CN107051570A - 一种制备大面积超薄g‑C3N4光催化材料制备的方法 - Google Patents

一种制备大面积超薄g‑C3N4光催化材料制备的方法 Download PDF

Info

Publication number
CN107051570A
CN107051570A CN201710432445.0A CN201710432445A CN107051570A CN 107051570 A CN107051570 A CN 107051570A CN 201710432445 A CN201710432445 A CN 201710432445A CN 107051570 A CN107051570 A CN 107051570A
Authority
CN
China
Prior art keywords
solution
catalysis material
prepared
presoma
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710432445.0A
Other languages
English (en)
Inventor
李慧慧
史安也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN201710432445.0A priority Critical patent/CN107051570A/zh
Publication of CN107051570A publication Critical patent/CN107051570A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种制备大尺寸超薄g‑C3N4光催化材料的方法。本发明的方法是将三聚氰胺溶解于水中并超声得到溶液A;再将聚丙烯酰胺加入到溶液A并在空气中搅拌获得溶液B;将获得的溶液B进行干燥处理得到前驱体C,将前驱体C进行高温烧结,最终得到大面积超薄g‑C3N4光催化材料。本发明制备的产物其光催化活性远高于采用现有技术制备的g‑C3N4,更利于污染物在材料表面的吸附和分解以及氢气的产生。

Description

一种制备大面积超薄g-C3N4光催化材料制备的方法
技术领域
本发明涉及纳米光催化材料的制备,确切讲本发明涉及一种制备大尺寸超薄g-C3N4光催化材料的方法。特别是这种光催化材料有高的光催化活性,且制备过程是简便的高温烧结法。本发明的方法是将含氮、碳的第一化合物溶解于水中并超声得到溶液A;将第二化合物加入到溶液A并在空气中搅拌获得溶液B;将获得的溶液B水浴加热并不断搅拌至快蒸干,然后烘干获得前驱体C,前驱体C进行高温烧结,烧结产物经自然冷却至室温后进行洗涤、干燥处理。
背景技术
光催化技术是当今科学研究的热点,其应用范围十分广泛,如污水处理、空气净化、太阳能利用、抗菌、防雾和自清洁功能等。石墨相g-C3N4因其优良的光催化性能、高活性、稳定性、无毒和价格低廉成为一种理想的光催化材料,因此在能源再生和环境保护方面有极大的应用前景。g-C3N4具有较小的禁带宽度(2.7eV,金红石相二氧化钛3.0eV),对占太阳光能量45%的可见光可以较好地进行吸收。但同时光生电子-空穴对会迅速复合,没有有效分离转移,影响了活性基团的生成,导致光催化活性不高,限制了实际应用。
通过改善材料的内部结构,可以显著改善材料的物理化学性质,通过模板法分子构筑,使体系具有更高的污染物吸附能力,拓展的光吸收范围,增强的电荷转移和分离能力。大尺寸超薄g-C3N4相比于寻常g-C3N4:具有更高的导电性能、更大的表面负载自由电荷密度、更大的比表面积,因此大尺寸超薄g-C3N4将比未改善形貌的g-C3N4材料,拥有更高的光生电荷分离率和更强的有害污染物吸附分解及裂解水产氢能力。
目前,为了得到结构优良的单层g-C3N4,传统方法是利用液相剥离或酸碱刻蚀。具体是分别通过超声振动和强酸强碱来破坏层间范德华力,从而得到少层或单层g-C3N4。液相剥离法极大耗费能源,且所得到的产品产率偏低,不能得到真正意义上的单层g-C3N4;酸碱刻蚀法操作危险,并且引入污染物和实验副产品。因此丞待设计一种环境友好,方便可行的可替代方法。
申请号为201510714630X的中国发明专利申请公开一种碳基材料g-C3N4。该专利申请是采用原位生长法合成Ag量子点修饰的g-C3N4复合材料,其具体制备方法包括以下步骤:称取尿素溶解于蒸馏水中并超声得到溶液A;将定量AgNO3加入到溶液A中,并在空气中搅拌获得溶液B;将获得的溶液B水浴加热并不断搅拌至快蒸干,然后烘干获得样品C;将样品C放置在马弗炉中,为确保获得多孔g-C3N4,保证马弗炉的初始温度小于80摄氏度,将马弗炉升温至550℃,并保持下该温度下4小时,获得样品D;自然冷却至室温,将样品D洗涤、干燥,获得Ag量子点修饰的g-C3N4。该方法制备的产物可用于光分解水制氢反应。但该技术利用Ag进行复合,作为贵金属,Ag的引入将极大提高成本,不利于大规模生产。
发明内容
本发明提供一种可克服现有技术不足,制备大面积超薄g-C3N4光催化材料制备的方法。
本发明的一种制备大面积超薄g-C3N4光催化材料的方法是将含氮、碳的第一化合物三聚氰胺溶解于水中并超声得到溶液A;再将第二化合物聚丙烯酰胺加入到溶液A并在空气中搅拌获得溶液B;将获得的溶液B进行干燥处理得到前驱体C,将前驱体C进行高温烧结,烧结产物经自然冷却至室温后进行洗涤、干燥处理后即得到大面积超薄g-C3N4光催化材料。
优先地,本发明制备大面积超薄g-C3N4光催化材料制备的方法是:
(1)将5.0g三聚氰胺溶解于1000mL水中并超声分散处理得到溶液A ;
(2)将0.5g 聚丙烯酰胺加入到溶液A 中,搅拌获得溶液B ;
(3)将溶液B进行干燥处理得到固体的前驱体C;
(4)将前驱体C 放置在加热炉中,将炉温升至500℃到600℃进行烧结,获得产物D ;
(5)将产物D自然冷却至室温,经洗涤、干燥处理,得到大面积超薄g-C3N4光催化材料。
进一步,本发明的一种制备大面积超薄g-C3N4光催化材料的方法是在步骤(3)中通过加热使液体被蒸发,促进固体的前驱体C析出,再对析出的固体的前驱体C充分干燥处理。
优先地,本发明的一种制备大面积超薄g-C3N4光催化材料的方法是步骤(4)的烧结温度为550℃。
本发明制备大面积超薄g-C3N4光催化材料的方法最佳的烧结时炉温的升温速率为3 摄氏度/ 每分钟。
本发明所制备的光催化材料大尺寸薄层g-C3N4材料是一种高效的光催化材料,这种大面积超薄g-C3N4光催化材料用于可见光下光催化降解污染物,或者用于光分解水制氢反应。
本发明制备的产物其光催化活性远高于采用现有技术制备的g-C3N4,而且由于本发明产物形貌的改善,使其有更高的导电性能和表面负载自由电荷密度,其所增加的比表面积将有利于发生物理吸附并暴露更多的活性位点,更利于污染物在材料表面的吸附和分解以及氢气的产生。实验表明,本发明制备的大尺寸薄层g-C3N4光催化材料在降解有机染料以及裂解水制氢的能力强于现有技术制备的g-C3N4。另外,本发明的制备方法所用的设备简单、操作简易可行、无需使用额外金属催化剂,所选用的聚丙烯酰胺模板是一种环境友善的绿色材料,因此本发明的制备方法具有环境友好,生产成本低,可用于批量生产的优点。
附图说明
图1为本发明制备流程示意图。
图2为本发明制备的g-C3N4-PAM的原子力显微镜图谱。
图3为现有技术制备的g-C3N4和本发明制备的g-C3N4-PAM的X射线粉末衍射图谱。
图4为现有技术制备的g-C3N4和本发明制备的g-C3N4-PAM红外光谱图。
图5为现有技术制备的g-C3N4和本发明制备的三聚氰胺和聚丙烯酰胺所得g-C3N4-PAM的紫外漫反射图谱。
图6为现有技术制备的g-C3N4和本发明制备的g-C3N4-PAM的固体荧光图谱(410nm激发波长)。
图7为现有技术制备的g-C3N4和本发明制备的g-C3N4-PAM的可见光光电流比较。
图8为现有技术制备的g-C3N4和本发明制备的g-C3N4-PAM的光催化降解10mg/L亚甲基蓝效率图。
图9为现有技术制备的g-C3N4和本发明制备的g-C3N4-PAM的光催化产氢效率图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的大尺寸薄层g-C3N4光催化材料的制备方法是高温烧结法。本发明的制备方法参见附图1给出的步骤。
本发明的一个具体实施方式:
称取5g的三聚氰胺,加入1000ml的去离子水,随后加入0.50g聚丙烯酰胺和20ml去离子水组成的混合溶液,聚丙烯酰胺作为交联剂和模板剂,磁力搅拌器上搅拌40min,再超声40min,最后将获得的沉淀物离心分离、60℃真空干燥12小时,将干燥后前躯体加入马弗炉中,550℃高温烧结2h,得到褐色固体,再用玛瑙研钵研磨成均匀粉末,得到水母状g-C3N4光催化材料,为与现有技术的高温烧结法制备的产物g-C3N4区别起见,本发明制备出的产物命名为g-C3N4-PAM。
由本发明制备的产物g-C3N4-PAM与现有技术制备的g-C3N4有关参数见表1。
现有技术制备的g-C3N4和本发明制备的g-C3N4-PAM的其它有关参数参见附图2至9。
从图2中可见,本发明的制备的g-C3N4-PAM原子力显微镜图片表现出不到1nm的原子层级厚度和较大的面积。
从图3中可见,本发明的制备的g-C3N4-PAMX射线粉末衍射强度和现有技术制备的g-C3N4的X射线粉末衍射具有相同的峰位。
从图4中可见,本发明的制备的g-C3N4-PAM红外光谱和现有技术制备的g-C3N4红外光谱呈现出相同的特征吸收峰。
从图5中可见,本发明的制备的g-C3N4-PAM紫外可见漫反射吸收范围要宽于现有技术制备的g-C3N4紫外可见漫反射相对强度。
从图6中可见,在410nm激发波长下,本发明的制备的g-C3N4-PAM固体荧光相对强度要低于现有技术制备的g-C3N4固体荧光相对强度。
从图7中可见,本发明的制备的g-C3N4-PAM光电流强度要高于现有技术制备的g-C3N4光电流强度的60%以上。
用由本发明实施例所制备的g-C3N4-PAM材料进行光催化降解亚甲基蓝实验,同时用现有技术制备的g-C3N4进行对比实验,其催化降解效率曲线参见图8.由图8可见,本发明的g-C3N4-PAM材料催化降解效率优于现有技术产品的一倍以上。
用由本发明实施例所制备的g-C3N4-PAM材料进行光催化产氢气实验,同时用现有技术制备的g-C3N4进行对比实验,其催化产氢气效率曲线参见图9。从图9可见,本发明的g-C3N4-PAM材料催化产氢效率远远高于现有技术。
通过以上的实验可见,选用价格低廉、绿色环保的聚丙烯酰胺和三聚氰胺作为前驱体原料,在室温下溶液搅拌合成前驱体,再通过高温焙烧最终可以制备出的大面积超薄光催化剂材料。本发明的方法步骤简单、制备条件温和且绿色环保,所得催化剂产物具有较高的可见光响应光催化性能和光电性能。

Claims (6)

1.一种制备大面积超薄g-C3N4光催化材料的方法,将含氮、碳的第一化合物溶解于水中并超声得到溶液A;再将第二化合物加入到溶液A并在空气中充分搅拌获得溶液B;将获得的溶液B进行干燥处理得到前驱体C,将前驱体C进行高温烧结,烧结产物经自然冷却至室温后进行洗涤、干燥处理,其特征在于所使用的第一化合物为三聚氰胺,所述的第二化合物为聚丙烯酰胺。
2.如权利要求1所述的制备大面积超薄g-C3N4光催化材料制备的方法,其特征在于
(1)将5.0g三聚氰胺溶解于1000mL水中并超声分散处理得到溶液A ;
(2)将0.5g 聚丙烯酰胺加入到溶液A 中,搅拌获得溶液B ;
(3)将溶液B进行干燥处理得到固体的前驱体C;
(4)将前驱体C 放置在加热炉中,将炉温升至500℃到600℃进行烧结,获得产物D ;
(5)将产物D自然冷却至室温,经洗涤、干燥处理,得到大面积超薄g-C3N4光催化材料。
3.如权利要求2所述的一种制备大面积超薄g-C3N4光催化材料的方法,其特征在于步骤(3)中通过加热使液体被蒸发,促进固体的前驱体C析出,再对析出的固体的前驱体C充分干燥处理。
4.如权利要求1或2或3所述的一种制备大面积超薄g-C3N4光催化材料的方法,其特征在于步骤(4)的烧结温度为550℃。
5.如权利要求1或2或3或4 所述的制备大面积超薄g-C3N4光催化材料的方法,其特征在于:烧结时炉温的升温速率为3 摄氏度/ 每分钟。
6.权利要求1 至5所述方法制备的大面积超薄g-C3N4光催化材料用于可见光下光催化降解污染物,或者用于光分解水制氢反应。
CN201710432445.0A 2017-06-09 2017-06-09 一种制备大面积超薄g‑C3N4光催化材料制备的方法 Pending CN107051570A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710432445.0A CN107051570A (zh) 2017-06-09 2017-06-09 一种制备大面积超薄g‑C3N4光催化材料制备的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710432445.0A CN107051570A (zh) 2017-06-09 2017-06-09 一种制备大面积超薄g‑C3N4光催化材料制备的方法

Publications (1)

Publication Number Publication Date
CN107051570A true CN107051570A (zh) 2017-08-18

Family

ID=59593781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710432445.0A Pending CN107051570A (zh) 2017-06-09 2017-06-09 一种制备大面积超薄g‑C3N4光催化材料制备的方法

Country Status (1)

Country Link
CN (1) CN107051570A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107670682A (zh) * 2017-10-13 2018-02-09 长安大学 一种高比表面积水母状氮化碳光催化材料的制备方法
CN108080010A (zh) * 2017-12-21 2018-05-29 珠海朗基努斯环境系统有限公司 一种高效分解甲醛灭病菌消臭的光触媒
CN108906103A (zh) * 2018-06-20 2018-11-30 中山大学 一种超薄纳米片状石墨相氮化碳的制备方法和应用
CN113101963A (zh) * 2021-04-29 2021-07-13 中国科学技术大学 一种超薄的磷掺杂氮化碳纳米片及其制备方法、光催化降解双酚a的方法
CN113842938A (zh) * 2021-09-18 2021-12-28 河北零点新能源科技有限公司 一种新型g-C3N4衍生碳质吸附剂和光催化材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818887A (zh) * 2014-03-26 2014-05-28 上海交通大学 具有不同形貌的g-C3N4光催化剂的制备方法
CN104399509A (zh) * 2014-12-08 2015-03-11 福州大学 一种无氢前躯体合成的氮化碳光催化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818887A (zh) * 2014-03-26 2014-05-28 上海交通大学 具有不同形貌的g-C3N4光催化剂的制备方法
CN104399509A (zh) * 2014-12-08 2015-03-11 福州大学 一种无氢前躯体合成的氮化碳光催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANYE SHI等: "Effect of conjugation degree and delocalized-system on the photocatalytic activity of single layer g-C3N4", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107670682A (zh) * 2017-10-13 2018-02-09 长安大学 一种高比表面积水母状氮化碳光催化材料的制备方法
CN108080010A (zh) * 2017-12-21 2018-05-29 珠海朗基努斯环境系统有限公司 一种高效分解甲醛灭病菌消臭的光触媒
CN108906103A (zh) * 2018-06-20 2018-11-30 中山大学 一种超薄纳米片状石墨相氮化碳的制备方法和应用
CN108906103B (zh) * 2018-06-20 2021-06-29 中山大学 一种超薄纳米片状石墨相氮化碳的制备方法和应用
CN113101963A (zh) * 2021-04-29 2021-07-13 中国科学技术大学 一种超薄的磷掺杂氮化碳纳米片及其制备方法、光催化降解双酚a的方法
CN113842938A (zh) * 2021-09-18 2021-12-28 河北零点新能源科技有限公司 一种新型g-C3N4衍生碳质吸附剂和光催化材料的制备方法

Similar Documents

Publication Publication Date Title
CN112169819B (zh) 一种g-C3N4/(101)-(001)-TiO2复合材料的制备方法和应用
Chen et al. Two-dimensional heterojunction photocatalysts constructed by graphite-like C3N4 and Bi2WO6 nanosheets: enhanced photocatalytic activities for water purification
CN107051570A (zh) 一种制备大面积超薄g‑C3N4光催化材料制备的方法
CN103785434B (zh) 一种g-C3N4纳米片/CdS复合可见光催化剂
CN109772418A (zh) 掺磷管状氮化碳微纳米材料及其在废气催化处理中的应用
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN108772093A (zh) 一种高可见光活性石墨相氮化碳纳米片及其制备方法
CN107020143A (zh) 一种可见光响应三元复合光催化剂的制备方法和用途
CN101844077B (zh) 具有可见光活性的碳氮改性纳米二氧化钛薄膜的制备方法
CN108855140B (zh) 一种CuS/Bi2WO6异质结光催化剂及其制备方法和应用
CN101993043A (zh) BiOBr微米球可见光光催化剂及其制备方法
CN112007632B (zh) 一种花状SnO2/g-C3N4异质结光催化剂的制备方法
CN107983387B (zh) 一种氮化碳/硒酸铋复合材料的制备方法与应用
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN110327956A (zh) 一种氧化铜与氮化碳复合的异质结光催化剂的制备方法
CN113457711B (zh) 一种石墨相氮化碳负载镁单原子复合材料及其制备方法、光催化制备过氧化氢的方法
CN110152711A (zh) 一种CeO2@MoS2/g-C3N4三元复合光催化剂及其制备方法
CN102600823A (zh) 一种石墨烯/二氧化钛复合材料的制备方法
CN104785280A (zh) 一种片状二氧化钛/溴氧化铋复合光催化剂及其制备方法
CN113042082A (zh) 一种单原子催化剂的制备方法与用途
CN108704662A (zh) 一种金属卟啉/石墨相氮化碳复合光催化剂
CN113952986A (zh) 一种WO3/TpPa-1-COF复合材料及其制备方法与应用
Guo et al. Study on the microstructural evolution and photocatalytic mechanism of (Au)/PCN photocatalyst
CN112354559B (zh) 一种二维受体分子/多级孔TiO2复合光催化剂及其制备方法和光催化应用
Sun et al. Microwave in-situ liquid-phase deposition of Cu2O/Tg-C3N4 heterojunction for enhancing visible light photocatalytic degradation of tetracycline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170818

WD01 Invention patent application deemed withdrawn after publication