CN107032783B - λ-(MxTi1-x)3O5粉体及其制备方法 - Google Patents

λ-(MxTi1-x)3O5粉体及其制备方法 Download PDF

Info

Publication number
CN107032783B
CN107032783B CN201710122163.0A CN201710122163A CN107032783B CN 107032783 B CN107032783 B CN 107032783B CN 201710122163 A CN201710122163 A CN 201710122163A CN 107032783 B CN107032783 B CN 107032783B
Authority
CN
China
Prior art keywords
powder
lambda
block
preparation
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710122163.0A
Other languages
English (en)
Other versions
CN107032783A (zh
Inventor
黄婉霞
沈祖佳
施奇武
赵封林
魏丹
黄波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201710122163.0A priority Critical patent/CN107032783B/zh
Publication of CN107032783A publication Critical patent/CN107032783A/zh
Application granted granted Critical
Publication of CN107032783B publication Critical patent/CN107032783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种λ‑(MxTi1‑x)3O5粉体及其制备方法。λ‑(MxTi1‑x)3O5粉体是以λ‑Ti3O5为基的固溶体结构,金属元素M为溶质组元,x为0.02~0.3,所述金属元素M为Al、Mg、Y、Zr中的至少一种。λ‑(MxTi1‑x)3O5具有同λ‑Ti3O5相似的相变特性,在传感器、光存储材料、储能材料等领域有很好的应用前景。该粉体的制备方法如下:(1)按照λ‑(MxTi1‑x)3O5成分比配料;(2)将步骤(1)计量好的原料在超声机或球磨机中混合均匀,干燥后研磨得到混合粉料;(3)将步骤(2)所得混合粉料在模具中进行压制成型,得到成型块体;(4)将步骤(3)所得成型块体在流动的氮气或氩气气氛下于900℃~1250℃烧结10分钟~8小时,然后随炉冷却至室温附近出炉得到烧结块体,将所述烧结块体研磨破碎后即获得掺杂λ‑(MxTi1‑x)3O5粉体。

Description

λ-(MxTi1-x)3O5粉体及其制备方法
技术领域
本发明属于相变型粉体材料制备技术领域,特别涉及λ-(MxTi1-x)3O5粉体及其制备方法。
背景技术
λ-Ti3O5作为一种新型的相变材料,因其特殊的晶体结构,在激光、热、压力、电流等外界刺激条件下可与β-Ti3O5发生可逆的相变。该材料相变前后的光、电、磁等物理性能会发生明显的突变,恰好满足信息存储开关的要求,有望成为下一代传感器、光存储材料。同时,该相变过程伴随着能量的释放和吸收,在储能材料领域有很好的应用前景。但λ-Ti3O5属于室温亚稳相,常规方法难以制备出高纯的λ-Ti3O5。文献(Synthesis of a metal oxidewith a room temperature photoreversible phase transition, Nature Chemistry,2010, 2(7): 539-545)首次报道了通过高温氢气还原制备出λ-Ti3O5粉体,但该制备方法成本高,危险性大,且只能还原与氢气接触的表面薄薄一层粉体,产量低,影响其大规模工业化生产。随后文献(Preparation and characterization of λ-Ti3O5 by carbothermalreduction of TiO2, Journal of Alloys and Compounds, 2015, 621: 404-410)报道了用碳热还原法也可以制备出λ-Ti3O5粉体,但该方法对原料的要求极高,需要在纳米二氧化钛表面包覆一层无机材料,过程繁琐,操作复杂。因此需要寻求更安全可靠、工艺过程简单、低成本、易于大规模生产的方法来实现系列λ-Ti3O5粉体的制备。
发明内容
本发明的目的在于针对目前现有技术的不足,提供λ-(MxTi1-x)3O5粉体及一种低成本、工艺过程简单、安全可控、易于大规模生产的制备方法。
本发明所述的λ-(MxTi1-x)3O5粉体是以λ-Ti3O5为基的固溶体结构,金属元素M为溶质组元,x为0.02~0.3,所述M为Al、Mg、Y、Zr中的至少一种。
本发明所述的λ-(MxTi1-x)3O5粉体的制备方法工艺步骤依次如下:
(1)配料
原料为TiO2粉体、碳质还原剂、金属元素M源,按照获得λ-(MxTi1-x)3O5粉体的化学反应式计量各原料配比;
(2)混料
将步骤(1)计量好的原料倒入混料容器中,加入分散介质后,在超声机中超声分散或球磨机中进行球磨分散,得到均匀混合的浆料,将所述浆料干燥后研磨得到混合粉料;
(3)成型
将步骤(2)所得混合粉料在模具中进行压制成型,得到成型块体;
(4)烧结
将步骤(3)所得成型块体在流动的惰性保护气氛下于900℃~1250℃烧结10分钟~8小时,然后随炉冷却至室温后出炉得到烧结块体,将所述烧结块体研磨破碎后即获得λ-(MxTi1-x)3O5粉体。
与现有技术相比,本发明的有益效果:
1、本发明所述的λ-(MxTi1-x)3O5粉体引入了不同的金属元素来部分取代λ-Ti3O5中Ti的原子位点,从而改变其晶体结构,通过控制掺杂金属元素的种类和数量,可以实现相变特性的可控。
2、本发明所述的λ-(MxTi1-x)3O5粉体是基于离子掺杂稳定化效应得到的,与现有的基于纳米尺寸稳定化的制备方法相比,对原料要求不高,成本低廉,工艺简单,安全可靠,便于工业化生产。
3、本发明所述的λ-(MxTi1-x)3O5粉体的制备方法只需要保温10分钟就可以得到,而现有的制备方法至少需要保温几个小时,大大缩短了生产周期,显著提高生产效率,易于实现大规模生产。
附图说明
图1是实施例1制备的以Al为溶质组元的λ-(MxTi1-x)3O5粉体的X射线衍射图。说明该粉体为单一物相的λ-Ti3O5固溶体结构。
图2是实施例1制备的以Al为溶质组元的λ-(MxTi1-x)3O5粉体的扫描电镜照片。
图3是实施例1制备的以Al为溶质组元的λ-(MxTi1-x)3O5粉体的能谱图。
图4是实施例1制备的以Al为溶质组元的λ-(MxTi1-x)3O5粉体经激光照射后的X射线衍射图。说明该粉体经激光照射后相变为β-Ti3O5
具体实施方式
下面通过具体实施例对本发明所述λ-(MxTi1-x)3O5粉体及其制备方法做进一步说明。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
下述实施例中,所述原料粉体均可以从市场购买。
实施例1
本实施例采用所述制备方法制备以Al为溶质组元的λ-(MxTi1-x)3O5粉体,其化学式为(Al0.06Ti0.94)3O5,工艺步骤依次如下:
(1)配料
按照(Al0.06Ti0.94)3O5成分比计量各原料,各原料的重量百分比如下:
纳米TiO2粉体 91.66 wt%,
纳米Al2O3粉体 3.76 wt%,
纳米炭黑粉体 4.58wt%;
(2)混料
将无水乙醇加入到步骤(1)计量好的原料中,超声分散得到混合均匀的浆料,将所述浆料置于70℃烘箱中干燥12小时得到混合粉料;
(3)成型
将步骤(2)所得混合粉料倒入压片机模具中,缓慢施加压力到15Mpa,到达预定压力时保持5min,脱模后即可得到成型块体;
(4)烧结
将步骤(3)所得成型块体置于电阻管式炉内的钼舟中,通入500ml/min的流动氩气20分钟以排尽管内空气,在该流动氩气气氛下升温至1050℃烧结2小时,然后随炉冷却至室温,取出烧结块体破碎研磨即可获得以Al为溶质组元的λ-(MxTi1-x)3O5粉体。其X射线衍射谱图见图1,扫描电镜照片见图2,能谱图见图3,经激光照射后的X射线衍射图见图4。由图1可知该粉体为单一物相的λ-Ti3O5固溶体结构。由图2可以看出,该粉体的颗粒尺寸为0.5~3微米。由图3可以得到各原子比接近理论化学配比(Al0.06Ti0.94)3O5。由图4可知该粉体经激光照射后相变为β-Ti3O5
实施例2
本实施例采用所述制备方法制备以Y为溶质组元的λ-(MxTi1-x)3O5粉体,其化学式为(Y0.04Ti0.96)3O5,工艺步骤依次如下:
(1)配料
按照(Y0.04Ti0.96)3O5成分比计量各原料,各原料的重量百分比如下:
纳米TiO2粉体 90.17 wt%,
纳米Y2O3粉体 5.32wt%,
纳米炭黑粉体 4.51wt%;
(2)混料
将无水乙醇加入到步骤(1)计量好的原料中,超声分散得到混合均匀的浆料,将所述浆料置于70℃烘箱中干燥12小时得到混合粉料;
(3)成型
将步骤(2)所得混合粉料倒入压片机模具中,缓慢施加压力到15Mpa,到达预定压力时保持5min,脱模取样即可得到成型块体;
(4)烧结
将步骤(3)所得成型块体置于电阻管式炉内的钼舟中,通入500ml/min的流动氩气20分钟以排尽管内空气,在该流动氩气气氛下升温至1050℃烧结10分钟,然后随炉冷却至室温,取出烧结块体破碎研磨即可获得以Y为溶质组元的λ-(MxTi1-x)3O5粉体。
实施例3
本实施例采用所述制备方法制备以Mg为溶质组元的λ-(MxTi1-x)3O5粉体,其化学式为(Mg0.02Ti0.98)3O5,工艺步骤依次如下:
(1)配料
按照(Mg0.02Ti0.98)3O5成分比计量各原料,各原料的重量百分比如下:
纳米TiO2粉体 94.29 wt%,
纳米MgO粉体 0.10 wt%,
纳米炭黑粉体 4.71wt%;
(2)混料
将无水乙醇加入到步骤(1)计量好的原料中,超声分散得到混合均匀的浆料,将所述浆料置于70℃烘箱中干燥12小时得到混合粉料;
(3)成型
将步骤(2)所得混合粉料倒入压片机模具中,缓慢施加压力到15Mpa,到达预定压力时保持5min,脱模取样即可得到成型块体;
(4)烧结
将步骤(3)所得成型块体置于电阻管式炉内的钼舟中,通入500ml/min的流动氩气20分钟以排尽管内空气,在该流动氩气气氛下升温至1050℃烧结30分钟,然后随炉冷却至室温,取出烧结块体破碎研磨即可获得以Mg为溶质组元的λ-(MxTi1-x)3O5粉体。
实施例4
本实施例采用所述制备方法制备以Zr为溶质组元的λ-(MxTi1-x)3O5粉体,其化学式为(Zr0.06Ti0.94)3O5,工艺步骤依次如下:
(1)配料
按照(Zr0.06Ti0.94)3O5成分比计量各原料,各原料的重量百分比如下:
纳米TiO2粉体 87.07 wt%,
纳米Al2O3粉体 8.58 wt%,
纳米炭黑粉体 4.35wt%;
(2)混料
将无水乙醇加入到步骤(1)计量好的原料中,超声分散得到混合均匀的浆料,将所述浆料置于70℃烘箱中干燥12小时得到混合粉料;
(3)成型
将步骤(2)所得混合粉料倒入压片机模具中,缓慢施加压力到15Mpa,到达预定压力时保持5min,脱模取样即可得到成型块体;
(4)烧结
将步骤(3)所得成型块体置于电阻管式炉内的钼舟中,通入500ml/min的流动氮气20分钟以排尽管内空气,在该流动氩气气氛下升温至1050℃烧结1小时,然后随炉冷却至室温,取出烧结块体破碎研磨即可获得以Zr为溶质组元的λ-(MxTi1-x)3O5粉体。
实施例5
本实施例采用所述制备方法制备以Al为溶质组元的λ-(MxTi1-x)3O5粉体,其化学式为(Al0.06Ti0.94)3O5,工艺步骤依次如下:
(1)配料
按照(Al0.06Ti0.94)3O5成分比计量各原料,各原料的重量百分比如下:
微米TiO2粉体 91.66 wt%,
微米Al2O3粉体 3.76 wt%,
微米石墨粉体 4.58wt%;
(2)混料
将步骤(1)计量好的原料放入球磨罐中,球料比为4∶1,以无水乙醇为湿磨介质,400rpm转速下球磨12小时,使原料混合均匀,分离研磨球体得到混合浆料,将所述浆料置于70℃烘箱中干燥12小时得到混合粉料;
(3)成型
将步骤(2)所得混合粉料倒入压片机模具中,缓慢施加压力到20Mpa,到达预定压力时保持5min,脱模后即可得到成型块体;
(4)烧结
将步骤(3)所得成型块体置于电阻管式炉内的钼舟中,通入500ml/min的流动氮气20分钟以排尽管内空气,在该流动氩气气氛下升温至1100℃烧结2小时,然后随炉冷却至室温,取出烧结块体破碎研磨即可获得以Al为溶质组元的λ-(MxTi1-x)3O5粉体。
实施例6
本实施例采用所述制备方法制备以Y为溶质组元的λ-(MxTi1-x)3O5粉体,其化学式为(Y0.04Ti0.96)3O5,工艺步骤依次如下:
(1)配料
按照(Y0.04Ti0.96)3O5成分比计量各原料,各原料的重量百分比如下:
微米TiO2粉体 90.17 wt%,
微米Y2O3粉体 5.32wt%,
微米石墨粉体 4.51wt%;
(2)混料
将步骤(1)计量好的原料放入球磨罐中,球料比为4∶1,以无水乙醇为湿磨介质,400rpm转速下球磨12小时,使原料混合均匀,分离研磨球体得到混合浆料,将所述浆料置于70℃烘箱中干燥12小时得到混合粉料;
(3)成型
将步骤(2)所得混合粉料倒入压片机模具中,缓慢施加压力到20Mpa,到达预定压力时保持5min,脱模取样即可得到成型块体;
(4)烧结
将步骤(3)所得成型块体置于电阻管式炉内的钼舟中,通入500ml/min的流动氮气20分钟以排尽管内空气,在该流动氩气气氛下升温至1100℃烧结3小时,然后随炉冷却至室温,取出烧结块体破碎研磨即可获得以Y为溶质组元的λ-(MxTi1-x)3O5粉体。
实施例7
本实施例采用所述制备方法制备以Mg为溶质组元的λ-(MxTi1-x)3O5粉体,其化学式为(Mg0.02Ti0.98)3O5,工艺步骤依次如下:
(1)配料
按照(Mg0.02Ti0.98)3O5成分比计量各原料,各原料的重量百分比如下:
微米TiO2粉体 94.29 wt%,
微米MgO粉体 0.10 wt%,
微米石墨粉体 4.71wt%;
(2)混料
将步骤(1)计量好的原料放入球磨罐中,球料比为4∶1,以无水乙醇为湿磨介质,400rpm转速下球磨12小时,使原料混合均匀,分离研磨球体得到混合浆料,将所述浆料置于70℃烘箱中干燥12小时得到混合粉料;
(3)成型
将步骤(2)所得混合粉料倒入压片机模具中,缓慢施加压力到20Mpa,到达预定压力时保持5min,脱模取样即可得到成型块体;
(4)烧结
将步骤(3)所得成型块体置于电阻管式炉内的钼舟中,通入500ml/min的流动氮气20分钟以排尽管内空气,在该流动氩气气氛下升温至1100℃烧结5小时,然后随炉冷却至室温,取出烧结块体破碎研磨即可获得以Mg为溶质组元的λ-(MxTi1-x)3O5粉体。
实施例8
本实施例采用所述制备方法制备以Zr为溶质组元的λ-(MxTi1-x)3O5粉体,其化学式为(Zr0.06Ti0.94)3O5,工艺步骤依次如下:
(1)配料
按照(Zr0.06Ti0.94)3O5成分比计量各原料,各原料的重量百分比如下:
微米TiO2粉体 87.07 wt%,
微米Al2O3粉体 8.58 wt%,
微米石墨粉体 4.35wt%;
(2)混料
将步骤(1)计量好的原料放入球磨罐中,球料比为4∶1,以无水乙醇为湿磨介质,400rpm转速下球磨12小时,使原料混合均匀,分离研磨球体得到混合浆料,将所述浆料置于70℃烘箱中干燥12小时得到混合粉料;
(3)成型
将步骤(2)所得混合粉料倒入压片机模具中,缓慢施加压力到20Mpa,到达预定压力时保持5min,脱模取样即可得到成型块体;
(4)烧结
将步骤(3)所得成型块体置于电阻管式炉内的钼舟中,通入500ml/min的流动氮气20分钟以排尽管内空气,在该流动氩气气氛下升温至1100℃烧结8小时,然后随炉冷却至室温,取出烧结块体破碎研磨即可获得以Zr为溶质组元的λ-(MxTi1-x)3O5粉体。

Claims (7)

1.一种λ-(MxTi1-x)3O5粉体的制备方法,其特征在于,所述λ-(MxTi1-x)3O5粉体是以λ-Ti3O5为基的固溶体结构,金属元素M为溶质组元,x为0.02~0.3,包括以下工艺步骤:
(1)配料
原料为TiO2粉体、碳质还原剂、金属元素M源,按照获得λ-(MxTi1-x)3O5粉体的化学反应式计算各原料配比;
(2)混料
将步骤(1)计量好的原料倒入混料容器中,加入分散介质后,在超声机中超声分散或球磨机中进行球磨分散,得到均匀混合的浆料,将所述浆料干燥后研磨得到混合粉料;
(3)成型
将步骤(2)所得的混合粉料在模具中进行压制成型,得到成型块体;
(4)烧结
将步骤(3)所得成型块体在流动的惰性保护气氛下于900℃~1250℃烧结10分钟~8小时,然后随炉冷却至室温后出炉得到烧结块体,将所述烧结块体研磨破碎后即获得λ-(MxTi1-x)3O5粉体。
2.根据权利要求1所述的制备方法,其特征在于TiO2粉体的相组成为锐钛型、金红石型中的至少一种,金属元素M源为Al、Mg、Y、Zr的氧化物的至少一种。
3.根据权利要求1所述的制备方法,其特征在于所述碳质还原剂选用活性炭粉、炭黑粉、石墨粉、聚乙二醇、葡萄糖、蔗糖中的一种或几种。
4.根据权利要求1所述的制备方法,其特征在于所述分散介质为酒精、丙酮、去离子水中的一种或任几种组成的混合物。
5.根据权利要求1所述的制备方法,混合浆料的干燥温度为60℃~120℃,干燥时间为2小时~12小时。
6.根据权利要求1所述的制备方法,其特征在于所述压制成型的压力为5~60MPa,保压时间为2~20min。
7.根据权利要求1所述的制备方法,其特征在于所述保护气氛为氮气或氩气。
CN201710122163.0A 2017-03-03 2017-03-03 λ-(MxTi1-x)3O5粉体及其制备方法 Active CN107032783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710122163.0A CN107032783B (zh) 2017-03-03 2017-03-03 λ-(MxTi1-x)3O5粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710122163.0A CN107032783B (zh) 2017-03-03 2017-03-03 λ-(MxTi1-x)3O5粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN107032783A CN107032783A (zh) 2017-08-11
CN107032783B true CN107032783B (zh) 2020-07-07

Family

ID=59534092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710122163.0A Active CN107032783B (zh) 2017-03-03 2017-03-03 λ-(MxTi1-x)3O5粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN107032783B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111217390B (zh) * 2020-03-04 2022-04-26 四川大学 一种λ-Ti3O5粉体制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
External stimulation-controllable heat-storage ceramics;Hiroko Tokoyo et al;《Nature Communications》;20150512;p7037 *
Hiroko Tokoyo et al.External stimulation-controllable heat-storage ceramics.《Nature Communications》.2015, *
Masashige Onoda et al.Phase transitions and the doping effect in Ti3O5.《Journal of Physics E:Scientific Instrments》.1998,p7003-7013. *
Phase transitions and the doping effect in Ti3O5;Masashige Onoda et al;《Journal of Physics E:Scientific Instrments》;19981231;p7003-7013 *

Also Published As

Publication number Publication date
CN107032783A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
Kobayashi et al. Densification of LiTi2 (PO4) 3-based solid electrolytes by spark-plasma-sintering
CN107935596A (zh) 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
CN105197952B (zh) 纳米单晶硼化镧的制备及其在电镜灯丝制备中的应用
JP6161467B2 (ja) 固体酸化物型燃料電池用複合酸化物粉末及びその製造方法
CN106994517B (zh) 一种高导热低膨胀W-Cu封装材料的制备方法
CN111793824B (zh) 一种表面修饰高镍正极材料及其制备方法和应用
CN103387422A (zh) 在炭材料表面制备碳化硅/二硅化钼复合涂层的方法
CN106517225B (zh) 一种超细M1-xTixB2粉体的制备方法
CN111039291A (zh) 利用熔盐歧化反应原位制备NbC和/或TaC粉体方法
WO2019227811A1 (zh) 一种超细过渡金属硼化物粉体及其制备方法和应用
CN102417188B (zh) 一种低氧含量亚微米级过渡金属硼化物粉体的制备方法
CN107032783B (zh) λ-(MxTi1-x)3O5粉体及其制备方法
CN113173787B (zh) 一种锆酸钆/钽酸钆复合陶瓷及其制备方法
Vojisavljević et al. Characterization of the Alkoxide-based Sol-gel Derived La 9.33 Si 6 O 26 Powder and Ceramic.
Erol et al. HIPed TiO2 dense pellets with improved photocatalytic performance
CN106187151A (zh) 一种铝钇掺杂氧化锌陶瓷靶材及其制备方法
CN104518210B (zh) 一种复合钛酸锂材料的制备方法
KR102142947B1 (ko) 산화니켈 나노입자의 제조방법 및 이를 이용하여 제조된 산화니켈 나노입자
JP6660776B2 (ja) 窒化タンタル(Ta3N5)の製造方法
CN108584958B (zh) 一种碳化锆纳米粉体的原位合成方法
CN105439162B (zh) 一种粗粒径mo2粉体合成细mb2粉体的制备方法
CN107151000A (zh) 硒化锌空心微米球的制备方法
Jung et al. Synthesis of nanocrystalline yttria powder prepared by a polymer solution route
CN107012476A (zh) 一种复合氧化物的制备方法
JP6161613B2 (ja) 固体酸化物型燃料電池用燃料極材料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant