CN107055625A - 一种利用磁选尾渣制备聚合氯化铝铁的装置和方法 - Google Patents

一种利用磁选尾渣制备聚合氯化铝铁的装置和方法 Download PDF

Info

Publication number
CN107055625A
CN107055625A CN201710399075.5A CN201710399075A CN107055625A CN 107055625 A CN107055625 A CN 107055625A CN 201710399075 A CN201710399075 A CN 201710399075A CN 107055625 A CN107055625 A CN 107055625A
Authority
CN
China
Prior art keywords
pafc
magnetic separation
levigate
separation tailings
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710399075.5A
Other languages
English (en)
Inventor
王健月
古明远
王敏
王福佳
吴佩佩
曹志成
吴道洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Province Metallurgical Design Institute Co Ltd
Original Assignee
Jiangsu Province Metallurgical Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Province Metallurgical Design Institute Co Ltd filed Critical Jiangsu Province Metallurgical Design Institute Co Ltd
Priority to CN201710399075.5A priority Critical patent/CN107055625A/zh
Publication of CN107055625A publication Critical patent/CN107055625A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供了一种利用磁选尾渣制备聚合氯化铝铁的装置和方法,该装置包括依次连接的烧结装置、冷却装置、磨细装置、浸出装置、过滤装置和聚合陈化装置,该装置结构简单,所需温度较低,能耗较低。该方法包括以下步骤:将磁选尾渣焙烧、冷却磨细后用盐酸浸出,然后进行过滤,滤液加碱液进行聚合,经陈化后得到聚合氯化铝铁溶液,干燥后可得聚合氯化铝铁固体产品,整个工艺过程中不需要额外的添加剂,工艺简单,工艺所需反应温度低于常规工艺如隧道窑、回转窑、竖炉或转底炉处理赤泥所需温度,能耗低,可以将二次固废磁选尾渣充分利用,生产高附加值产品。

Description

一种利用磁选尾渣制备聚合氯化铝铁的装置和方法
技术领域
本发明涉及资源再生利用技术领域,尤其是一种利用磁选尾渣制备聚合氯化铝铁的装置和方法。
背景技术
我国铁矿资源具有“贫”、“细”、“杂”的主要特点,平均铁品位32%,比世界平均铁品位低11个百分点。铁矿石作为钢铁行业的主要原料,通常需要经过选矿富集后才能进入高炉冶炼。随着钢铁工业的快速发展,一些易选铁矿和铁品位较高的富矿不断消耗。因此如何有效开发利用一些低品位难选铁矿如铝土矿、高磷鲕状赤铁矿等和一些工业固体废弃物如拜耳法赤泥、铜渣、镍渣、铅锌冶炼渣等含铁资源成为主要的研究方向。
已有通过隧道窑、回转窑、竖炉或转底炉处理这些含铁资源生产金属化球团,进而磨矿磁选生产金属铁粉的工艺。这些工艺所需的温度较高,只能从赤泥中回收铁元素,而且经过此流程产生的磁选尾渣没有进行充分利用,成为了一种二次固废。
聚合氯化铝铁简称PAFC,是一种无机高分子絮凝剂。该絮凝剂不仅具有聚合氯化铝(PAC)的优良的絮凝性能和强大电中和作用,还具有聚合氯化铁(PFC)的吸附性强,沉淀速度快的特性。目前,我国使用的净水剂主要以无机絮凝剂为主,消耗量大,净水能力弱,聚合铝剂、聚合铁剂是该领域重要的替代产品。国内工业用水、城市给水、污水处理对絮凝剂的需求较大,因此聚合氯化铝铁具有较大的市场潜力。
粉煤灰是燃煤电厂排出的固体废弃物,其中含有铝、铁。粉煤灰堆存不仅占用大量土地,而且污染环境。粉煤灰中有许多有用成分得不到合理利用,造成了资源的浪费。
综上所述,寻求一种能够充分利用尾渣中的铁和铝制成聚合氯化铁的设备或方法,成为本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的是针对现有技术的不足,提供一种利用磁选尾渣制备聚合氯化铝铁的装置和方法。
为了实现本发明的目的,本发明采用如下技术方案:
本发明的一个实施例提供了一种利用磁选尾渣制备聚合氯化铝铁的装置,包括依次连接的烧结装置、冷却装置、磨细装置、浸出装置、过滤装置和聚合陈化装置,其中,
烧结装置包括原料入口和烧结物料出口;
冷却装置包括烧结物料入口和冷却物出口,烧结物料入口连接烧结物料出口;
磨细装置包括物料入口和磨细物料出口,物料入口与冷却物出口连接;
浸出装置包括磨细物料入口和浸出产品出口,磨细物料入口与磨细物料出口连接;
过滤装置包括浸出产品入口、滤液出口和浸出渣出口,浸出产品入口与浸出产品出口连接;
聚合陈化装置包括浸出液入口、碱液入口和产品出口,浸出液入口与滤液出口连接。
本发明的实施例还提供了一种采用上述装置制备聚合氯化铝铁的方法,包括以下步骤:
1)将烘干的磁选尾渣在烧结装置中进行烧结,得到烧结物料;
2)将烧结物料冷却至室温后进行磨细,得到磨细物料;
3)将磨细物料用盐酸浸出后进行过滤,得到滤液和滤渣,
4)将滤液加碱液进行聚合,经陈化后得到聚合氯化铝铁溶液,
5)将氯化铝铁溶液干燥后得到聚合氯化铝铁固体产品。
进一步地,烧结温度为800-850℃,烧结时间为60-180min。
进一步地,磨细物料的粒度不高于0.074mm的占70%-90%重量份。
进一步地,磁选尾渣中,Fe2O3与Al2O3的质量分数比为0.15-1.5。
进一步地,还包括,磁选尾渣的制备步骤为:
01)将含铁原料、还原剂和添加剂混合均匀后进行成型处理,得到成型混合物;
02)将干燥的成型混合物进行直接还原,得到还原产物;
03)还原产物经冷却后,将还原产物破碎、磨矿和磁选得到磁选精矿和磁选尾渣。
进一步地,步骤01)中含铁原料包括红土镍矿、铝土矿、高磷鲕状赤铁矿、赤泥、铜渣、镍渣、铅锌冶炼渣中的一种或几种;
还原剂为兰炭或焦炭;
添加剂包括生石灰、石灰石、碳酸钙、白云石中的一种或几种。
进一步地,步骤01)中,还原剂中C与含铁原料中铁氧化物中的O的摩尔比为1.0-2.0,添加剂用量为含铁原料重量的10%-20%,
进一步地,步骤2)中,直接还原的温度为1150℃-1350℃,还原时间为30-50min。
本发明的优点:
1.本发明提供的制备聚合氯化铝铁的装置结构简单,易于制造,制备聚合氯化铝铁的方法在整个工艺过程中不需要额外的添加剂,工艺简单,工艺所需反应温度低于常规工艺如隧道窑、回转窑、竖炉或转底炉处理赤泥所需温度,能耗低。
2.可以将二次固废磁选尾渣充分利用,生产高附加值产品。
附图说明
为了更好的理解本发明,并且更清楚的展示如何实现本发明,现通过示例的方式参考附图,在附图中:
图1是本发明一实施例的制备聚合氯化铝铁的装置示意图;
图2是本发明又一实施例的制备聚合氯化铝铁的方法的流程图;
其中,
1…烧结装置,2…冷却装置,3…磨细装置,4…浸出装置,5…过滤装置,6…聚合陈化装置;
11…原料入口,12…烧结物料出口,21…烧结物料入口,22…冷却物出口,31…物料入口,32…磨细物料出口,41…磨细物料入口,42…浸出产品出口,51…浸出产品入口,52…滤液出口,53…浸出渣出口,61…浸出液入口,62…碱液入口,63…产品出口。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明的一个实施例提供了一种利用磁选尾渣制备聚合氯化铝铁的装置,如图1,包括依次连接的烧结装置1、冷却装置2、磨细装置3、浸出装置4、过滤装置5和聚合陈化装置6,烧结装置1包括原料入口11和烧结物料出口12,冷却装置2包括烧结物料入口21和冷却物出口22,烧结物料入口21与烧结物料出口12连接,磨细装置3包括物料入口31和磨细物料出口32,物料入口31与冷却物出口22连接,浸出装置4包括磨细物料入口41和浸出产品出口42,磨细物料入口41与磨细物料出口连接32;过滤装置5包括浸出产品入口51、滤液出口52和浸出渣出口53,浸出产品入口51与浸出产品出口42连接;聚合陈化装置6包括浸出液入口61、碱液入口62和产品出口63,浸出液入口61与滤液出口52连接。
实际使用时,原料从烧结装置1的原料入口11进入,按照设定的温度进行烧结,然后通过烧结物料出口12和烧结物料入口21进入冷却装置2中进行冷却至室温,然后通过冷却物出口22进入到物料入口31中,从而进入磨细装置3中进行磨细,磨细后通过磨细物料出口32进入磨细物料入口41中,从而进入到浸出装置4中用盐酸浸出,然后通过浸出产品出口42进入到浸出产品入口51中,从而进入到过滤装置5中进行过滤,过滤后滤液从滤液出口52流入到浸出液入口61中,浸出渣从浸出渣出口53排出,碱液从碱液入口62进入聚合陈化装置,滤液在聚合陈化装置6中进行聚合、陈化,得到聚合氯化铝铁液体产品从产品出口63流出。该装置结构简单,易于制造。
综上所述,本发明的制备聚合氯化铝铁的装置,至少具有如下优点:
1.该装置结构简单,易于制造。
2.所需温度较低,能耗较低。
参考图2,制备聚合氯化铝铁的方法,以及前置的得到磁选尾渣的方法,包括以下步骤:
1)将含铁原料、还原剂和添加剂混合均匀后进行成型处理,得到成型混合物,其中含铁原料包括红土镍矿、铝土矿、高磷鲕状赤铁矿、赤泥、铜渣、镍渣、铅锌冶炼渣等中的一种或几种,还原剂为兰炭或焦炭,添加剂包括生石灰、石灰石、碳酸钙、白云石中的一种或几种;
2)将干燥的成型混合物放入焙烧设备中进行直接还原,得到还原产物,直接还原的工艺参数为:还原剂中C与含铁原料中铁氧化物中的O的摩尔比=1.0-2.0,添加剂用量为含铁原料重量的10%-20%,还原温度1150℃-1350℃,还原时间30-50min,焙烧设备为隧道窑、回转窑、竖炉或转底炉;
3)还原产物经冷却后,将还原产物破碎、磨矿和磁选得到磁选精矿和磁选尾渣,磁选尾渣成分为Fe2O3与Al2O3的质量分数比为0.15-1.5;
4)将烘干的磁选尾渣按照800-850℃的温度进行60-180min的烧结后冷却至室温;
5)将焙烧冷却后的磁选尾渣磨细至磨矿细度不高于0.074mm占70%-90%,得到磨细物料;
6)将磨细物料用盐酸浸出后进行过滤,得到滤液,盐酸的浓度为4-6mol/L,盐酸的体积与磨细物料的质量比2:1-4:1;
7)将滤液加碱液进行聚合,碱液可以为NaOH或KOH,碱液的浓度为4-6mol/L,滤液与碱液的体积比为2:1-4:1;
8)经陈化后得到聚合氯化铝铁溶液;
9)将氯化铝铁溶液进行干燥后得到聚合氯化铝铁固体产品。
其中,直接还原工艺参数、添加剂用量、还原温度和还原时间的工艺参数设定,保证所述的原料磁选尾渣成分为Fe2O3与Al2O3的质量分数为0.15-1.5,适合制备聚合氯化铝铁;
焙烧温度和焙烧时间的参数设定,使得在此工艺参数下,可以保证所得的烧结产物符合制备聚合氯化铝铁的成分要求;
磨矿细度的具体参数限定,是因为粒度大小对本发明的影响很大,粒度过粗,不能充分反应,粒度过细,增加原料处理的能耗。
为了进一步解释和说明本发明,请参考以下具体实施例,但下述的实施例并非用于对本发明的限制。
实施例1
由赤泥磁选尾渣的全铁质量分数为32.61%,将其烘干后在800℃下烧结60min,冷却至室温后,磨细至不高于0.074mm占70%后得到磨细物料,用4mol/L的盐酸浸出,盐酸的体积与磨细物料的质量比为2:1,然后进行过滤,滤液加入4mol/L的NaOH进行聚合,滤液与NaOH的体积比为2:1,经陈化后即可得到聚合氯化铝铁(PAFC)液体产品,干燥后即可得到聚合氯化铝铁(PAFC)固体产品。聚合氯化铝铁(PAFC)产品的絮凝试验表明,对COD、浊度和色度的去除率分别达到86%、97%和70%。
实施例2
由红土镍矿磁选尾渣的全铁质量分数为30.28%,将其烘干后在825℃下烧结70min,冷却至室温后,磨细至不高于0.074mm占80%后得到磨细物料,用4mol/L的盐酸浸出,盐酸的体积与磨细物料的质量比为2.5:1,然后进行过滤,滤液加4.5mol/L的KOH进行聚合,滤液与KOH的体积比为2:1经陈化后即可得到聚合氯化铝铁(PAFC)液体产品,干燥后即可得到聚合氯化铝铁(PAFC)固体产品。聚合氯化铝铁(PAFC)产品的絮凝试验表明,对COD、浊度和色度的去除率分别达到86%、97%和70%。
实施例3
由铜渣磁选尾渣的全铁质量分数为29.57%,将其烘干后在850℃下烧结120min,冷却至室温后,磨细至不高于0.074mm占90%后得到磨细物料,用4.5mol/L的盐酸浸出,盐酸的体积与磨细物料的质量比为3:1然后进行过滤,滤液加4.5mol/L的NaOH进行聚合,滤液与NaOH的体积比为2.5:1经陈化后即可得到聚合氯化铝铁(PAFC)液体产品,干燥后即可得到聚合氯化铝铁(PAFC)固体产品。聚合氯化铝铁(PAFC)产品的絮凝试验表明,对COD、浊度和色度的去除率分别达到86%、97%和70%。
实施例4
将铝土矿、兰炭和石灰石混合均匀后进行成型处理,得到成型混合物,将干燥的成型混合物放入焙烧设备中进行直接还原,得到还原产物,直接还原的工艺参数为:兰炭中C与铝土矿中铁氧化物中的O的摩尔比=1.5,添加剂石灰石用量为铝土矿重量的15%,还原温度1250℃,还原时间40min,焙烧设备为隧道窑,还原产物经冷却后,将还原产物破碎、磨矿和磁选得到磁选精矿和磁选尾渣,铝土矿磁选尾渣的全铁质量分数为30.28%,磁选尾渣成分为Fe2O3与Al2O3的质量分数比为1.0;将烘干的磁选尾渣按照835℃的温度进行155min的焙烧后冷却至室温,将焙烧冷却后的磁选尾渣磨细至磨矿细度不高于0.074mm占85%得到磨细物料;用5mol/L的盐酸浸出,盐酸的体积与磨细物料的质量比为3.5:1,然后进行过滤,滤液中加入5mol/L的KOH进行聚合,滤液与KOH的体积比为3:1。经陈化后即可得到聚合氯化铝铁(PAFC)液体产品,干燥后即可得到聚合氯化铝铁(PAFC)固体产品。聚合氯化铝铁(PAFC)产品的絮凝试验表明,对COD、浊度和色度的去除率分别达到86%、97%和70%。
实施例5
将镍渣、兰炭和白云石混合均匀后进行成型处理,得到成型混合物,将干燥的成型混合物放入焙烧设备中进行直接还原,得到还原产物,直接还原的工艺参数为:兰炭中C与镍渣中铁氧化物中的O的摩尔比=1.0,添加剂白云石用量为镍渣重量的10%,还原温度1150℃,还原时间30min,焙烧设备为回转窑;还原产物经冷却后,将还原产物破碎、磨矿和磁选得到磁选精矿和磁选尾渣,镍渣磁选尾渣的全铁质量分数为32.61%,磁选尾渣成分为Fe2O3与Al2O3的质量分数比为0.15;将烘干的磁选尾渣按照800℃的温度进行60min的焙烧后冷却至室温;将焙烧冷却后的磁选尾渣磨细至磨矿细度不高于0.074mm占70%得到磨细物料;用4mol/L的盐酸浸出后进行过滤,盐酸的体积与磨细物料的质量比为2:1,得到滤液;将滤液加4mol/L的NaOH,滤液与NaOH的体积比为2:1进行聚合;经陈化后得到聚合氯化铝铁液体;将氯化铝铁液体进行干燥后得到聚合氯化铝铁固体产品。聚合氯化铝铁(PAFC)产品的絮凝试验表明,对COD、浊度和色度的去除率分别达到86%、97%和70%。
实施例6
将铜渣、焦炭和碳酸钙混合均匀后进行成型处理,得到成型混合物,将干燥的成型混合物放入焙烧设备中进行直接还原,得到还原产物,直接还原的工艺参数为:焦炭中C与铜渣中铁氧化物中的O的摩尔比=2.0,添加剂碳酸钙用量为铜渣重量的20%,还原温度1350℃,还原时间50min,焙烧设备为竖炉;还原产物经冷却后,将还原产物破碎、磨矿和磁选得到磁选精矿和磁选尾渣,铜渣磁选尾渣的全铁质量分数为29.57%,磁选尾渣成分为Fe2O3与Al2O3的质量分数比为1.5;将烘干的磁选尾渣按照850℃的温度进行180min的焙烧后冷却至室温;将焙烧冷却后的磁选尾渣磨细至磨矿细度不高于0.074mm占90%得到磨细物料;用6mol/L的盐酸浸出后进行过滤,盐酸的体积与磨细物料的质量比为4:1得到滤液;将滤液加6mol/L的KOH进行聚合,滤液与KOH的体积比为4:1;经陈化后得到聚合氯化铝铁液体;将氯化铝铁液体进行干燥后得到聚合氯化铝铁固体产品。聚合氯化铝铁(PAFC)产品的絮凝试验表明,对COD、浊度和色度的去除率分别达到86%、97%和70%。
实施例7
将高磷鲕状赤铁矿、焦炭和生石灰混合均匀后进行成型处理,得到成型混合物;将干燥的成型混合物放入焙烧设备中进行直接还原,得到还原产物,直接还原的工艺参数为:焦炭中C与高磷鲕状赤铁矿中铁氧化物中的O的摩尔比=1.89,添加剂生石灰用量为高磷鲕状赤铁矿重量的18%,还原温度1350℃,还原时间40min,焙烧设备为转底炉;还原产物经冷却后,将还原产物破碎、磨矿和磁选得到磁选精矿和磁选尾渣,高磷鲕状赤铁矿磁选尾渣的全铁质量分数为29.57%,磁选尾渣成分为Fe2O3与Al2O3的质量分数比为1.5;将烘干的磁选尾渣按照850℃的温度进行120min的焙烧后冷却至室温;将焙烧冷却后的磁选尾渣磨细至磨矿细度不高于0.074mm占90%得到磨细物料;用6mol/L的盐酸浸出后进行过滤,盐酸的体积与磨细物料的质量比为4:1,得到滤液;将滤液加6mol/L的NaOH进行聚合,滤液与NaOH的体积比为4:1;经陈化后得到聚合氯化铝铁液体;将氯化铝铁液体进行干燥后得到聚合氯化铝铁固体产品。聚合氯化铝铁(PAFC)产品的絮凝试验表明,对COD、浊度和色度的去除率分别达到86%、97%和70%。
综上所述,本发明的制备聚合氯化铝铁的方法,至少具有如下优点:
1.本发明提供的制备聚合氯化铝铁的方法在整个工艺过程中不需要额外的添加剂,工艺简单,工艺所需反应温度低于常规工艺如隧道窑、回转窑、竖炉或转底炉处理赤泥所需温度,能耗低。
2.可以将二次固废磁选尾渣充分利用,生产高附加值产品。
以上仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。

Claims (9)

1.一种利用磁选尾渣制备聚合氯化铝铁的装置,其特征在于,包括依次连接的烧结装置、冷却装置、磨细装置、浸出装置、过滤装置和聚合陈化装置,其中,
所述烧结装置包括原料入口和烧结物料出口;
所述冷却装置包括烧结物料入口和冷却物出口,所述烧结物料入口连接所述烧结物料出口;
所述磨细装置包括物料入口和磨细物料出口,所述物料入口与所述冷却物出口连接;
所述浸出装置包括磨细物料入口和浸出产品出口,所述磨细物料入口与所述磨细物料出口连接;
所述过滤装置包括浸出产品入口、滤液出口和浸出渣出口,所述浸出产品入口与所述浸出产品出口连接;
所述聚合陈化装置包括浸出液入口、碱液入口和产品出口,所述浸出液入口与所述滤液出口连接。
2.采用权利要求1所述的装置制备聚合氯化铝铁的方法,其特征在于,包括以下步骤:
1)将烘干的磁选尾渣在烧结装置中进行烧结,得到烧结物料;
2)将所述烧结物料冷却至室温后进行磨细,得到磨细物料;
3)将所述磨细物料用盐酸浸出后进行过滤,得到滤液和滤渣,
4)将所述滤液加碱液进行聚合,经陈化后得到聚合氯化铝铁溶液,
5)将所述氯化铝铁溶液干燥后得到聚合氯化铝铁固体产品。
3.根据权利要求2所述的制备聚合氯化铝铁的方法,其特征在于,所述烧结温度为800-850℃,所述烧结时间为60-180min。
4.根据权利要求2所述的制备聚合氯化铝铁的方法,其特征在于,所述磨细物料的粒度不高于0.074mm的占70%-90%重量份。
5.根据权利要求2所述的制备聚合氯化铝铁的方法,其特征在于,所述磁选尾渣中,Fe2O3与Al2O3的质量分数比为0.15-1.5。
6.根据权利要求2所述的制备聚合氯化铝铁的方法,其特征在于,还包括,所述磁选尾渣的制备步骤为:
01)将含铁原料、还原剂和添加剂混合均匀后进行成型处理,得到成型混合物;
02)将干燥的所述成型混合物进行直接还原,得到还原产物;
03)所述还原产物经冷却后,将所述还原产物破碎、磨矿和磁选得到磁选精矿和磁选尾渣。
7.根据权利要求6所述的制备聚合氯化铝铁的方法,其特征在于,步骤01)中所述含铁原料包括红土镍矿、铝土矿、高磷鲕状赤铁矿、赤泥、铜渣、镍渣、铅锌冶炼渣中的一种或几种;
所述还原剂为兰炭或焦炭;
所述添加剂包括生石灰、石灰石、碳酸钙、白云石中的一种或几种。
8.根据权利要求6所述的制备聚合氯化铝铁的方法,其特征在于,步骤01)中,所述还原剂中C与所述含铁原料中铁氧化物中O的摩尔比为1.0-2.0,所述添加剂用量为含铁原料重量的10%-20%。
9.根据权利要求6所述的制备聚合氯化铝铁的方法,其特征在于,步骤2)中,所述直接还原的温度为1150℃-1350℃,还原时间为30-50min。
CN201710399075.5A 2017-05-31 2017-05-31 一种利用磁选尾渣制备聚合氯化铝铁的装置和方法 Pending CN107055625A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710399075.5A CN107055625A (zh) 2017-05-31 2017-05-31 一种利用磁选尾渣制备聚合氯化铝铁的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710399075.5A CN107055625A (zh) 2017-05-31 2017-05-31 一种利用磁选尾渣制备聚合氯化铝铁的装置和方法

Publications (1)

Publication Number Publication Date
CN107055625A true CN107055625A (zh) 2017-08-18

Family

ID=59616005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710399075.5A Pending CN107055625A (zh) 2017-05-31 2017-05-31 一种利用磁选尾渣制备聚合氯化铝铁的装置和方法

Country Status (1)

Country Link
CN (1) CN107055625A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103382A (zh) * 1993-12-02 1995-06-07 煤炭科学研究总院西安分院 煤系高铁钛高岭岩生产聚合氯化铝和聚合氯化铝铁的方法
CN1600457A (zh) * 2003-09-25 2005-03-30 孔凡逸 硫铁矿综合利用的方法
CN1935684A (zh) * 2006-10-20 2007-03-28 山东大学 一种聚合氯化铝铁絮凝剂的制备方法
CN101445286A (zh) * 2008-12-26 2009-06-03 南京师范大学 利用工业废渣生产水处理剂聚合氯化铝铁的方法
CN101559987A (zh) * 2009-05-26 2009-10-21 泰安天元节能环保工程有限责任公司 利用电厂炉渣、煤矸石生产聚合氯化铝铁复合净水剂的方法
CN104743645A (zh) * 2015-03-13 2015-07-01 洛阳理工学院 一种用拜耳法赤泥生产聚合氯化铝铁的方法
CN206985742U (zh) * 2017-05-31 2018-02-09 江苏省冶金设计院有限公司 一种利用磁选尾渣制备聚合氯化铝铁的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103382A (zh) * 1993-12-02 1995-06-07 煤炭科学研究总院西安分院 煤系高铁钛高岭岩生产聚合氯化铝和聚合氯化铝铁的方法
CN1600457A (zh) * 2003-09-25 2005-03-30 孔凡逸 硫铁矿综合利用的方法
CN1935684A (zh) * 2006-10-20 2007-03-28 山东大学 一种聚合氯化铝铁絮凝剂的制备方法
CN101445286A (zh) * 2008-12-26 2009-06-03 南京师范大学 利用工业废渣生产水处理剂聚合氯化铝铁的方法
CN101559987A (zh) * 2009-05-26 2009-10-21 泰安天元节能环保工程有限责任公司 利用电厂炉渣、煤矸石生产聚合氯化铝铁复合净水剂的方法
CN104743645A (zh) * 2015-03-13 2015-07-01 洛阳理工学院 一种用拜耳法赤泥生产聚合氯化铝铁的方法
CN206985742U (zh) * 2017-05-31 2018-02-09 江苏省冶金设计院有限公司 一种利用磁选尾渣制备聚合氯化铝铁的装置

Similar Documents

Publication Publication Date Title
CN102876892B (zh) 低铁高镁、高铁低镁红土镍矿用废稀硫酸浸出镍钴的方法
CN103588235B (zh) 用赤泥炉渣生产聚合硫酸铝的方法
CN105293564A (zh) 一种钢铁厂含锌烟尘灰循环利用的方法
CN102432071B (zh) 一种综合利用高铁铝土矿的方法
CN103589872B (zh) 从赤泥炉渣中回收钛的方法
CN102703696B (zh) 一种从红土镍矿中综合回收有价金属的方法
CN102329955A (zh) 全湿法处理红土镍矿生产电解镍的综合方法
CN103484684B (zh) 一种电解铝熔炼铝渣的无害化处置方法
CN104046800A (zh) 一种从含钨铁矿或含钨废渣中提取白钨精矿的工艺
CN105296744A (zh) 一种红土镍矿资源化处理及综合回收利用的方法
CN102417978B (zh) 一种富集煤矸石中钛的方法
CN106119556A (zh) 一种钢铁厂含锌烟尘灰的利用方法
CN103193213A (zh) 一种综合利用低品位磷矿石的方法
CN109160744A (zh) 赤泥磁化焙烧综合利用系统及工艺
CN109957657A (zh) 一种从赤泥中同时资源化利用铁、钠、铝的方法
CN101824544B (zh) 一种鼓风炉炼铅弃渣的综合回收方法
CN101712491A (zh) 含钒废水渣生产五氧化二钒的工艺方法
CN102417980B (zh) 一种硫酸和氨联合浸出红土镍矿生产硫酸镍的方法
CN103589871B (zh) 从赤泥炉渣中回收铝的方法
CN105110300A (zh) 一种含硫化锰的复合锰矿提取锰及硫的方法
CN206985742U (zh) 一种利用磁选尾渣制备聚合氯化铝铁的装置
CN105316479A (zh) 一种赤泥提钒、配矿烧结的方法
CN111411224B (zh) 一种从低品位含锰矿石中综合回收结合银铜的选矿方法
CN107055625A (zh) 一种利用磁选尾渣制备聚合氯化铝铁的装置和方法
CN206985741U (zh) 一种利用热态冶金渣制备聚合氯化铝铁的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20190409

AD01 Patent right deemed abandoned