CN110124733A - 一种共轭聚合物光催化剂及制备方法和应用 - Google Patents
一种共轭聚合物光催化剂及制备方法和应用 Download PDFInfo
- Publication number
- CN110124733A CN110124733A CN201910358738.8A CN201910358738A CN110124733A CN 110124733 A CN110124733 A CN 110124733A CN 201910358738 A CN201910358738 A CN 201910358738A CN 110124733 A CN110124733 A CN 110124733A
- Authority
- CN
- China
- Prior art keywords
- conjugated polymer
- photochemical catalyst
- preparation
- polymer photochemical
- urea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 44
- 229920000547 conjugated polymer Polymers 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 29
- 239000001257 hydrogen Substances 0.000 claims abstract description 29
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000004202 carbamide Substances 0.000 claims abstract description 12
- 238000010792 warming Methods 0.000 claims abstract description 9
- 239000004640 Melamine resin Substances 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims abstract description 8
- 230000008018 melting Effects 0.000 claims abstract description 8
- 239000011259 mixed solution Substances 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 238000001354 calcination Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- OOSUHIIJYDMCCW-UHFFFAOYSA-N cyanamide;formaldehyde Chemical compound O=C.NC#N OOSUHIIJYDMCCW-UHFFFAOYSA-N 0.000 claims 2
- 229920005989 resin Polymers 0.000 claims 2
- 239000011347 resin Substances 0.000 claims 2
- 238000005829 trimerization reaction Methods 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 150000004767 nitrides Chemical class 0.000 abstract description 4
- 239000011941 photocatalyst Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 8
- 230000001699 photocatalysis Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
- B01J31/069—Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明涉及光催化剂,特指一种可见光下分解水产氢的共轭聚合物光催化剂。首先将尿素在120‑160℃下加热融化,随后加入三聚氰胺甲醛树脂,搅拌形成均一的混合溶液,冷却至室温后研磨,以3‑5℃/min的升温速率升温到550‑750℃,并在550‑750℃下煅烧2‑4h,得到多孔氮化碳基共轭聚合物光催化剂;并将制备好的多孔氮化碳基共轭聚合物光催化剂应用于可见光下分解水产氢性能研究。
Description
技术领域
本发明涉及光催化剂,特指一种可见光下分解水产氢的共轭聚合物光催化剂,利用简单的一步煅烧法合成了多孔氮化碳(g-C3N4)基共轭聚合物,并将制备好的多孔氮化碳基共轭聚合物应用于可见光下分解水产氢性能研究。
背景技术
氢能作为一种“零污染、零碳、能量高、环境友好、全能(既可发电、供热,也可用作交通燃料等)”的可持续清洁能源之一在全球能源分配中扮演着重要角色。世界氢能委员会认为,发展氢能对于实现能源转型、遏制全球气候变暖至关重要,同时可以利用氢能来转换和存储超过500太瓦时的电力,从而充分发挥可再生能源的替代作用,也可以作为发电的备用能源和战略储备能源。据预测,到 2040年氢能将占世界终端能源消费的18%,到2050年全球20%的CO2减排要靠氢能来完成。因此积极推进氢能源快速发展已成为世界各国所面临和亟待解决的重大课题。然而,传统工业上采用的裂解化石能源制氢、电解水制氢和生物制氢技术存在耗能高、污染大、效率低等缺点,极大地限制了氢能源的快速发展。光催化分解水制氢技术作为一种廉价、节能、绿色环保、可持续发展的制氢途径,由于反应体系简单、反应条件温和、清洁无污染、易实用化等优势,可以有效避免上述传统的工业制氢存在的缺点引起了学术界和工业界的广泛兴趣。
近年来,非金属聚合物类氮化碳(g-C3N4)由于原料低廉、制备简单、受可见光驱动(带隙约2.7eV)、无毒且具有良好的离子/电子传输性和种类多样性等优势,在催化、传感、能源存储等领域得到了广泛关注。尤其在光催化领域因具有如下的独特优势吸引了研究人员将其应用于催化分解水制氢:首先g-C3N4具有高效的电子传递、良好的稳定性以及丰富的表面暴露活性位点,表面拥有大量的亲水官能团,容易与其他材料复合;其次,由于电位梯度的存在,由能带结构相匹配的g-C3N4半导体构建的异质结光催化剂可以有效地加速光生电荷的分离和传输;再次,g-C3N4具有合适的禁带宽度,在拥有极大平面尺寸的同时还能保持原子厚度,赋予其极大的比表面积。然而,对于单纯、未经修饰的g-C3N4光催化剂仍然具有低的催化活性。因此,需要对单一的g-C3N4进行修饰或者改性,提高其比表面积、载流子分离效率及可见光吸收能力,从而进一步提高光催化活性。
发明内容
本发明的目的是提供一种多孔g-C3N4-MF共轭聚合物光催化剂及其制备方法,并考察引入不同含量的MF对可见光下光催化分解水制氢性能的影响。通过引入聚合物三聚氰胺甲醛树脂(MF)与g-C3N4构成共轭聚合物,并通过控制 MF的不同含量,使得制备的g-C3N4-MF共轭聚合物光催化剂具有大的比表面积、最大的可见光吸收能力、快速的载流子分离,并且具有最高的可见光分解水制氢性能。
一种多孔g-C3N4-MF共轭聚合物光催化剂的制备方法,包括如下步骤:
步骤S1:纯g-C3N4的制备
首先将尿素在120-160℃下加热融化,冷却至室温后研磨,以3-5℃/min的升温速率升温到550-750℃,并在550-750℃下煅烧2-4h。
步骤S2:多孔g-C3N4-MF共轭聚合物光催化剂的制备
首先将尿素在120-160℃下加热融化,随后加入三聚氰胺甲醛树脂,搅拌形成均一的混合溶液,冷却至室温后研磨,以3-5℃/min的升温速率升温到550-750℃,并在550-750℃下煅烧2-4h。
优选的,步骤S1中,尿素的含量为20g,煅烧温度为600℃,升温速率为 5℃/min,煅烧时间为3h。
步骤S2中,尿素与三聚氰胺甲醛树脂的比例为10-30g:25-200μL,优选比例为20g:100μL,搅拌时间为10-30min,优选20min,煅烧温度优选为600℃,升温速率优选为5℃/min,煅烧时间优选为3h。
本发明的有益效果
本发明的优点在于简便的合成了多孔g-C3N4-MF共轭聚合物光催化剂,并将其作为光催化剂分解水制氢具有很高的光催化产氢性能。本发明所提供的多孔 g-C3N4-MF共轭聚合物光催化剂具有大的比表面积,可提供的活性点更多,形成分子内供体-受体进一步提高载流子的分离效率,使得所制备的光催化剂高效的光催化活性得以发挥,该方法不会造成资源浪费,且操作简便,成本较低,是一种绿色环保的高效处理技术。
附图说明
图1a是所制备催化剂的X射线衍射图,从图1a中可以看出g-C3N4与g-C3N4-MF共轭聚合物光催化剂在2θ为13°与27°的衍射峰完全一致。在红外吸收光谱图1b中,g-C3N4-MF共轭聚合物的伸缩振动峰与纯的g-C3N4的衍射峰相同,证明MF的引入并没有改变g-C3N4本身的结构。
图2a和图2b分别为g-C3N4和g-C3N4-MF共轭聚合物光催化剂的扫描电镜图。通过图2a我们发现,纯的g-C3N4是由边缘卷曲的纳米片组成的体相材料,而g-C3N4-MF共轭聚合物光催化剂(图2b)相比于纯的g-C3N4具有明显的孔结构。为了进一步证明多孔结构的存在,对纯的g-C3N4和g-C3N4-MF共轭聚合物光催化剂进行了透射电镜分析。通过图2c我们发现纯的g-C3N4呈现纳米片结构。值得注意的是,g-C3N4-MF共轭聚合物光催化剂通过图2d可以明显的观察到多孔结构。有利于比表面积的增大,进而提高光催化产氢活性。
图3a为所制备催化剂的固体紫外吸收图。通过图3a我们发现相比于纯的 g-C3N4,g-C3N4-MF共轭聚合物光催化剂的可将光吸收能力明显增强。通过图3b 可以确定,相比于纯的g-C3N4(2.63eV),g-C3N4-MF共轭聚合物光催化剂的禁带(2.57eV)宽度变窄,更有利于可见光吸收。为了进一步确定价导带位置,我们进行了价带谱测试,图3c显示g-C3N4与g-C3N4-MF共轭聚合物光催化剂的价带位置分别为1.82eV和1.53eV。根据公式Eg=EVB–ECB,最终我们确定了 g-C3N4与g-C3N4-MF共轭聚合物光催化剂的价导带位置。通过图3d我们发现, g-C3N4-MF共轭聚合物光催化剂的导带位置上移,更有利于电子与H+发生还原反应产生H2。
图4a-d分别为所合成催化剂的光催化产氢性能图、循环实验图、循环前后的X射线衍射图和量子效率图。通过图4a可以说明我们优化出的最佳条件 g-C3N4-MF100在可见光下具有最高的光催化产氢活性。图4b表示g-C3N4-MF100共轭聚合物光催化剂在经过六次循环之后仍具有良好的稳定性。通过观察反应前后样品的X射线衍射(图4b)说明经过六次循环之后样品得晶相并没有发生明显的改变。图4d说明光催化产氢活性主要取决于紫外-可见光吸收能力而不是入射光的波长。
图5a-d分别为荧光、衰减、光电流及阻抗图。图5a-b说明,g-C3N4-MF100共轭聚合物光催化剂相比于纯的g-C3N4具有很好的光生载流子分离效率。图5c 中,在所有制备的催化剂中,g-C3N4-MF100共轭聚合物光催化剂具有最大的光电流响应,与之相对于的是图5d中g-C3N4-MF100共轭聚合物光催化剂具有最小的阻抗,说明g-C3N4-MF100共轭聚合物光催化剂有效的抑制了载流子的重组,更有利于电子转移发生还原反应产生氢气。
具体实施方式
实施例1
多孔g-C3N4-MF25共轭聚合物光催化剂的制备
首先将20g尿素在140℃下加热融化,随后加入25μL的三聚氰胺甲醛树脂,搅拌20min形成均一的混合溶液,冷却至室温后研磨,以5℃/min的升温速率升温到600℃,并在600℃下煅烧3h。
实施例2
多孔g-C3N4-MF75共轭聚合物光催化剂的制备
首先将20g尿素在140℃下加热融化,随后加入75μL的三聚氰胺甲醛树脂,搅拌20min形成均一的混合溶液,冷却至室温后研磨,以5℃/min的升温速率升温到600℃,并在600℃下煅烧3h。
实施例3
多孔g-C3N4-MF100共轭聚合物光催化剂的制备
首先将20g尿素在140℃下加热融化,随后加入100μL的三聚氰胺甲醛树脂,搅拌20min形成均一的混合溶液,冷却至室温后研磨,以5℃/min的升温速率升温到600℃,并在600℃下煅烧3h。
实施例4
多孔g-C3N4-MF150共轭聚合物光催化剂的制备
首先将20g尿素在140℃下加热融化,随后加入150μL的三聚氰胺甲醛树脂,搅拌20min形成均一的混合溶液,冷却至室温后研磨,以5℃/min的升温速率升温到600℃,并在600℃下煅烧3h。
Claims (7)
1.一种共轭聚合物光催化剂的制备方法,其特征在于,具体步骤如下:首先将尿素在120-160℃下加热融化,随后加入三聚氰胺甲醛树脂,搅拌形成均一的混合溶液,冷却至室温后研磨,以3-5℃/min的升温速率升温到550-750℃,并在550-750℃下煅烧2-4h。
2.如权利要求1所述的一种共轭聚合物光催化剂的制备方法,其特征在于,尿素与三聚氰胺甲醛树脂的比例为10-30g:25-200μL。
3.如权利要求2所述的一种共轭聚合物光催化剂的制备方法,其特征在于,尿素与三聚氰胺甲醛树脂的比例为20g:100μL。
4.如权利要求1所述的一种共轭聚合物光催化剂的制备方法,其特征在于,搅拌时间为10-30min。
5.如权利要求4所述的一种共轭聚合物光催化剂的制备方法,其特征在于,搅拌时间为20min。
6.如权利要求1所述的一种共轭聚合物光催化剂的制备方法,其特征在于,煅烧温度为600℃,升温速率为5℃/min,煅烧时间为3h。
7.如权利要求1-6任一所述方法制备的共轭聚合物光催化剂的用途,其特征在于,应用于可见光下分解水产氢。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910358738.8A CN110124733A (zh) | 2019-04-30 | 2019-04-30 | 一种共轭聚合物光催化剂及制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910358738.8A CN110124733A (zh) | 2019-04-30 | 2019-04-30 | 一种共轭聚合物光催化剂及制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110124733A true CN110124733A (zh) | 2019-08-16 |
Family
ID=67575738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910358738.8A Pending CN110124733A (zh) | 2019-04-30 | 2019-04-30 | 一种共轭聚合物光催化剂及制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110124733A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111804338A (zh) * | 2020-03-18 | 2020-10-23 | 同济大学 | 三嗪基d-a型含氮有机共轭多孔聚合物光催化材料及其制备与应用 |
CN113751046A (zh) * | 2021-10-09 | 2021-12-07 | 东华大学 | 一种铁掺杂树脂修饰石墨相氮化碳光芬顿催化剂及制备方法 |
CN117563664A (zh) * | 2023-11-17 | 2024-02-20 | 昆明理工大学 | 一种亲水性共轭聚合物复合富羟基氮化碳光催化剂的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196232A (ja) * | 2013-03-04 | 2014-10-16 | Jsr株式会社 | 窒化炭素前駆体組成物、窒化炭素の製造方法及び電極材料 |
CN106423243A (zh) * | 2016-09-14 | 2017-02-22 | 江南大学 | 一种棒状多孔氮化碳光催化剂及其制备方法 |
CN108043440A (zh) * | 2017-11-28 | 2018-05-18 | 辽宁大学 | 高活性多孔的g-C3N4光催化剂及其制备方法与应用 |
CN108906103A (zh) * | 2018-06-20 | 2018-11-30 | 中山大学 | 一种超薄纳米片状石墨相氮化碳的制备方法和应用 |
CN109046420A (zh) * | 2018-07-09 | 2018-12-21 | 江苏大学 | 一种多孔氮化碳光催化剂的制备方法 |
-
2019
- 2019-04-30 CN CN201910358738.8A patent/CN110124733A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196232A (ja) * | 2013-03-04 | 2014-10-16 | Jsr株式会社 | 窒化炭素前駆体組成物、窒化炭素の製造方法及び電極材料 |
CN106423243A (zh) * | 2016-09-14 | 2017-02-22 | 江南大学 | 一种棒状多孔氮化碳光催化剂及其制备方法 |
CN108043440A (zh) * | 2017-11-28 | 2018-05-18 | 辽宁大学 | 高活性多孔的g-C3N4光催化剂及其制备方法与应用 |
CN108906103A (zh) * | 2018-06-20 | 2018-11-30 | 中山大学 | 一种超薄纳米片状石墨相氮化碳的制备方法和应用 |
CN109046420A (zh) * | 2018-07-09 | 2018-12-21 | 江苏大学 | 一种多孔氮化碳光催化剂的制备方法 |
Non-Patent Citations (2)
Title |
---|
KUI LI ET AL.: ""Creating Graphitic Carbon Nitride Based Donor-π–Acceptor-π–Donor Structured Catalysts for Highly Photocatalytic Hydrogen Evolution"", 《SMALL》 * |
张祎: ""以氨基树脂为结构导向剂构筑高效g-C3N4基光催化剂"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111804338A (zh) * | 2020-03-18 | 2020-10-23 | 同济大学 | 三嗪基d-a型含氮有机共轭多孔聚合物光催化材料及其制备与应用 |
CN111804338B (zh) * | 2020-03-18 | 2022-09-06 | 同济大学 | 三嗪基d-a型含氮有机共轭多孔聚合物光催化材料及其制备与应用 |
CN113751046A (zh) * | 2021-10-09 | 2021-12-07 | 东华大学 | 一种铁掺杂树脂修饰石墨相氮化碳光芬顿催化剂及制备方法 |
CN117563664A (zh) * | 2023-11-17 | 2024-02-20 | 昆明理工大学 | 一种亲水性共轭聚合物复合富羟基氮化碳光催化剂的制备方法 |
CN117563664B (zh) * | 2023-11-17 | 2024-06-07 | 昆明理工大学 | 一种亲水性共轭聚合物复合富羟基氮化碳光催化剂的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution | |
Jiang et al. | Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts | |
Mahvelati-Shamsabadi et al. | Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: Electronic, Optical, and Surface properties | |
CN107098323B (zh) | 一种g-C3N4纳米片及其制备方法与应用 | |
Yang et al. | Molecular engineering of CxNy: topologies, electronic structures and multidisciplinary applications | |
CN110124733A (zh) | 一种共轭聚合物光催化剂及制备方法和应用 | |
Yan et al. | Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production | |
Jiang et al. | Hexagonal g-C3N4 nanotubes with Pt decorated surface towards enhanced photo-and electro-chemistry performance | |
CN103785434A (zh) | 一种g-C3N4纳米片/CdS复合可见光催化剂 | |
CN107081166A (zh) | 一种g‑C3N4/TiO2多级结构及其制备方法 | |
Sharma et al. | Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: An in-depth review | |
CN104277219B (zh) | 一种光催化材料聚酰亚胺及其制备方法和应用 | |
CN109999887B (zh) | 一种β-FeOOH/g-C3N4异质结光催化材料的制备方法 | |
CN102671683A (zh) | 一种纳米片自组装C掺杂(BiO)2CO3微球可见光催化剂的制备方法 | |
CN105214708B (zh) | 一种二氧化钛-硼改性氮化碳光催化剂及其制备方法 | |
CN103638950A (zh) | 一种CuS纳米片光催化材料及制备方法 | |
CN109433229A (zh) | 一种CdS/CoO纳米异质结构的制备方法 | |
CN106984360A (zh) | Bi2O2CO3/PPy/g‑C3N4复合光催化剂及其制备方法和应用 | |
CN108686691A (zh) | 一种钆掺杂类石墨相氮化碳光催化材料的制备方法 | |
Han et al. | Hydrothermal preparation of C3N4 on carbonized wood for photothermal-photocatalytic water splitting to efficiently evolve hydrogen | |
CN107098429A (zh) | 一种BiVO4/BiPO4复合材料及其制备方法和应用 | |
Lu et al. | Recent advances in solar-driven interfacial evaporation coupling systems: Energy conversion, water purification, and seawater resource extraction | |
Yuan et al. | Ultrafast hot electron transfer and trap-state mediated charge separation for boosted photothermal-assisted photocatalytic H2 evolution | |
CN108786872B (zh) | 一种花状WS2/Bi2O2CO3异质结光催化材料的合成方法及其应用 | |
Chen et al. | Research status, challenges and future prospects of renewable synthetic fuel catalysts for CO2 photocatalytic reduction conversion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190816 |
|
RJ01 | Rejection of invention patent application after publication |