CN107065922A - 基于队形库的多无人机队形编队方法 - Google Patents

基于队形库的多无人机队形编队方法 Download PDF

Info

Publication number
CN107065922A
CN107065922A CN201710077518.9A CN201710077518A CN107065922A CN 107065922 A CN107065922 A CN 107065922A CN 201710077518 A CN201710077518 A CN 201710077518A CN 107065922 A CN107065922 A CN 107065922A
Authority
CN
China
Prior art keywords
formation
node
storehouse
flight pattern
leader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710077518.9A
Other languages
English (en)
Other versions
CN107065922B (zh
Inventor
蒲志强
丘腾海
谭湘敏
易建强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of Science filed Critical Institute of Automation of Chinese Academy of Science
Priority to CN201710077518.9A priority Critical patent/CN107065922B/zh
Publication of CN107065922A publication Critical patent/CN107065922A/zh
Application granted granted Critical
Publication of CN107065922B publication Critical patent/CN107065922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及一种基于队形库的多无人机队形编队方法,包括以下步骤:步骤1,根据编队任务中的编队队形请求,在预设队形库中选取基本队形,利用所述基本队形构建所述编队队形;所述编队队形中包含一个长机队形节点、多个僚机队形节点以及一个队形入口位置,所述队形入口位置为所述长机节点实时跟随的空间位置;步骤2,建立所述编队队形中各队形节点与无人机间的对应指派关系;步骤3,根据所述编队任务中所携带的任务队形入口位置以及所述对应指派关系确定每一架无人机的绝对位置期望值,按照所述编队队形编队排列。本发明中,实现了队形任意组合,同时实现了队形的快速、可视化、动态设计和复杂队形的基本元素拆分与重组。

Description

基于队形库的多无人机队形编队方法
技术领域
本发明涉及多无人机编队飞行控制领域,尤其涉及一种基于队形库的多无人机队形编队方法。
背景技术
多无人机协同编队能极大拓展无人机的性能和应用领域,在协同侦查、灾害搜救、环境监测、飞行表演等领域具有巨大的应用潜力;而从技术本身的发展来看,多无人机协同编队代表着无人机的自主能力达到了5级以上,具备了较高的智能化水平。编队队形直接影响到飞行任务的完成效果,例如在军用领域,横形编队有利于扩大侦查搜索范围,纵形编队则有利于减小雷达反射面积;而在飞行表演领域,大规模无人机群需要完成多种复杂编队队形的生成、保持和变换。因此,编队队形设计是多机协同编队飞行的基础环节。
然而当前针对多无人机协同编队的研究大多集中于其协同架构的研究,却几乎没有涉及编队队形快速设计的工具化研究。近些年,采用小型无人机的大规模编队演示飞行已见诸报端,如2015年8月美国海军研究生院采用50架固定翼无人机实现的协同编队飞行,2016年8月甄迪无人机公司采用60架四旋翼无人机实现的编队飞行表演。然而,大多数现有研究的编队队形是为了飞行任务而“定制化”设计的,为了实现完整的队形,设计人员需要预先计算出每一个节点的相对位置坐标,同时这种计算并不能被复用,一旦变换到新的队形后,需要重新计算所有节点新的相对位置坐标。因此,现有技术中缺乏一种灵活的、工具化的队形设计方法,来实现任意编队队形的快速、可视化、动态设计和复杂队形的基本元素拆分与重组。
发明内容
为了解决现有技术中的上述问题,即为了实现任意编队队形的快速、可视化、动态设计和复杂队形的基本元素拆分与重组。基于此,本发明提供了基于队形库的多无人机队形编队方法,应用于包含一架长机和多个僚机的多架无人机中,包括以下步骤:
步骤1,根据编队任务中的编队队形请求,在预设队形库中选取基本队形,利用所述基本队形构建所述编队队形;所述编队队形中包含一个长机队形节点、多个僚机队形节点以及一个队形入口位置,所述队形入口位置为所述长机节点实时跟随的空间位置;
步骤2,建立所述编队队形中各队形节点与无人机间的对应指派关系;
步骤3,根据所述编队任务中所携带的任务队形入口位置以及所述对应指派关系确定每一架无人机的绝对位置期望值,按照所述编队队形编队排列。
优选地,所述预设队形库中每一基本队形中各队形节点的空间三维绝对位置期望值的计算关系式为:
v=f(Γ)
其中,v为队形节点的空间三维绝对位置期望,Γ={s,n,m,θ,p,c}为队形参数,s为基本队形名,n为队形节点数量,m为长机队形节点序列号,θ为表征了队形的形状、大小和方向的队形特征参数,p为队形入口位置,c为队形调整控制位,f为队形向量计算函数。
优选地,所有队形节点的空间三维绝对位置期望构成空间三维绝对位置期望向量组,其表达式为:
V=[v1,v2,...vi,...vn]
其中,V为空间三维绝对位置期望向量组,vi=[xi,yi,zi]T表示第i个队形节点的空间三维绝对位置期望值,i=1,…,n。
优选地,在计算第i个队形节点的空间三维绝对位置期望值时,包括如下步骤:
步骤1),建立参考坐标系O1,根据s、n、θ计算第i个队形节点在O1中相对位置向量v1i,i=1,…,n,v1i是队形节点序列号的函数;
步骤2),根据m确定长机队形节点在O1中的相对位置向量v1m,将O1原点平移到长机队形节点处,建立新的坐标系O2,通过坐标平移计算该第i个队形节点在O2中的相对位置向量v2i,计算公式为:
v2i=v1i-v1m
步骤3),根据p,计算得到该第i个队形节点的空间三维绝对位置期望值vi,计算公式为:
vi=T·v2i+p
其中,T为O1相对于地面绝对位置坐标系的旋转矩阵。
优选地,当改变m时,重复步骤2)~3),实现长机切换。
优选地,所述编队队形包括基本队形和组合队形。
优选地,所述队形库中每一基本队形中只有一个队形入口位置。
优选地,所述队形库中每一基本队形中只有一个长机队形节点。
优选地,利用预设队形库构建编队队形时,包括:
交互式的图形化界面设计构建方法,为采用人机交互方式设置队形参数Γ,在无人机于地面时离线设计构建编队队形;或
所述参数化动态设计构建方法,为采用程序参数化调用方式设置队形参数Γ,在无人机飞行过程中动态设计构建编队队形。
优选地,在建立所述编队队形中各队形节点与无人机间的对应指派关系时,参与到所述编队任务中的无人机数量不少于所述编队队形的队形节点数,其实现方式包括如下两种:
直接指派;或
优化指派,根据所有无人机当前位置和编队队形位置,根据所述编队任务在编队队形建立或调整中引入优化指标和约束条件,采用优化算法建立无人机与队形节点间的对应关系。
与现有技术相比,本发明至少具有以下优点:
通过本发明中的多架无人机队形编队设计,不仅实现了队形的任意组合,同时通过队形的设计构成方式实现了队形的快速、可视化、动态设计和复杂队形的基本元素拆分与重组。
附图说明
图1是本发明提供的多架无人机队形编队设计的整体流程架构图;
图2是本发明提供的空间三维绝对位置向量计算坐标变换关系示意图;
图3是本发明提供的多架无人机队形编队中基本队形参数含义示意图;
图4是本发明提供的队形节点与无人机间的指派关系示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
在本发明中,提供了一种基于队形库的多无人机队形编队方法,应用于包含一架长机和多个僚机的多架无人机中,如图1所示,包括两个阶段,库设计阶段和队形实现阶段,其中,库设计阶段包括步骤S1,队形实现阶段包括步骤S2~S4,具体的:
S1,构建队形库;
根据常用的飞行队形构建具有统一模板的、参数化表达的基本队形,所有队形组成队形库。
其中,队形库中每一队形包括一个队形入口位置、以及由一个长机队形节点和多个僚机队形节点构成的多个队形节点。
所述预设队形库中每一基本队形中各队形节点的空间三维绝对位置期望值的计算关系式为:
v=f(Γ)
其中,v为队形节点的空间三维绝对位置期望,Γ={s,n,m,θ,p,c}为队形参数;
s为基本队形名,包括但不限于“直线队形”、“V字队形”、“弧形队形”、“正多边形队形”、“矩阵队形”;
n为队形节点数量,表示队形中包含的队形节点总数;
m为长机队形节点序列号,每一种队形都拥有各自预设的队形节点排序,序列号为1到n间的某一自然数;
θ为队形特征参数,每一种队形都拥有各自的队形特征参数,队形特征参数决定了队形的最终形状、大小、方向;
p为队形入口位置,这是一个空间三维绝对位置向量,代表长机所要实时跟随的空间三维绝对位置期望值;
c为队形调整控制位,用于决定当编队飞行中某一架无人机出现故障或离队后剩余无人机的队形调整动作,所选的调整动作包括:维持原队形不变,即所有无人机维持原来的相对位置关系;或,队形收缩补充,即相邻无人机收缩补充故障或离队无人机的位置,其他无人机做相应的收缩补充;
f为队形向量计算函数,根据队形参数Γ计算出n个队形节点的空间三维绝对位置期望向量组V;队形向量计算函数f根据基本队形名s来选择所要调用的队形库中的基本队形,选中的基本队形进一步调用自身的队形向量计算式来计算出空间三维绝对位置期望向量组V。
该空间三维绝对位置期望向量组V由所有队形节点的空间三维绝对位置期望构成,其表达式为:
V=[v1,v2,...vi,...vn]
其中,V为空间三维绝对位置期望向量组,vi=[xi,yi,zi]T表示第i个队形节点的空间三维绝对位置期望值,i=1,…,n。
具体的,如图2所示,在计算第i个队形节点的空间三维绝对位置期望值时,包括如下步骤:
步骤1),建立参考坐标系O1,根据s、n、θ计算第i个队形节点在O1中相对位置向量v1i,i=1,…,n,v1i是队形节点序列号的函数;
步骤2),根据m确定长机队形节点在O1中的相对位置向量v1m,将O1原点平移到长机队形节点处,建立新的坐标系O2,通过坐标平移计算该第i个队形节点在O2中的相对位置向量v2i,计算公式为:
v2i=v1i-v1m
步骤3),根据p,计算得到该第i个队形节点的空间三维绝对位置期望值vi,计算公式为:
vi=T·v2i+p
其中,T为O1相对于地面绝对位置坐标系的旋转矩阵。
当改变m时,重复步骤2~3,实现长机的便捷切换。
S2,设计队形;
根据编队任务,不同的编队任务中携带有不同的编队队形请求,根据当前编队队形在队形库中选择特定的基本队形,设置队形参数,形成参数实例化的队形;由至少一个基本队形构建该编队队形;所述编队队形中包含一个长机队形节点、多个僚机队形节点以及一个队形入口位置,所述队形入口位置为所述长机节点实时跟随的空间位置。其中,该编队队形可以为一个基本队形或由多个基本队形组合而成的组合队形。
利用预设队形库构建编队队形时,包括:
交互式的图形化界面设计构建方法,为采用人机交互方式设置队形参数Γ,在无人机于地面时离线设计构建编队队形;或
所述参数化动态设计构建方法,为采用程序参数化调用方式设置队形参数Γ,在无人机飞行过程中动态设计构建编队队形。
在设计队形时,包括如下步骤:
S21:从队形库中选择特定的基本队形,此时自动设置了基本队形名参数s;
S22:设置其他基本队形参数,包括队形节点数n,长机所处队形节点的序列号m,队形特征参数θ,队形入口位置p,队形调整控制位c;
S23:若要设计组合队形,则继续从队形库中选择多个基本队形,并按照队形要求设置各个基本队形的参数。在进行队形组合时,后一个基本队形的队形入口位置p需与前一个基本队形的位置相关联,由此,任意组合队形有且仅有一架长机,同时有且仅有一个队形入口位置p作为长机所要实时跟随的空间位置。
在设计队形时,首先选定某个参考位置建立一个参考坐标系O1,优选的,设置O1的坐标方向为长机气流坐标系的方向,记该坐标系为O1-xayaza,然后在O1-xaya平面内设计队形形状和尺寸,由此形成基本形状,进一步将该基本图形进行三维旋转,优选的,旋转顺序为:先绕O1za轴旋转φ角,再绕新的O1y′a轴旋转α角,再绕新的O1x″a轴旋转ψ角,这样可将基本图形演变为三维空间内任意朝向的图形。
在此坐标系定义及坐标系旋转定义基础下,结合图3给出的“直线队形”、“V字队形”、“正多边形队形”、“矩形队形”四种示例队形的基本形状,进一步说明部分队形参数的含义。
(1)直线队形
如图3(a)所示为直线队形,包含n个队形节点,记作qi,i=1,…,n,其空间三维绝对位置记作vi。若选择q1为长机节点,则m=1,选择其他节点作为长机则依此类推。基本直线形状可选择任意初始方向,队形特征参数θ为θ={l,φ,α,ψ},其中l为相邻两节点间的距离,即向量vk+1-vk的模长,这里k=1,…,n-1;φ,α,ψ为基本直线队形的三个旋转角。
(2)V字队形
如图3(b)所示为V字队形,包含n个队形节点,记作qi,i=1,…,n,其空间三维绝对位置记作vi。若选择为长机节点,则m=n1,选择其他节点作为长机则依此类推。基本V字形状的设计为,将V字两侧翼夹角γ的平分线与O1xa轴相平行,沿O1ya轴依次从小到大标示节点序号。队形特征参数θ为θ={n1,l,γ,φ,α,ψ},其中n1为V字队形两侧翼交叉点的节点序号,l为相邻两节点间的距离,即向量vk+1-vk的模长,这里k=1,…,n-1;γ为V字队形的侧翼展角,规定图示方向为正,则γ∈(0,180°),0<γ<90°表示正V字队形,90°<γ<180°表示倒V字队形,γ=90°时退化为直线队形;φ,α,ψ为基本V字队形的三个旋转角。
(3)正多边形队形
如图3(c)所示为正多边形队形,包含n个队形节点,记作qi,i=1,…,n,其空间三维绝对位置记作vi。若选择q1为长机节点,则m=1,选择其他节点作为长机则依此类推。基本正多边形的节点排列为,以O1xa轴方向的外接圆半径外端点作为q1节点,按图示角度方向为正方向依次旋转,其他节点等间距地分布在外接圆上,显然相邻两节点与圆心所成夹角为γ=360°/n。队形特征参数θ为θ={r,φ,α,ψ},其中r为正多边形所在外接圆的半径,φ,α,ψ为基本正多边形队形的三个旋转角。
(4)矩形队形
如图3(d)所示为矩形队形,包含n个队形节点,记作qi,i=1,…,n,其空间三维绝对位置记作vi。若选择q1为长机节点,则m=1,选择其他节点作为长机则依此类推。基本矩形的队形设计为,使矩形相邻两边与O1xaya两轴平行,左上角顶点设为q1,按行排列,直到排满n个节点为止。队形特征参数θ为θ={n1,l1,l2,φ,α,ψ},其中n1为每行节点数,l1、l2为相邻行、列节点间的距离,φ,α,ψ为基本矩形队形的三个旋转角。
S3,建立指派关系;
建立所设计编队队形中各队形节点和参与到编队任务中的无人机之间对应的指派关系,形成队形节点与无人机之间的一一对应。其中,参与到所述编队任务中的无人机数量不少于所述编队队形的队形节点数。
如图4所示的具体实施例中,编队队形为包含6个队形节点的正多边形队形,队形节点序号为q1~q6;参与编队任务的无人机编号为p1~p6
采用下述两种方法中的任意一种方法来建立所设计编队队形的队形节点和实际无人机之间的一一对应关系,各无人机与队形节点间对应指派关系的确定,包括如下两种方式:
直接指派,直接手动显式建立无人机队形节点与无人机间的对应关系;或
优化指派,根据所有无人机当前位置和编队队形位置,根据所述编队任务在编队队形建立或调整中引入优化指标和约束条件,采用优化算法建立无人机与队形节点间的对应关系。
图4所示为采用直接指派的方式建立的对应关系,其对应关系为:
需要说明的是,无论是采取直接指派还是优化指派方法,都存在多种可能的对应关系,具体采用哪种方式取决于所要完成的任务、所选择的优化算法、无人机的初始位置和期望组合队形的集结位置。
S4,实现编队飞行;
根据步骤S2中参数实例化的组合队形和S3中建立的队形节点与无人机之间的一一对应关系,实时给定任务队形入口位置,计算得到每一架无人机的绝对位置期望值,作为每一架无人机航点控制器的期望指令,从而控制无人机群实现按编队队形的编队飞行。
采用上述技术方案,本发明产生的有益效果有:(1)基于标准化、模块化的“库”设计思想,所设计的队形库包括多个常用的基本队形,通过设置不同的队形参数,可变换出更多的常用队形,提高了队形设计的重用性;(2)基本队形可组合成复杂的组合队形,从而理论上可实现任意的队形设计;(3)采用图形化的交互式设计和参数化的动态设计两种设计方式,不仅提高了队形设计的效率,还提供了统一的队形接口,供上层推理决策系统进行调用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

1.一种基于队形库的多无人机队形编队方法,其特征在于,应用于包含一架长机和多个僚机的多架无人机中,包括以下步骤:
步骤1,根据编队任务中的编队队形请求,在预设队形库中选取基本队形,利用所述基本队形构建所述编队队形;所述编队队形中包含一个长机队形节点、多个僚机队形节点以及一个队形入口位置,所述队形入口位置为所述长机节点实时跟随的空间位置;
步骤2,建立所述编队队形中各队形节点与无人机间的对应指派关系;
步骤3,根据所述编队任务中所携带的任务队形入口位置以及所述对应指派关系确定每一架无人机的绝对位置期望值,按照所述编队队形编队排列。
2.根据权利要求1所述基于队形库的多无人机队形编队方法,其特征在于,所述预设队形库中每一基本队形中各队形节点的空间三维绝对位置期望值的计算关系式为:
v=f(Γ)
其中,v为队形节点的空间三维绝对位置期望,Γ={s,n,m,θ,p,c}为队形参数,s为基本队形名,n为队形节点数量,m为长机队形节点序列号,θ为表征了队形的形状、大小和方向的队形特征参数,p为队形入口位置,c为队形调整控制位,f为队形向量计算函数。
3.根据权利要求2所述基于队形库的多无人机队形编队方法,其特征在于,所有队形节点的空间三维绝对位置期望构成空间三维绝对位置期望向量组,其表达式为:
V=[v1,v2,...vi,...vn]
其中,V为空间三维绝对位置期望向量组,vi=[xi,yi,zi]T表示第i个队形节点的空间三维绝对位置期望值,i=1,…,n。
4.根据权利要求3所述基于队形库的多无人机队形编队方法,其特征在于,在计算第i个队形节点的空间三维绝对位置期望值时,包括如下步骤:
步骤1),建立参考坐标系O1,根据s、n、θ计算第i个队形节点在O1中相对位置向量v1i,i=1,…,n,v1i是队形节点序列号的函数;
步骤2),根据m确定长机队形节点在O1中的相对位置向量v1m,将O1原点平移到长机队形节点处,建立新的坐标系O2,通过坐标平移计算该第i个队形节点在O2中的相对位置向量v2i,计算公式为:
v2i=v1i-v1m
步骤3),根据p,计算得到该第i个队形节点的空间三维绝对位置期望值vi,计算公式为:
vi=T·v2i+p
其中,T为O1相对于地面绝对位置坐标系的旋转矩阵。
5.根据权利要求4所述基于队形库的多无人机队形编队方法,其特征在于,当改变m时,重复步骤2)~3),实现长机切换。
6.根据权利要求1所述基于队形库的多无人机队形编队方法,其特征在于,所述编队队形包括基本队形和组合队形。
7.根据权利要求6所述基于队形库的多无人机队形编队方法,其特征在于,所述队形库中每一基本队形中只有一个队形入口位置。
8.根据权利要求7所述基于队形库的多无人机队形编队方法,其特征在于,所述队形库中每一基本队形中只有一个长机队形节点。
9.根据权利要求1~8所述基于队形库的多无人机队形编队方法,其特征在于,利用预设队形库构建编队队形时,包括:
交互式的图形化界面设计构建方法,为采用人机交互方式设置队形参数Γ,在无人机于地面时离线设计构建编队队形;或
所述参数化动态设计构建方法,为采用程序参数化调用方式设置队形参数Γ,在无人机飞行过程中动态设计构建编队队形。
10.根据权利要求1~8中任一项所述基于队形库的多无人机队形编队方法,其特征在于,在建立所述编队队形中各队形节点与无人机间的对应指派关系时,参与到所述编队任务中的无人机数量不少于所述编队队形的队形节点数,其实现方式包括如下两种:
直接指派;或
优化指派,根据所有无人机当前位置和编队队形位置,根据所述编队任务在编队队形建立或调整中引入优化指标和约束条件,采用优化算法建立无人机与队形节点间的对应关系。
CN201710077518.9A 2017-02-14 2017-02-14 基于队形库的多无人机队形编队方法 Active CN107065922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710077518.9A CN107065922B (zh) 2017-02-14 2017-02-14 基于队形库的多无人机队形编队方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710077518.9A CN107065922B (zh) 2017-02-14 2017-02-14 基于队形库的多无人机队形编队方法

Publications (2)

Publication Number Publication Date
CN107065922A true CN107065922A (zh) 2017-08-18
CN107065922B CN107065922B (zh) 2020-02-07

Family

ID=59599013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710077518.9A Active CN107065922B (zh) 2017-02-14 2017-02-14 基于队形库的多无人机队形编队方法

Country Status (1)

Country Link
CN (1) CN107065922B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359548A (zh) * 2017-08-23 2017-11-17 国网四川省电力公司检修公司 基于多无人机协同的线路大档距放线平台及方法
CN108268054A (zh) * 2018-02-06 2018-07-10 哈尔滨工业大学 亚轨道蜂群飞行器分层式协同控制方法
CN109213191A (zh) * 2018-08-02 2019-01-15 平安科技(深圳)有限公司 一种无人机控制方法、计算机可读存储介质及终端设备
CN110162093A (zh) * 2019-06-13 2019-08-23 中国人民解放军军事科学院国防科技创新研究院 一种基于几何相似性设计的高适应性编队控制方法
CN110377057A (zh) * 2019-08-28 2019-10-25 诸葛嘉 一种无人机的编队飞行组织方法及控制终端
CN111221354A (zh) * 2019-11-26 2020-06-02 南京航空航天大学 一种基于改进的转弯半径的固定翼编队控制方法
CN112015198A (zh) * 2019-05-29 2020-12-01 北京京东尚科信息技术有限公司 一种无人机编队同步环绕的控制方法及系统
CN112099531A (zh) * 2020-10-19 2020-12-18 中国空气动力研究与发展中心 一种分布式无人机编队队形变换方法
CN112327909A (zh) * 2020-10-27 2021-02-05 一飞(海南)科技有限公司 一种无人机编队的贴图灯效控制方法、控制系统及无人机
CN112631323A (zh) * 2020-11-19 2021-04-09 一飞(海南)科技有限公司 集群无人机分组指派方法、系统、控制器、介质及终端
CN113359848A (zh) * 2021-07-06 2021-09-07 西北工业大学 一种基于航路点的无人机编队生成-切换航迹规划方法
TWI742494B (zh) * 2019-12-26 2021-10-11 實踐大學 智慧無人機群飛圖像產生演算裝置
CN114138008A (zh) * 2021-11-08 2022-03-04 中国人民解放军国防科技大学 一种无人机编队控制方法及装置
CN114519276A (zh) * 2022-02-22 2022-05-20 北京华如科技股份有限公司 一种作战实体编队编辑方法及装置
CN115810293A (zh) * 2022-11-28 2023-03-17 亿航智能设备(广州)有限公司 一种多台无人驾驶航空器的联动控制方法、系统和介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060167596A1 (en) * 2005-01-24 2006-07-27 Bodin William K Depicting the flight of a formation of UAVs
CN102591358A (zh) * 2012-03-12 2012-07-18 北京航空航天大学 一种多无人机的动态编队控制方法
CN103941728A (zh) * 2014-04-24 2014-07-23 北京航空航天大学 一种无人机密集自主编队的队形变换方法
CN104216382A (zh) * 2014-09-19 2014-12-17 北京航天长征飞行器研究所 一种空间小型飞行器编队飞行控制系统
CN104281052A (zh) * 2013-07-06 2015-01-14 哈尔滨点石仿真科技有限公司 一种基于行为的领航者-跟随者多智能体队形控制方法
CN105353766A (zh) * 2015-11-10 2016-02-24 合肥工业大学 一种多无人机编队结构的分布式容错管理方法
CN105467981A (zh) * 2015-12-24 2016-04-06 中南大学 一种针对多个智能体的编队方法以及装置
CN105589470A (zh) * 2016-01-20 2016-05-18 浙江大学 一种多无人机分布式编队控制方法
CN105843256A (zh) * 2016-05-13 2016-08-10 中国航空工业集团公司西安飞机设计研究所 一种多机编队飞行控制方法
CN105867419A (zh) * 2016-04-20 2016-08-17 合肥工业大学 无人机编队管理方法及无人机的控制系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060167596A1 (en) * 2005-01-24 2006-07-27 Bodin William K Depicting the flight of a formation of UAVs
CN102591358A (zh) * 2012-03-12 2012-07-18 北京航空航天大学 一种多无人机的动态编队控制方法
CN104281052A (zh) * 2013-07-06 2015-01-14 哈尔滨点石仿真科技有限公司 一种基于行为的领航者-跟随者多智能体队形控制方法
CN103941728A (zh) * 2014-04-24 2014-07-23 北京航空航天大学 一种无人机密集自主编队的队形变换方法
CN104216382A (zh) * 2014-09-19 2014-12-17 北京航天长征飞行器研究所 一种空间小型飞行器编队飞行控制系统
CN105353766A (zh) * 2015-11-10 2016-02-24 合肥工业大学 一种多无人机编队结构的分布式容错管理方法
CN105467981A (zh) * 2015-12-24 2016-04-06 中南大学 一种针对多个智能体的编队方法以及装置
CN105589470A (zh) * 2016-01-20 2016-05-18 浙江大学 一种多无人机分布式编队控制方法
CN105867419A (zh) * 2016-04-20 2016-08-17 合肥工业大学 无人机编队管理方法及无人机的控制系统
CN105843256A (zh) * 2016-05-13 2016-08-10 中国航空工业集团公司西安飞机设计研究所 一种多机编队飞行控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李一波等: "有人/无人机编队三位可视化系统的软件设计与实现", 《智能系统学报》 *
梁瑾: "多无人机协同控制系统设计与仿真验证", 《PROCEEDING OF 2016 IEEE GUIDANCE》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359548A (zh) * 2017-08-23 2017-11-17 国网四川省电力公司检修公司 基于多无人机协同的线路大档距放线平台及方法
CN108268054A (zh) * 2018-02-06 2018-07-10 哈尔滨工业大学 亚轨道蜂群飞行器分层式协同控制方法
CN108268054B (zh) * 2018-02-06 2019-02-26 哈尔滨工业大学 亚轨道蜂群飞行器分层式协同控制方法
CN109213191A (zh) * 2018-08-02 2019-01-15 平安科技(深圳)有限公司 一种无人机控制方法、计算机可读存储介质及终端设备
CN109213191B (zh) * 2018-08-02 2023-09-01 平安科技(深圳)有限公司 一种无人机控制方法、计算机可读存储介质及终端设备
CN112015198A (zh) * 2019-05-29 2020-12-01 北京京东尚科信息技术有限公司 一种无人机编队同步环绕的控制方法及系统
CN110162093A (zh) * 2019-06-13 2019-08-23 中国人民解放军军事科学院国防科技创新研究院 一种基于几何相似性设计的高适应性编队控制方法
CN110162093B (zh) * 2019-06-13 2022-02-11 中国人民解放军军事科学院国防科技创新研究院 一种基于几何相似性设计的高适应性编队控制方法
CN110377057A (zh) * 2019-08-28 2019-10-25 诸葛嘉 一种无人机的编队飞行组织方法及控制终端
CN111221354A (zh) * 2019-11-26 2020-06-02 南京航空航天大学 一种基于改进的转弯半径的固定翼编队控制方法
TWI742494B (zh) * 2019-12-26 2021-10-11 實踐大學 智慧無人機群飛圖像產生演算裝置
CN112099531A (zh) * 2020-10-19 2020-12-18 中国空气动力研究与发展中心 一种分布式无人机编队队形变换方法
CN112099531B (zh) * 2020-10-19 2023-04-07 中国空气动力研究与发展中心 一种分布式无人机编队队形变换方法
CN112327909A (zh) * 2020-10-27 2021-02-05 一飞(海南)科技有限公司 一种无人机编队的贴图灯效控制方法、控制系统及无人机
CN112631323A (zh) * 2020-11-19 2021-04-09 一飞(海南)科技有限公司 集群无人机分组指派方法、系统、控制器、介质及终端
CN112631323B (zh) * 2020-11-19 2023-10-31 一飞(海南)科技有限公司 集群无人机分组指派方法、系统、控制器、介质及终端
CN113359848A (zh) * 2021-07-06 2021-09-07 西北工业大学 一种基于航路点的无人机编队生成-切换航迹规划方法
CN114138008A (zh) * 2021-11-08 2022-03-04 中国人民解放军国防科技大学 一种无人机编队控制方法及装置
CN114519276A (zh) * 2022-02-22 2022-05-20 北京华如科技股份有限公司 一种作战实体编队编辑方法及装置
CN115810293A (zh) * 2022-11-28 2023-03-17 亿航智能设备(广州)有限公司 一种多台无人驾驶航空器的联动控制方法、系统和介质

Also Published As

Publication number Publication date
CN107065922B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN107065922A (zh) 基于队形库的多无人机队形编队方法
WO2022126806A1 (zh) 一种基于人工智能的控规地块城市设计多方案生成方法
CN104050390B (zh) 一种基于可变维粒子群膜算法的移动机器人路径规划方法
CN107579518B (zh) 基于mhba的电力系统环境经济调度方法和装置
CN107622327A (zh) 基于文化蚁群搜索机制的多无人机航迹规划方法
CN106202662B (zh) 一种配电网网架图自动绘制映射方法
CN105892478B (zh) 一种面向姿轨一体化控制的多执行机构协同控制分配方法
CN101655987B (zh) 广场文艺表演仿真编排系统及其使用方法
CN106340066B (zh) 一种建筑物参数化三维建模方法
CN112437502B (zh) 基于多任务无人机集群信息交互的分层分簇网络拓扑结构生成方法
CN109190231B (zh) 基于grasshopper的折板网壳参数化建模方法
CN103744999B (zh) 基于层次划分存储结构的空间矢量数据在线交互制图方法
CN106251400B (zh) 一种基于多四边形网格构建地形图的方法及装置
CN106202245A (zh) 基于数据联动的产业地图系统项目专题展示方法及系统
CN108416392A (zh) 基于som神经网络的建筑物聚类方法
CN107346458A (zh) 一种无人机路径规划方法及其装置
CN106204719B (zh) 基于二维邻域检索的三维场景中海量模型实时调度方法
CN109858698A (zh) 目标区域的车辆供需优化方法、装置、设备及存储介质
CN107643688A (zh) 一种针对固体微推力器阵列的两步控制分配方法
CN108495252A (zh) 基于遗传算法和模拟退火的室内定位网元优化布局方法
CN106844897A (zh) 一种基于连续体结构拓扑优化的树状结构拓扑创构方法
CN103366605B (zh) 一种基于图论和遗传算法的终端扇区划分方法
CN106295791A (zh) 用于寻找旅行商最优路径的方法
CN105426601A (zh) 一种基于bim的多样性设计方案汇报方法及其系统
CN105184383B (zh) 基于智能优化方法的城市移动应急电源最优调度方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant