆盖有铜薄膜层的基底作为基底,以三炔基苯为单体,在铜的催化下于溶剂中发生偶联反应,在所述基底的表面得到由苯环、炔键和碳氢键相连构成二维平面晶体结构的材料薄膜;所述的溶剂为吡啶;所述的三炔基苯单体与所述的基底的面积关系为0.01-2 mg/cm2;所述的三炔基苯单体与所述的溶剂的体积关系为0.02-4 mg/mL;所述的偶联反应中,温度为50-180 ℃,时间为3-7天;
所述材料由苯环与苯环间存在的炔键相连构成二维平面结构,通过层间作用力组装成为三维自支撑结构。
2.一种制备权利要求1所述的含氢富碳材料的方法,其特征在于:以铜片或任意表面覆盖有铜薄膜层的基底作为基底,以三炔基苯为单体,在铜的催化下于溶剂中发生偶联反应,在所述基底的表面得到由苯环、炔键和碳氢键相连构成二维平面晶体结构的材料薄膜;所述的溶剂为吡啶;所述的三炔基苯单体与所述的基底的面积关系为0.01-2 mg/cm2;所述的三炔基苯单体与所述的溶剂的体积关系为0.02-4 mg/mL;所述的偶联反应中,温度为50-180 ℃,时间为3-7天。
3.一种权利要求1所述的含氢富碳材料的应用,其特征在于:所述材料在储能器件中的应用。
4.按权利要求3所述的含氢富碳材料的应用,其特征在于:所述储能器件为金属离子电池或超级电容器,其中,材料可直接使用、将其粉碎或其他形式使用。
5.按权利要求4所述的含氢富碳材料的应用,其特征在于:所述金属离子电池中金属选自锂、钠、钾、镁、钙、锌、镉、镍、钴中的一种。
CN201710227923.4A 2017-04-10 2017-04-10 一种含氢富碳材料及其应用 Expired - Fee Related CN107069036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710227923.4A CN107069036B (zh) 2017-04-10 2017-04-10 一种含氢富碳材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710227923.4A CN107069036B (zh) 2017-04-10 2017-04-10 一种含氢富碳材料及其应用

Publications (2)

Publication Number Publication Date
CN107069036A CN107069036A (zh) 2017-08-18
CN107069036B true CN107069036B (zh) 2020-07-07

Family

ID=59603027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710227923.4A Expired - Fee Related CN107069036B (zh) 2017-04-10 2017-04-10 一种含氢富碳材料及其应用

Country Status (1)

Country Link
CN (1) CN107069036B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950478B (zh) * 2017-12-20 2020-12-15 中国科学院化学研究所 一种电极材料的包覆方法及其包覆物与应用
CN108892119A (zh) * 2018-06-22 2018-11-27 中国科学院青岛生物能源与过程研究所 一种新型三维碳炔类全碳材料及其制备方法
CN112850687A (zh) * 2021-01-27 2021-05-28 同济大学 一种氢取代石墨二炔薄膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774570A (zh) * 2010-01-27 2010-07-14 中国科学院化学研究所 一种制备石墨炔薄膜的方法
CN102225757A (zh) * 2011-03-28 2011-10-26 中国科学院化学研究所 一种石墨炔纳米薄膜及其制备方法
CN103943373A (zh) * 2014-03-27 2014-07-23 中国科学院化学研究所 石墨炔在金属离子电池和超级电容器中的应用
CN104667953A (zh) * 2013-11-29 2015-06-03 中国科学院过程工程研究所 一种氮掺杂石墨炔、制备方法及其用途
CN105016962A (zh) * 2015-06-23 2015-11-04 上海师范大学 一种石墨炔的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859034B2 (en) * 2015-03-23 2018-01-02 Empire Technology Development Llc Functionalized boron nitride materials and methods for their preparation and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774570A (zh) * 2010-01-27 2010-07-14 中国科学院化学研究所 一种制备石墨炔薄膜的方法
CN102225757A (zh) * 2011-03-28 2011-10-26 中国科学院化学研究所 一种石墨炔纳米薄膜及其制备方法
CN104667953A (zh) * 2013-11-29 2015-06-03 中国科学院过程工程研究所 一种氮掺杂石墨炔、制备方法及其用途
CN103943373A (zh) * 2014-03-27 2014-07-23 中国科学院化学研究所 石墨炔在金属离子电池和超级电容器中的应用
CN105016962A (zh) * 2015-06-23 2015-11-04 上海师范大学 一种石墨炔的制备方法

Also Published As

Publication number Publication date
CN107069036A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
He et al. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance
Zhou et al. One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries
Yang et al. Constructing SbOC bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries
Xie et al. Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage
Huang et al. Graphdiyne for high capacity and long-life lithium storage
Xie et al. Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage
Wang et al. High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks
Luo et al. Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries
Ge et al. Porous nano-structured Co 3 O 4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries
Yin et al. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries
Xie et al. Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance
Huang et al. Interfacial engineering enables Bi@ C-TiOx microspheres as superpower and long life anode for lithium-ion batteries
Yao et al. Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage
Yang et al. Novel Fe3O4-CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance
CN104876213B (zh) 一种石墨烯材料及其电极材料制备方法
Zhang et al. Synthesis of CuO nanowire arrays as high-performance electrode for lithium ion batteries
Chen et al. Controllable fabrication of urchin-like Co 3 O 4 hollow spheres for high-performance supercapacitors and lithium-ion batteries
Zhao et al. Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries
Tang et al. Novel scalable synthesis of porous silicon/carbon composite as anode material for superior lithium-ion batteries
Huang et al. Self-initiated coating of polypyrrole on MnO2/Mn2O3 nanocomposite for high-performance aqueous zinc-ion batteries
Liu et al. Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage
Peng et al. Porous carbon with large surface area derived from a metal–organic framework as a lithium-ion battery anode material
Ma et al. Fabrication of NiO-ZnO/RGO composite as an anode material for lithium-ion batteries
Fu et al. Size controlling and surface engineering enable NaTi2 (PO4) 3/C outstanding sodium storage properties
CN107069036B (zh) 一种含氢富碳材料及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200707