CN108906103A - 一种超薄纳米片状石墨相氮化碳的制备方法和应用 - Google Patents

一种超薄纳米片状石墨相氮化碳的制备方法和应用 Download PDF

Info

Publication number
CN108906103A
CN108906103A CN201810639531.3A CN201810639531A CN108906103A CN 108906103 A CN108906103 A CN 108906103A CN 201810639531 A CN201810639531 A CN 201810639531A CN 108906103 A CN108906103 A CN 108906103A
Authority
CN
China
Prior art keywords
carbon nitride
phase carbon
graphite phase
flake graphite
ultrathin nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810639531.3A
Other languages
English (en)
Other versions
CN108906103B (zh
Inventor
潘梅
张建华
苏成勇
王海平
江继军
范雅楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201810639531.3A priority Critical patent/CN108906103B/zh
Publication of CN108906103A publication Critical patent/CN108906103A/zh
Application granted granted Critical
Publication of CN108906103B publication Critical patent/CN108906103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种超薄纳米片状石墨相氮化碳的制备方法和应用。该方法是一种三聚氰胺泡沫(MF)覆盖尿素的简便一步烧结法,具体是在尿素上面覆盖一块三聚氰胺泡沫后,加热反应,即可制备得到超薄纳米片状石墨相氮化碳(CN‑UMF)。所得超薄纳米片状石墨相氮化碳具有更大的比表面积、可见光吸收和光催化产氢效率,最高产氢效率可达到5498 mmol g‑1 h‑1以上。且该方法简单方便,易于大规模工业实施,具有很好的应用前景。

Description

一种超薄纳米片状石墨相氮化碳的制备方法和应用
技术领域
本发明属于化学催化技术领域。更具体地,涉及一种超薄纳米片状石墨相氮化碳的制备方法和应用,具体是指在光催化分解水产氢中的应用。
背景技术
当今社会面临的能源短缺问题,迫使人们不断开发新能源和新材料。其中,利用具有可见光活性的半导体光催化剂,将太阳能转化为化学能,特别是氢能,光催化分解水制氢被认为是解决日益增长的能源和环境问题的最有希望的解决方案之一。2009年,王等报道了一类新型半导体光催化剂—石墨相氮化碳(g-C3N4),用于光催化分解水制氢,由此掀起了该类光催化剂研究的热潮。然而,通常方法制备的块状g-C3N4具有比表面积小、可见光吸收效率差、电荷复合速率高、电导率低等缺点,大大限制了其光催化产氢效率。
解决上述问题的方法之一是将块状g-C3N4进行剥离,得到片层状g-C3N4。目前,已经建立了几种剥离方法,包括热氧化剥离、超声辅助液体剥离、化学剥离等。然而,上述方法存在产率低、剥离效果差、制备条件苛刻(如需要使用强酸、氨气等条件)等问题。
因此,迫切需要开发新型、绿色、简便的方法,用来制备超薄纳米片状g-C3N4,以满足批量化放大生产的需求,并将其用作高效光催化剂分解水制氢。
发明内容
本发明要解决的技术问题是克服上述现有技术的缺陷和不足,提供一种三聚氰胺泡沫(MF)覆盖尿素的简便一步烧结法,用来合成超薄纳米片状石墨相氮化碳(g-C3N4)。
本发明的目的是提供一种超薄纳米片状石墨相氮化碳的制备方法。
本发明另一目的是提供所述方法制备得到的超薄纳米片状石墨相氮化碳。
本发明另一目的是提供所述超薄纳米片状石墨相氮化碳在光催化分解水产氢中的应用。
本发明上述目的通过以下技术方案实现:
一种超薄纳米片状石墨相氮化碳的制备方法,是在尿素上面覆盖一块三聚氰胺泡沫,加热反应即可制备得到超薄纳米片状石墨相氮化碳(CN-UMF)。
具体优选地,所述超薄纳米片状石墨相氮化碳的制备方法是:在反应容器(如坩埚)中加入尿素,然后在上面覆盖一块厨房用三聚氰胺泡沫,再盖上容器盖,置于马弗炉中,加热反应制备得到超薄纳米片状石墨相氮化碳(CN-UMF)。
其中,优选地,加热的条件为空气气氛下450~650℃加热2~5小时。
更优选地,加热的条件为550℃加热4小时。
另外,由上述方法制备得到的超薄纳米片状石墨相氮化碳,也应在本发明的保护范围之内。
所得纳米片状石墨相氮化碳(CN-UMF)具有更大的比表面积、可见光吸收和光催化产氢效率,因此,其在在光催化分解水产氢中的应用,以及在作为或制备光催化分解水产氢的催化剂方面的应用,也均应在本发明的保护范围之内。
本发明具有以下有益效果:
发明提供了一种三聚氰胺泡沫(MF)覆盖尿素的简便一步烧结法,成功地合成获得了超薄纳米片状石墨相氮化碳(g-C3N4)。该方法简单、方便,只需引入三聚氰胺泡沫覆盖即可,所得产品获得了更大的比表面积、可见光吸收和光催化产氢效率。
与没有MF覆盖条件下单纯尿素烧结制备的块状石墨相氮化碳(CN-U)相比,本发明方法所制备的纳米片状石墨相氮化碳(CN-UMF)的比表面积为150.3m2g-1,平均厚度约为4.5nm,能够用作光催化剂,在可见光波段的LED灯或氙灯照射下,高效光催化分解水制氢,最高产氢效率达到5498μmol g-1h-1
附图说明
图1为CN-UMF的制备方法流程示意图。
图2为CN-UMF和CN-U的粉末衍射图。
图3为CN-UMF和CN-U的红外吸收谱图。
图4为CN-UMF和CN-U的N2吸-脱附曲线和孔径分布图。
图5为CN-UMF和CN-U的SEM和TEM图像。
图6为CN-UMF的原子力显微镜(AFM)图像。
图7为CN-UMF和CN-U的光催化产氢结果。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1超薄纳米片状石墨相氮化碳(CN-UMF)的制备
1、制备方法:
CN-UMF的制备方法如图1所示。在坩埚中加入20克尿素,然后在上面覆盖一块厨房用三聚氰胺泡沫(MF,45×60×30立方毫米),置于马弗炉中,空气气氛下550℃加热4小时,即可得到CN-UMF(0.53克)。
2、另外作为对照,在无MF覆盖条件下的单纯尿素烧结得到样品CN-U(0.37克)。
实施例2产品表征
1、表征方法
利用Rigaku Smartlab衍射仪进行粉末衍射表征(40kV,40mA, )。利用Nicolet/Nexus-670光谱仪进行傅立叶变换红外光谱测试(400~4000cm-1)。利用Quantachrome Autosorb-iQ2-MP气体吸附分析仪,在77K下对样品进行BET比表面积和孔体积的表征。利用岛津SPM-9500J3,获取原子力显微镜(AFM)图像。利用SU8010扫描电子显微镜(SEM)观察样品的形貌。利用JEM-2010HR,在200kV的加速电压下获得透射电子显微镜(TEM)图像。
2、结果
(1)CN-UMF和CN-U样品的X射线粉末衍射(XRPD)如图2所示。两个样品均表现出两个不同的衍射峰,在27.6°附近的(002)峰较强,是石墨结构共轭芳香体系的特征层间衍射。在约13°附近的(100)小峰可归属于三-s-三氮杂嗪的平面内重复单元。与CN-U相比,CN-UMF的(002)峰从27.6°略微移动到27.5°,对应于g-C3N4层间距的略微增大。
(2)CN-UMF和CN-U的红外吸收谱如图3所示。1200~1600cm-1的吸收带对应于芳香杂环单元的C-N伸缩峰。807cm-1处的峰归属于三嗪单元。3000~3500cm-1的宽带吸收对应于未聚合的末端氨基(-NH2或=NH基团)。
(3)用N2吸附-脱附测试获得CN-UMF和CN-U的孔结构和BET表面积。图4显示了所获得的吸附等温线和BJH孔径分布曲线。计算得到CN-UMF的比表面积为150.3m2g-1,远远高于CN-U(37.5m2g-1)。
(4)图5显示了CN-UMF和CN-U的SEM和TEM图像。可以看到,CN-U主要由块状团聚体组成。CN-UMF则由许多具有折叠形状和不规则边缘的超薄纳米片组成。
(5)图6显示了CNU-MF的原子力显微镜(AFM)图像。通过AFM厚度分析表明,纳米片的平均厚度约为4.5nm,相当于约12~13个原子层。
实施例3光催化测试
1、测试方法
在可见光照射下,对CN-UMF的光催化产氢活性进行了评价。可见光由平均强度为10mW cm-2的白光LED灯,或配有紫外线截止滤光片(波长>420nm)的150瓦氙灯提供。将10毫克的光催化剂粉末分散在含有三乙醇胺牺牲剂(体积比10%)的水溶液(10毫升)中。用H2PtCl6原位光沉积法,在光催化剂表面负载重量比3%的Pt。将N2通入反应液中30分钟以除去空气,然后用橡胶隔膜密封。在连续的磁力搅拌下,进行光催化测试,反应过程中利用冷却空气流使其温度保持在25℃。利用配备有热导型(TCD)检测器和TDX-01柱的Fuli GC-9790气相色谱仪进行产氢量测试。
2、结果
在白光LED灯照射下,以Pt为助催化剂,三乙醇胺为电子牺牲剂,对样品进行光催化分解水制氢测试。
结果如图7所示,CNU-MF的产氢速率达到2040μmol g-1h-1,约为CN-U(303μmol g- 1h-1)的6.7倍。当使用具有截止滤光片(波长>420nm或AM1.5G)的氙灯作为光源时,CNU-MF的产氢速率分别达到2782μmol g-1h-1和5498μmol g-1h-1
在相同的反应条件下测试了四个循环,验证了CN-UMF的催化稳定性。在可见光连续照射下,16小时没有明显的失活。CNU-MF的产氢波长依赖性与其光吸收一致,表明析氢反应确实是由光诱导产生的。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种超薄纳米片状石墨相氮化碳的制备方法,其特征在于,在尿素上面覆盖三聚氰胺泡沫,加热反应制备得到超薄纳米片状石墨相氮化碳。
2.根据权利要求1所述的制备方法,其特征在于,是在反应容器中加入尿素,然后在上面覆盖一块三聚氰胺泡沫,再盖上容器盖,置于马弗炉中,加热反应制备得到超薄纳米片状石墨相氮化碳。
3.根据权利要求1或2所述的制备方法,其特征在于,加热的条件为空气气氛下450~650℃加热2~5小时。
4.根据权利要求3所述的制备方法,其特征在于,加热的条件为550℃加热4小时。
5.根据权利要求1或2所述方法制备得到的超薄纳米片状石墨相氮化碳。
6.权利要求5所述超薄纳米片状石墨相氮化碳在光催化分解水产氢中的应用。
7.权利要求5所述超薄纳米片状石墨相氮化碳在作为或制备光催化分解水产氢的催化剂方面的应用。
CN201810639531.3A 2018-06-20 2018-06-20 一种超薄纳米片状石墨相氮化碳的制备方法和应用 Active CN108906103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810639531.3A CN108906103B (zh) 2018-06-20 2018-06-20 一种超薄纳米片状石墨相氮化碳的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810639531.3A CN108906103B (zh) 2018-06-20 2018-06-20 一种超薄纳米片状石墨相氮化碳的制备方法和应用

Publications (2)

Publication Number Publication Date
CN108906103A true CN108906103A (zh) 2018-11-30
CN108906103B CN108906103B (zh) 2021-06-29

Family

ID=64421095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810639531.3A Active CN108906103B (zh) 2018-06-20 2018-06-20 一种超薄纳米片状石墨相氮化碳的制备方法和应用

Country Status (1)

Country Link
CN (1) CN108906103B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124733A (zh) * 2019-04-30 2019-08-16 江苏大学 一种共轭聚合物光催化剂及制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282050A (ja) * 2003-02-24 2004-10-07 Semiconductor Energy Lab Co Ltd 薄膜集積回路装置、icラベル、薄膜集積回路が搭載された容器、それらの作製方法、及び当該容器を有する商品の管理方法
CN105195204A (zh) * 2015-10-19 2015-12-30 合肥工业大学 一种超细g-C3N4纳米光催化剂及其制备方法
CN106477539A (zh) * 2016-09-22 2017-03-08 西安交通大学 一种超薄石墨相氮化碳的制备方法
CN107051570A (zh) * 2017-06-09 2017-08-18 兰州大学 一种制备大面积超薄g‑C3N4光催化材料制备的方法
CN107311125A (zh) * 2017-07-25 2017-11-03 江苏大学 一种碳化氮纳米片及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282050A (ja) * 2003-02-24 2004-10-07 Semiconductor Energy Lab Co Ltd 薄膜集積回路装置、icラベル、薄膜集積回路が搭載された容器、それらの作製方法、及び当該容器を有する商品の管理方法
CN105195204A (zh) * 2015-10-19 2015-12-30 合肥工业大学 一种超细g-C3N4纳米光催化剂及其制备方法
CN106477539A (zh) * 2016-09-22 2017-03-08 西安交通大学 一种超薄石墨相氮化碳的制备方法
CN107051570A (zh) * 2017-06-09 2017-08-18 兰州大学 一种制备大面积超薄g‑C3N4光催化材料制备的方法
CN107311125A (zh) * 2017-07-25 2017-11-03 江苏大学 一种碳化氮纳米片及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUANZHI HONG ETAL.: ""A facile and scalable route for synthesizing ultrathin carbon nitride nanosheets with efficient solar hydrogen evolution"", 《CARBON》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124733A (zh) * 2019-04-30 2019-08-16 江苏大学 一种共轭聚合物光催化剂及制备方法和应用

Also Published As

Publication number Publication date
CN108906103B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Wang et al. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance
Wu et al. Template-free synthesis of nanocage-like gC 3 N 4 with high surface area and nitrogen defects for enhanced photocatalytic H 2 activity
Wang et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis
Di et al. Hierarchically nanostructured porous TiO 2 (B) with superior photocatalytic CO 2 reduction activity
CN108772093A (zh) 一种高可见光活性石墨相氮化碳纳米片及其制备方法
Chen et al. Ultra-thin carbon nitride nanosheets for efficient photocatalytic hydrogen evolution
Yang et al. Synthesis of metal–organic framework MIL-101 in TMAOH-Cr (NO3) 3-H2BDC-H2O and its hydrogen-storage behavior
Shi et al. The preparation of spherical mesoporous g-C3N4 with highly improved photocatalytic performance for H2 production and rhodamine B degradation
Liang et al. The improvement of photocatalytic performance for hydrogen evolution over mesoporous gC 3 N 4 modified with nitrogen defects
Chen et al. Salt-assisted synthesis of hollow Bi2WO6 microspheres with superior photocatalytic activity for NO removal
Ovcharov et al. Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO2 utilization
Zhang et al. A facile method for scalable synthesis of ultrathin gC 3 N 4 nanosheets for efficient hydrogen production
Do et al. Preparation of basalt fiber@ perovskite PbTiO3 core–shell composites and their effects on CH4 production from CO2 photoreduction
CN106076421A (zh) 一种MIL‑53(Fe)/g‑C3N4纳米片复合光催化材料的制备方法
CN111215115A (zh) 一种二维碳化钛/二维石墨相氮化碳纳米片异质结的制备及在光催化还原co2中的应用
Shao et al. Immobilized and photocatalytic performances of PDMS-SiO2-chitosan@ TiO2 composites on pumice under simulated sunlight irradiation
CN112675894B (zh) 一种空心环状氮化碳光催化剂及其制备方法
Zhang et al. New two-dimensional porous graphitic carbon nitride nanosheets for highly efficient photocatalytic hydrogen evolution under visible-light irradiation
Yang et al. Engineering graphitic carbon nitride with expanded interlayer distance for boosting photocatalytic hydrogen evolution
Gao et al. Construction of heterostructured g-C3N4@ TiATA/Pt composites for efficacious photocatalytic hydrogen evolution
Sun et al. Photocatalytic H2 evolution of porous silicon derived from magnesiothermic reduction of mesoporous SiO2
CN104722325A (zh) 一种三维宏观体多孔石墨相氮化碳光催化剂及其制备与应用
Zhang et al. Facile synthesis of oxygen doped mesoporous graphitic carbon nitride with high photocatalytic degradation efficiency under simulated solar irradiation
Wang et al. Boosting the photocatalytic hydrogen production performance of graphitic carbon nitride nanosheets by tailoring the cyano groups
Wang et al. In situ DRIFT investigation on the photocatalytic NO oxidation mechanism with thermally exfoliated porous gC 3 N 4 nanosheets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant