CN107005960B - 用于无授权频段中的lte操作的信道使用指示和同步 - Google Patents

用于无授权频段中的lte操作的信道使用指示和同步 Download PDF

Info

Publication number
CN107005960B
CN107005960B CN201580063144.4A CN201580063144A CN107005960B CN 107005960 B CN107005960 B CN 107005960B CN 201580063144 A CN201580063144 A CN 201580063144A CN 107005960 B CN107005960 B CN 107005960B
Authority
CN
China
Prior art keywords
lte
enb
wtru
channel
laa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
CN201580063144.4A
Other languages
English (en)
Other versions
CN107005960A (zh
Inventor
P·萨迪吉
J·A·斯特恩-波科维茨
M-i·李
J·P·图尔
M·鲁道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54291636&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN107005960(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Priority to CN202010530521.3A priority Critical patent/CN111836384A/zh
Publication of CN107005960A publication Critical patent/CN107005960A/zh
Application granted granted Critical
Publication of CN107005960B publication Critical patent/CN107005960B/zh
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了用于无授权频谱中的LTE操作LTE‑U的系统、方法和手段。无线发射/接收单元WTRU可以在授权频带上与第一小区建立连接。该WTRU可以接收来自在无授权频带上工作的第二小区的第一下行链路传输。该WTRU可以确定来自在无授权频带上工作的第三小区的同步信号使用一个或多个资源元素被传送。该WTRU可以基于同步信号传输来执行频率和/或定时估计。该WTRU可以围绕与同步信号传输相对应的一个或多个资源元素来执行速率匹配。该WTRU可以通过去映射下行链路传输的符号来围绕所述一个或多个资源元素执行速率匹配。

Description

用于无授权频段中的LTE操作的信道使用指示和同步
相关申请的交叉引用
本申请要求享有2014年9月24日提交的美国临时专利申请62/054,881;2014年11月5日提交的美国临时专利申请62/075,720;以及2015年8月11日提交的美国临时专利申请62/203,734的权益,所述申请的内容在这里引入以作为参考。
背景技术
诸如LTE系统之类的蜂窝系统使用授权频谱。举例来说,运营商可以通过政府拍卖来获取在某个地理区域使用频带中的某个部分来传输和接收蜂窝信号的权利。运营商可以独家使用授权频谱来向其用户提供服务,而无需担心其他通信系统的带内干扰。相比之下,无授权频谱则会保持无人认领,并且可被各种用户使用各种无线电接入技术(RAT)用于各种用途。
发明内容
所公开的是用于无授权频谱(LTE-U)中的LTE操作的系统、方法和手段,其中所述LTE操作可以包括授权和无授权频谱中的载波聚合,例如授权辅助接入(LAA)。LTE-U操作可以通过信道使用指示(例如忙信号)和/或同步(sync)信令而被支持。
举例来说,无线发射/接收单元(WTRU)可以在授权频带上与第一小区建立连接。该WTRU可以接收第一下行链路传输。该第一下行链路传输可以是从在无授权频带上工作的第二小区接收的。该WTRU可以确定源自在无授权频带上工作的第三小区的同步信号传输是用一个或多个资源元素传送的。所述一个或多个资源元素可以对应于源自第二小区的下行链路传输的一个或多个资源块的一部分。该同步信号传输可以包括主同步信号(PSS)、辅同步信号(SSS)、物理广播信道(PBCH)、小区专用参考信号(CRS)、信道状态信息参考信号(CSI-RS)和/或解调参考信号(DMRS)中的一者或多者。
WTRU可以通过在下行链路物理信道上接收下行链路控制信息(DCI)来确定源自在无授权频带上工作的第三小区的同步信号传输是用一个或多个资源元素传送的。该下行链路物理信道可以指示有哪些资源元素被用于同步信号传输。WTRU可以执行频率和/或定时估计。该频率/定时估计可以基于同步信号传输。WTRU可以执行解调和/或资源符号缩放。该解调和/或资源符号缩放可以基于同步信号传输。WTRU可以确定功率偏移。该功率偏移可以介于同步信号传输与一个或多个其他下行链路传输之间。WTRU可以基于该功率偏移来确定第二下行链路传输的功率等级。
WTRU可以围绕与同步信号传输相对应的一个或多个资源元素来执行速率匹配。在接收到来自第二小区的下行链路传输时,WTRU可以围绕一个或多个资源元素来执行速率匹配。WTRU可以通过去映射下行链路传输的符号来围绕一个或多个资源元素执行速率匹配。在去映射过程中,与同步信号传输相对应的一个或多个资源元素可被跳过。WTRU可以在授权频带上接收来自第一小区的配置。该配置可以指示第三小区会使用哪些资源元素来传送同步信号传输。该配置可以是在无线电资源控制(RRC)消息中接收的。
附图说明
图1A是可以实施所公开的一个或多个实施例的例示通信系统的系统图示;
图1B是可以在图1A所示的通信系统内使用的例示无线发射/接收单元(WTRU)的系统图示;
图1C是可以在图1A所示的通信系统内使用的例示无线电接入网络和例示核心网络的系统图示;
图1D是可以在图1A所示的通信系统内使用的另一个例示无线电接入网络和另一个例示核心网络的系统图示;
图1E是可以在图1A所示的通信系统内使用的另一个例示无线电接入网络和另一个例示核心网络的系统图示;
图2是示出了例示的授权辅助接入部署的图示;
图3是示出了包括初始忙信号的例示的eNB时间线的图示;
图4是示出了在忙信号与数据传输之间共享的25个物理资源块(PRB)的示例的图示;
图5是示出了在忙信号与数据传输之间共享的25个物理资源块(PRB)的示例的图示;
图6是示出了正在进行的忙信号和数据传输的示例的图示。
具体实施方式
现在将参考不同附图来描述关于说明性实施例的具体实施方式。虽然本具体实施方式部分提供了关于可能的实施方式的具体示例,然而应该指出的是,这些细节应该是例示性的,并且不会对本申请的范围构成限制。
图1A是可以实施所公开的一个或多个实施例的例通信系统100的图示。通信系统100可以是为多个无线用户提供语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100通过共享包括无线带宽在内的系统资源来允许多个无线用户访问此类内容。作为示例,通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)例如UE 102a、102b、102c和/或102d(其通常可被统称为WTRU 102),无线电接入网络(RAN)103/104/105,核心网络106/107/109,公共交换电话网络(PSTN)108,因特网110以及其他网络112,但是应该了解,所公开的实施例设想了任意数量的WTRU、基站、网络和/或网络部件。每一个WTRU102a、102b、102c、102d可以是被配置成在无线环境中工作和/或通信的任何类型的设备。例如,WTRU 102a、102b、102c、102d可以被配置成发射和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、消费类电子设备等等。
通信系统100还可以包括基站114a和基站114b。每一个基站114a、114b可以是被配置成通过与WTRU 102a、102b、102c、102d中的至少一个无线对接来促使接入一个或多个通信网络的任何类型的设备,所述网络可以例如是核心网络106/107/109、因特网110和/或网络112。作为示例,基站114a、114b可以是基地收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、站点控制器、接入点(AP)、无线路由器等等。虽然每一个基站114a、114b都被描述成是单个部件,但是应该了解,基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 103/104/105的一部分,并且所述RAN103/104/105还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可以被配置成在名为小区(未显示)的特定地理区域内发射和/或接收无线信号。小区可被进一步划分成小区扇区。例如,与基站114a关联的小区可分为三个扇区。基站114a可以包括多个(例如三个)收发信机,例如,每一个收发信机对应于小区的一个扇区。基站114a可以使用多输入多输出(MIMO)技术,由此可以为小区的每个扇区使用多个收发信机。
基站114a、114b可以通过空中接口115/116/117来与一个或多个WTRU102a、102b、102c、102d进行通信,该空中接口115/116/117可以是任何适当的无线通信链路(例如射频(RF)、微波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口115/116/117可以用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信系统100可以是多址接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。举例来说,RAN103/104/105中的基站114a与WTRU 102a、102b、102c可以实施诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,并且该技术可以使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可以包括诸如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA则可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。
基站114a与WTRU 102a、102b、102c可以实施演进型UMTS陆地无线电接入(E-UTRA)之类的无线电技术,该技术可以使用长期演进(LTE)和/或先进LTE(LTE-A)来建立空中接口115/116/117。
基站114a与WTRU 102a、102b、102c可以实施IEEE 802.16(全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM增强数据速率演进(EDGE)、GSM EDGE(GERAN)等无线电接入技术。
作为示例,图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B(eNB)或接入点,并且可以使用任何适当的RAT来促成局部区域中的无线连接,例如营业场所、住宅、交通工具、校园等等。基站114b与WTRU 102c、102d可以通过实施诸如IEEE 802.11之类的无线电技术来建立无线局域网(WLAN)。基站114b与WTRU 102c、102d可以通过实施诸如IEEE802.15之类的无线电技术来建立无线个域网(WPAN)。基站114b和WTRU 102c、102d可以通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直接连接到因特网110。由此,基站114b可以不需要经由核心网络106/107/109来接入因特网110。
RAN 103/104/105可以与核心网络106/107/109通信,所述核心网络106/107/109可以是被配置成向一个或多个WTRU 102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议的语音(VoIP)服务的任何类型的网络。例如,核心网络106/107/109可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或执行用户验证之类的高级安全功能。虽然在图1A中没有显示,但是应该了解,RAN103/104/105和/或核心网络106/107/109可以直接或间接地和其他那些与RAN103/104/105使用相同RAT或不同RAT的RAN进行通信。例如,除了与使用E-UTRA无线电技术的RAN103/104/105连接之外,核心网络106/107/109还可以与使用GSM无线电技术的别的RAN(未显示)通信。
核心网络106/107/109还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用公共通信协议的全球性互联计算机网络设备系统,所述协议可以是TCP/IP互连网协议族中的传输控制协议(TCP)、用户数据报协议(UDP)和网际协议(IP)。网络112可以包括由其他服务供应商拥有和/或运营的有线或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个核心网络,所述一个或多个RAN可以与RAN 103/104/105使用相同RAT或不同RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力,例如,WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机。例如,图1A所示的WTRU 102c可以被配置成与使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802无线电技术的基站114b通信。
图1B是例示WTRU 102的系统图示。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136以及其他周边设备138。应该了解的是,在保持符合实施例的同时,WTRU 102还可以包括前述部件的任何子组合。基站114a和114b和/或基站114a和114b所代表的节点(例如但不限于收发信台(BTS)、节点B、站点控制器、接入点(AP)、家庭节点B、演进型家庭节点B(e节点B)、家庭演进型节点B(HeNB或He节点B)、家庭演进型节点B网关以及代理节点)可以包括在图1B中描绘以及在这里描述的一些或所有部件。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)、状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成是独立组件,但是应该了解,处理器118和收发信机120可以集成在一个电子组件或芯片中。
发射/接收部件122可以被配置成通过空中接口115/116/117来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,发射/接收部件122可以是(a)被配置成发射和/或接收RF信号的天线,(b)被配置成发射和/或接收IR、UV或可见光信号的发射器/检测器,(c)被配置成发射和接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
此外,虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU 102可以包括任何数量的发射/接收部件122。更具体地说,WTRU 102可以使用MIMO技术。WTRU 102可以包括两个或多个通过空中接口115/116/117来发射和接收无线电信号的发射/接收部件122(例如多个天线)。
收发信机120可以被配置成对发射/接收部件122将要发射的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助诸如UTRA和IEEE 802.11之类的多种RAT来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合至扬声器/麦克风124、键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从任何适当的存储器、例如不可移除存储器130和/或可移除存储器132中存取信息,以及将信息存入这些存储器。所述不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。处理器118可以从那些并非实际位于WTRU 102的存储器访问信息,以及将数据存入这些存储器,其中举例来说,所述存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可以被配置分发和/或控制用于WTRU 102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当的设备。举例来说,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池、燃料电池等等。
处理器118还可以与GPS芯片组136耦合,该芯片组136可以被配置成提供与WTRU102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以通过空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或多个附近基站接收的信号定时来确定其位置。应该了解的是,WTRU 102可以借助任何适当的定位实施来获取位置信息。
处理器118还可以耦合到其他外围设备138,这可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,外围设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片和视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、蓝牙模块、调频(FM)无线电单元、数字音乐播放器、视频游戏机模块、因特网浏览器等等。
图1C是RAN 103和核心网络106的系统图示的示例。如上所述,RAN103可以使用E-UTRA无线电技术并通过空中接口115来与WTRU 102a、102b、102c进行通信。RAN 103还可以与核心网络106通信。如图1C所示,RAN 103可以包括节点B 140a、140b、140c,其中每一个节点B都可以包括通过空中接口115与WTRU 102a、102b、102c通信的一个或多个收发信机。节点B 140a、140b、140c中的每一个都可以关联于RAN 103内的特定小区(未显示)。RAN 103还可以包括RNC 142a、142b。应该了解的是,RAN103可以包括任何数量的节点B和RNC。
如图1C所示,节点B 140a、140b可以与RNC 142a进行通信。此外,节点B 140c还可以与RNC 142b进行通信。节点B 140a、140b、140c可以经由Iub接口来与相应的RNC 142a、142b进行通信。RNC 142a、142b可以经由Iur接口来彼此进行通信。每一个RNC 142a、142b都可以被配置成控制与之相连的相应节点B 140a、140b、140c。另外,每一个RNC 142a、142b都可被配置成执行或支持其他功能,例如外环功率控制、负载控制、许可控制、分组调度、切换控制、宏分集、安全功能、数据加密等等。
图1C所示的核心网络106可以包括媒体网关(MGW)144、移动交换中心(MSC)146、服务GPRS支持节点(SGSN)148、和/或网关GPRS支持节点(GGSN)150。虽然前述每个部件都被描述成是核心网络106的一部分,但是应该了解,核心网络运营商之外的其他实体也可以拥有和/或运营这其中的任一部件。
RAN 103中的RNC 142a可以经由IuCS接口连接到核心网络106中的MSC 146。MSC146可以连接到MGW 144。MSC 146和MGW 144可以为WTRU 102a、102b、102c提供针对PSTN108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统陆线通信设备间的通信。
RAN 103中的RNC 142a还可以经由IuPS接口连接到核心网络106中的SGSN 148。所述SGSN 148可以连接到GGSN 150。SGSN 148和GGSN 150可以为WTRU 102a、102b、102c提供针对因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
如上所述,核心网络106还可以连接到网络112,该网络112可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
图1D是RAN 104和核心网络107的系统图示的示例。如上所述,RAN104可以使用E-UTRA无线电技术并通过空中接口116来与WTRU 102a、102b、102c进行通信。此外,RAN 104还可以与核心网络107通信。
RAN 104可以包括e节点B 160a、160b、160c,但是应该了解,RAN 104可以包括任何数量的e节点B。每一个e节点B 160a、160b、160c可以包括一个或多个收发信机,用于通过空中接口116来与WTRU 102a、102b、102c通信。e节点B 160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B 160a可以使用多个天线来向WTRU 102a发射无线信号,以及接收来自WTRU 102a的无线信号。
每一个e节点B 160a、160b、160c可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、上行链路(UL)和/或下行链路(DL)中的用户调度等等。如图1D所示,e节点B 160a、160b、160c可以通过X2接口彼此进行通信。
图1D所示的核心网络107可以包括移动性管理网关(MME)162、服务网关164以及分组数据网络(PDN)网关166。虽然上述每一个部件都被描述成是核心网络107的一部分,但是应该了解,核心网络运营商之外的其他实体可以拥有和/或运营这其中的任一部件。
MME 162可以经由S1接口来与RAN 104中的每一个e节点B 160a、160b、160c相连,并且可以充当控制节点。例如,MME 162可以负责验证WTRU 102a、102b、102c的用户,承载激活/去激活,在WTRU 102a、102b、102c的初始附着过程中选择特定服务网关等等。所述MME162还可以提供控制平面功能,以便在RAN 104与使用了GSM或WCDMA之类的其他无线电技术的其他RAN(未显示)之间进行切换。
服务网关164可以经由S1接口连接到RAN 104中的每一个e节点B160a、160b、160c。该服务网关164通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。服务网关164还可以执行其他功能,例如在e节点B间的切换过程中锚定用户面,在下行链路数据可供WTRU 102a、102b、102c使用时触发寻呼,管理和存储WTRU 102a、102b、102c的上下文等等。
服务网关164还可以连接到PDN网关166,该PDN网关166可以为WTRU 102a、102b、102c提供针对诸如因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
核心网络107可以促成与其他网络的通信。例如,核心网络106可以为WTRU 102a、102b、102c提供针对PSTN 108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统陆线通信设备之间的通信。作为示例,核心网络107可以包括IP网关(例如IP多媒体子系统(IMS)服务器)或与之通信,其中所述IP网关充当了核心网络107与PSTN 108之间的接口。此外,核心网络107还可以为WTRU 102a、102b、102c提供针对网络112的接入,其中该网络112可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
图1E是RAN 105和核心网络109的系统图示的示例。RAN 105可以是通过使用IEEE802.16无线电技术而在空中接口117上与WTRU 102a、102b、102c通信的接入服务网络(ASN)。如以下进一步论述的那样,WTRU 102a、102b、102c,RAN 104以及核心网络109的不同功能实体之间的通信链路可被定义成参考点。
如图1E所示,RAN 105可以包括基站180a、180b、180c以及ASN网关182,但是应该了解,RAN 105可以包括任何数量的基站及ASN网关。每一个基站180a、180b、180c都可以关联于RAN 105中的特定小区(未显示),并且每个基站都可以包括一个或多个收发信机,以便通过空中接口117来与WTRU 102a、102b、102c进行通信。基站180a、180b、180c可以实施MIMO技术。由此,举例来说,基站180a可以使用多个天线来向WTRU 102a发射无线信号,以及接收来自WTRU 102a的无线信号。基站180a、180b、180c还可以提供移动性管理功能,例如切换触发、隧道建立、无线电资源管理、业务量分类、服务质量(QoS)策略实施等等。ASN网关182可以充当业务量聚集点,并且可以负责实施寻呼、订户简档缓存、针对核心网络109的路由等等。
WTRU 102a、102b、102c与RAN 105之间的空中接口117可被定义成是实施IEEE802.16规范的R1参考点。另外,每一个WTRU 102a、102b、102c可以与核心网络109建立逻辑接口(未显示)。WTRU 102a、102b、102c与核心网络109之间的逻辑接口可被定义成R2参考点,该参考点可以用于认证、授权、IP主机配置管理和/或移动性管理。
每一个基站180a、180b、180c之间的通信链路可被定义成R8参考点,该参考点包含了用于促成WTRU切换以及基站之间的数据传送的协议。基站180a、180b、180c与ASN网关182之间的通信链路可被定义成R6参考点。所述R6参考点可以包括用于促成基于与每一个WTRU102a、102b、180c相关联的移动性事件的移动性管理。
如图1E所示,RAN 105可以连接到核心网络109。RAN 105与核心网络109之间的通信链路可以被定义成R3参考点,作为示例,该参考点包含了用于促成数据传送和移动性管理能力的协议。核心网络109可以包括移动IP家用代理(MIP-HA)184、认证授权记帐(AAA)服务器186以及网关188。虽然前述每个部件都被描述成是核心网络109的一部分,但是应该了解,核心网络运营商以外的实体也可以拥有和/或运营这其中的任一部件。
MIP-HA可以负责IP地址管理,并且可以允许WTRU 102a、102b、102c在不同的ASN和/或不同的核心网络之间漫游。MIP-HA 184可以为WTRU102a、102b、102c提供针对因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。AAA服务器186可以负责用户验证以及支持用户服务。网关188可以促成与其他网络的互通。例如,网关188可以为WTRU 102a、102b、102c提供对于PSTN 108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统陆线通信设备之间的通信。另外,网关188还可以为WTRU 102a、102b、102c提供针对网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
虽然在图1E中没有显示,但是应该了解,RAN 105可以连接到其他ASN,并且核心网络109可以连接到其他核心网络。RAN 105与其他ASN之间的通信链路可被定义成R4参考点,该参考点可以包括用于协调WTRU 102a、102b、102c在RAN 105与其他ASN之间的移动的协议。核心网络109与其他核心网络之间的通信链路可以被定义成R5参考点,该参考点可以包括用于促成归属核心网络与被访核心网络之间互通的协议。
授权频谱的使用可以包括一个或多个约束以及不断增长的通信需求(例如针对宽带数据)。无授权频谱可以用于非蜂窝服务和/或应用,例如Wi-Fi。无授权频谱的一部分可被蜂窝运营商使用(例如克服一个或多个约束和/或满足通信要求)。无授权频谱(例如无授权频谱的一个或多个频带)可以用于一个或多个用途。无授权频谱可以被一个或多个用户(例如蜂窝运营商)使用。所述一个或多个用途以及一个或多个用户可以使用多种无线电接入技术(RAT)。如果将无授权频谱用于一个或多个用途和/或被一个或多个用户使用,那么有可能会导致发生冲突。
无授权频谱中的LTE操作可被称为LTE无授权操作或LTE-U。LTE-U是可以单独实施的(例如在没有来自在授权频带中工作的运营商的支持的情况下)。LTE-U可以与LTE(例如授权频谱中的LTE操作)和/或其他技术结合实施。
将LTE(或别的授权蜂窝技术)扩展到无授权频谱中的处理可在各种部署场景中实施。举例来说,一种部署场景可以使用载波聚合。作为示例,载波聚合可以用于聚合主(例如授权)载波和辅(例如无授权)载波。载波聚合部署场景可被称为针对无授权频谱的“授权辅助接入”(LAA)。
图2是示出了例示的授权辅助接入部署的图示。WTRU 202可以与主分量载波210(例如主小区PCell)以及一个或多个辅分量载波2121(例如辅小区SCell)建立连接。WTRU202可以接收来自一个或多个辅分量载波212的一个或多个下行链路传输208。在LAA中,主分量载波或服务小区210可以是授权载波。例如,主分量载波210可以使用授权频谱(例如授权频带)。一个或多个辅分量载波212可以包括一个或多个无授权载波。例如,一个或多个辅分量载波212中的一个辅分量载波可以使用无授权频谱(例如无授权频带)。PCell 210和一个或多个SCell 212可被聚合。例如,一个或多个无授权Scell与零个或多个授权SCell可被聚合在一起,这其中既可以聚合PCell210,也可以不聚合PCell 210。另举一例,PCell 210和一个或多个Scell 212可以属于一个eNB。
如图2所示,WTRU 204可以与主分量载波218(例如主小区PCell)以及一个或多个辅分量载波220(例如辅小区SCell)建立连接。WTRU 204可以接收来自一个或多个辅分量载波220的下行链路和上行链路传输216。在LAA中,主分量载波或服务小区218可以是授权载波。例如,主分量载波218可以使用授权频谱(例如授权频带)。一个或多个辅分量载波220可以包括一个或多个无授权载波。例如,所述一个或多个辅分量载波220中的一个辅分量载波可以使用无授权频谱(例如无授权频带)。PCell 218和SCell 220可被聚合。例如,一个或多个无授权SCell与零个或多个授权SCell可被聚合在一起,这其中既可以聚合也可以不聚合PCell 218。另举一例,PCell 218与一个或多个SCell 220可以属于一个eNB。
用于LTE-U操作的部署场景可以包括双连接。作为示例,在一个或多个无授权SCell与授权Pcell属于不同eNB的时候可以使用双连接。
考虑到无授权频谱是公众的共享资源,在无授权频谱中部署LTE操作可以解决LTE与其他无授权技术(例如Wi-Fi)的共存性和/或与一个或多个其他LTE运营商的共存性。例如,无授权频谱中的LTE部署可以尝试最小化干扰和/或在无授权频谱的多个用户之间提供公平性。无授权频谱中的LTE部署可以包括一个或多个共存机制(例如先听后说(LBT)和共存间隙)。
在LBT共存机制中,系统节点可以侦听信道(例如具有某个中心频率和带宽的频带)。系统节点可以包括接入点(AP)、e节点B(eNB)、用户设备(UE)、无线发射接收单元(WTRU)等等。系统节点可以确定信道(例如该信道的一部分)是否正被使用。系统节点可以在该信道(例如该信道的一部分)上执行传输之前确定该信道是否正被使用。系统节点可以执行侦听过程来确定信道是否处于使用之中。该侦听过程可以包括执行一个或多个测量。所述一个或多个测量可以包括测量在该信道中检测到的能量的量。
在共存间隙机制中,系统节点可以在传输中提供一个或多个间隙。该系统节点可以在信道或是信道的一部分上进行传输。该传输中的一个或多个间隙可以允许其他潜在用户确定该信号或者该信道的一部分是可以自由使用的(例如全部或是一部分)。
LTE-U是可以在与LTE结合或者不与之结合的情况下实施的。LTE-U可以是在具有或者不具有聚合和/或双连接的情况下实施的。LTE-U是可以用共存机制实施的。
在LTE-U部署实施一种或多种共存机制的时候,这时将会导致产生一个或多个传输、接收和/或场景问题。举例来说,LTE与其他技术(例如Wi-Fi)之间的一个或多个传输间隙和/或空中接口差异可能会导致产生一个或多个技术问题。
无授权频带(例如信道)有可能介于LTE授权频带边界之间。无授权频带或无授权频带的一部分有可能会变成空闲状态(例如未使用)。当无授权频带或无授权频带的一部分空闲时,LTE系统可以使用所述无授权频带或是所述无授权频带的所述部分。LTE系统可以指示(例如为了确保WiFi检测到LTE信道使用)无授权频带的使用情况(作为示例,由此WiFi不会在LTE系统使用无授权频带的时候在该无授权频带上进行传输)。
LTE系统可以处于静默(例如在其没有用于数据的信道的时候)。一个或多个WTRU可以使用同步和/或参考信号传输来执行同步。该同步和/或参考信号传输在某些时段中是可用的,并且在其他时段中不会使用同步和/或参考信号传输(举例来说,有可能没有LTE传输/有可能存在静默时段)
在这里,一个或多个术语和短语是可以交换使用的。举例来说,Wi-Fi、WiFi和Wifi是可以交换使用的;系统和节点是可以交换使用的。eNB、小区、Scell和Pcell是可以交换使用的。无授权、免授权(LE)、LTE-U以及LAA是可以交换使用的。工作是可以与发射和/或接收交换使用的。分量载波是可以与服务小区交换使用的。术语信道、频率信道、无线信道、LE信道以及频带是可以交换使用的。接入信道是可以与使用信道以及在信道上发射和/或接收交换使用的。信道和LTE信道是可以交换使用的。信道和信号是可以交换使用的。术语数据/控制是可以与数据和/或控制信号和/或信道交换使用的。数据/控制是可以与LTE数据/控制、数据/控制以及数据/控制信道和/或信号交换使用的。eNB和LTE-U eNB是可以交换使用的。为WTRU描述的示例可以由eNB或其他节点执行和/或适用于eNB或其他节点的。同样,与UL接入或UL传输相关的示例同样适用于DL接入和/或下行链路传输。频带、带宽和/或信道是可以交换使用的。
LAA小区或SCell可以包括可以使用无授权频谱(例如频带)或者在其中工作的小区或SCell。LAA小区或SCell可以与相应的PCell相关联。举例来说,LAA小区或SCell可以与PCell聚合。PCell可以使用授权频谱或者在其中工作。LAA SCell可被配置用于上行链路和/或下行链路操作。在一些示例中,LAA SCell可以在(例如仅仅在)下行链路中工作,但是不会被用在上行链路中。
无授权信道或LAA信道可以包括无授权频谱中的频带。WTRU和/或eNB可以将LAA信道用于数据,例如DL和/或UL数据。
LTE-U频带(例如信道)可以用授权辅助的方式使用。例如,LTE-U频带可以被用作LAA SCell或者供其使用。LAA SCell可以支持上行链路传输。在授权信道中,LTE-U频带可以在没有来自PCell的协助的情况下被使用。LTE-U小区(例如LTE-U PCell)可以支持UL和/或DL传输。
信道可以包括LTE信道或信号(例如上行链路或下行链路物理信道或信号)。下行链路信道或信号可以包括PSS、SSS、PBCH、PDCCH、EPDCCH和/或PDSCH。上行链路信道或信号可以包括PRACH、PUCCH、SRS和/或PUSCH。信道可以包括频带。信道可以包括一定频谱量。所述一定频谱量可以包括中心和/或载波频率和带宽。授权和/或无授权频谱可以包括一个或多个有可能重叠的信道。控制可以包括关于所述一个或多个信道的同步。
LTE-U(例如LAA)eNB可以包括可以发送和/或接收一个或多个LTE信道(例如物理信道)和/或信号的eNB或小区。LTE-U eNB可以在免授权(LE)频带中工作(例如发射和/或接收信号)。LTE-U eNB可以在授权频带和/或LE频带中发射和/或接收一个或多个LTE信道和/或信号。一个或多个其它无线接入技术(RAT)(例如Wi-Fi)可以在LE频带中工作。一个或多个其他LTE-U eNB和/或一个或多个WTRU可以在LE频带中工作。
信道使用指示和/或同步(sync)信号可以支持LTE-U操作。该信道使用指示可以包括忙信号。
忙信号可用于获取(例如保留和/或维护)用于LTE-U操作的无授权信道。忙信号初始可以是在无授权信道使用表明该信道将被eNB和/或WTRU使用的时候发送的。在信道使用开端之前或接近所述开端发送的忙信号可被称为初始忙信号。作为示例,在无授权信道正被使用的时候,通过在预定间隔上发射忙信号,可以使用所述忙信号来指示该信道正被使用。在信道使用期间发送和/或在信道使用期间周期性发送的用于指示信道使用将会继续的忙信号可被称为进行中(ongoing)忙信号。忙信号可以用同步或异步的方式使用。LTE类型的信号可作为忙信号来发射。
忙信号可以基于以下的一项或多项来配置(例如适配和/或部署):静态条件,动态可变条件,使用资源分配,使用并发资源(例如PRB)共享,和/或致使可以在不同用户之间发送一个或多个忙信号传输。所述静态和/或动态可变条件可以包括用户之间的信道重叠。一个或多个资源分配可以包括带宽分配和/或一个或多个物理资源块(PRB)分配。忙信号可以是与一个或多个数据和/或控制信号一起发送的。可供忙信号、数据和/或控制信号使用的一个或多个资源(例如PRB)是可以动态改变的。忙信号可以指示信道使用信息。
同步信号可以用于在用于LTE-U操作的WTRU与eNB之间获取和/或保持同步。LTE类型的信号可以作为LTE-U同步信号来传送。同步信号可以是基于以下的一项或多项而被配置(例如适配和/或部署)的:静态条件,动态可变条件,使用资源分配,和/或使用时间和/或频率中的资源共享。在一个资源集合中可以(例如同时)提供来自不同eNB的同步信号。来自不同的eNB的同步信号可以是在相同的时隙和/或正交频分复用(OFDM)符号中提供的。同步信号可以在时间和/或频率上扩展(例如用于减小干扰)。同步信号可被执行速率匹配。同步信号可以包括小区专用和/或WTRU专用配置。同步信号可以是与一个或多个数据和/或控制信号一起发送的。可供同步信号、忙信号、数据和/或控制信号使用的一个或多个资源(例如PRB)是可以动态改变的。同步信号传输(例如指示)可以被提供盲检测和/或没有盲检测。举例来说,同步信号传输可以用一个或多个图案(pattern)和/或隐性指示来发送。同步信号功率偏移可被提供。该同步信号功率偏移可以指示同步信号与一个或多个其他信号(例如数据信号)之间的功率偏移。
信道使用指示(例如忙信号)可以实施LTE-U操作。例如,eNB(例如LTE-U eNB)可以在某个时段使用某个频带(例如在其上传输)。该eNB可以在其他时段中腾出该频带(例如停止使用该频带或者停止在该频带上传输)。在eNB使用或可以使用该信道的时段中,eNB可以尝试阻止其他设备(例如AP、其他eNB、WTRU等等)使用该频带。eNB可以通过阻止其他设备使用该频带来减小干扰。举例来说,处于eNB附近的其他设备(例如AP、其他eNB、WTRU等等)有可能会在eNB的接收机上产生干扰。
无授权带宽中的LTE操作可能与其他RAT的操作不一致。例如,在腾出信道之前,Wi-Fi系统会使用整个频带(例如20或22MHz信道)。使用共存技术(例如LBT)的Wi-Fi系统可能希望其他系统如Wi-Fi系统那样运行(例如使用部分、全部信道或者不使用信道)。部署LBT的Wi-Fi系统可以在小时间窗口(例如4微秒和/或20微秒)中执行能量检测。部署LBT的Wi-Fi系统可以确定频带是否可以自由使用。该Wi-Fi系统可以通过在小时间窗口中执行能量检测来确定频带是否可自由使用。当Wi-Fi系统确定该频带可自由使用时,所述Wi-Fi系统可以确定使用该频带。
LTE系统可以使用比RAT(例如Wi-Fi)LBT测量窗口更大的时间窗口而在无授权频带中工作。举例来说,LTE子帧可以是1毫秒。作为示例,LTE系统工作带宽(BW)可以是5、10或20MHz。LTE系统可以使用BW的一部分和/或可以使用处于在时间窗口的不同部分之中的BW的不同部分。举例来说,LTE传输可以用动态可变的时间-频率资源来执行。作为示例,PDSCH传输可以跨越一个或多个资源块(RB),其中所述资源块可以跨越全部系统带宽或是其一部分。LTE传输可以在整个子帧上执行,和/或可以使用子帧的符号(例如OFDM符号)的子集来执行。一个或多个参考信号(例如小区专用参考信号(CRS))可以跨越BW(例如整个BW)。一个或多个参考信号可以存在于子帧的符号子集之中和/或系统带宽上的子载波子集之中。
LTE传输可以在频率和/或时间中留下一个或多个间隙和/或孔洞。别的用户和/或系统(例如Wi-Fi系统)可以将一个或多个间隙和/或孔洞解释成是表明正被LTE-U eNB使用的频带是空闲的。被解释成空闲的频带未必是空闲的。
通过允许节点(例如WTR、eNB等等)宣布信道使用情况,可以使用信道使用指示(例如忙信号)来促成LTE-U操作。举例来说,eNB(例如LTE-U eNB)和/或WTRU可以传送信号(例如信道使用指示符或忙信号)。该信号可以在全部频带或是频带的一部分中传送。该信号可以在某个时段中被传送。该信号可以指示频带繁忙。该信号可以被所述频带的一个或多个潜在用户接收。作为示例,当所述频带处于使用(例如在整个信道的或是信道的一部分中都在进行传输和/或接收)的时候,当计划使用所述频带(例如计划进行传输和/或接收)的时候,和/或当保留所述频带以供eNB和/或一个或多个WTRU使用(例如预定和/或保留用于当前和/或未来的传输和/或接收)的时候,该信号可以指示频带繁忙。
作为示例,忙信号可被(作为示例,或者旨在被)频带的用户或潜在用户接收、测量、解码、读取、检测和/或感测。在该频带中工作的与发射忙信号的设备(例如eNB或WTRU)范围邻近的设备可以将盲信号解释成是表明该信道正被用于LTE-U传输的指示。当设备接收、测量、解码、读取、检测和/或感测忙信号时,该设备可以确定不尝试接入该频带(例如在其上传输或者使用该频带)。举例来说,LTE-U设备(例如LTE-U eNB或LTE-U WTRU)可以与发射忙信号的设备同时(例如并发地)接入信道。
忙信号可以具有这里描述的一个或多个特性。忙信号可以包括初始忙信号和/或进行中忙信号。当设备接入(例如初始使用)和/或预定接入频带时,该设备可以发送初始忙信号。作为示例,初始忙信号可以是在初始确定频带空闲的之后发送的。当设备使用频带和/或预定保持该频带时,这时可以发送进行中忙信号。初始忙信号的一个或多个特性可以与进行中忙信号的一个或多个特性相对应。
第一eNB发送的忙信号对于一个或多个WTRU和/或第二eNB来说可以是透明的。所述一个或多个WTRU和/或第二eNB不会知悉(例如被告知)所述忙信号的内容和/或特性的一个或多个。
当设备获取和/或保持频带时,该设备可以采取行动来阻止(例如具有阻止意图)一个或多个其他设备使用该频带。获取和/或保持频带的处理可以包括发送一个表明该信道具有和/或可能具有以下的一种或多种状态的指示:正被使用,预定将被使用或是保留以供使用。获取和/或保持频带的处理可以包括使用所述频带或者在该频带(例如频率信道)上进行传输。设备可以获取和/或保持一个或多个频带。所述设备可以发送一个或多个信号和/或一个或多个忙信号。所述一个或多个频带和/或信号可以包括一个或多个LTE信道和/或信号。
用于频带(例如频率信道)的活动时间可以包括可以在该频带上和/或使用该频带发射一个或多个信号(例如忙信号)的时间。eNB可以在活动时间中在频带上执行传输。
作为示例,可以向WTRU指示LTE-U小区是否处于活动状态。例如,LTE-U小区是否处于活动状态可以通过LTE-U小区和/或关联或聚合PCell上的物理层信令和/或通过忙信号的存在来指示。当LTE-U小区具有频带和/或使用或预定使用频带时,LTE-U小区可以处于活动状态。在一个示例中,指示可以表明(例如显性表明)活动时间的一个或多个方面。所述活动时间的一个或多个方面可以包括活动时间的开始,进行中的活动时间,和/或活动时间结束。忙信号可以指示LTE-U小区是否是活动的。
活动时间可以被别的时间取代(作为示例,该时间可以是或者不是特定或某时间)。举例来说,LTE-U eNB可以按需激活LTE-U小区(作为示例,而不是指定用于LTE-U小区的特定活动时间)。LTE-U eNB可以基于一个或多个第一触发标准来按需激活LTE-U小区。LTE-U eNB可以基于一个或多个第二触发标准来去激活LTE-U小区。LTE-U小区处于活动的时间量可以基于一个或多个标准而改变(例如观察到的标准)。在LTE-U小区处于活动的期间的忙信号可以指示LTE-U小区处于活动的时间量。
eNB有可能想要在无授权频带(例如信道)上执行传输和/或接收。eNB可以监视无授权频带。所述eNB可以在无授权信道变得可用之前监视无授权信道。一个或多个设备(例如其他LTE-U eNB、WTRU和/或WiFi站或AP之类的用户)可以争夺使用无授权频带。LTE-UeNB可以确定(例如观察到)无授权信道频带可用(例如无授权频带显现出是空闲的)。当LTE-U eNB确定无授权频带可用时,LTE-U eNB可以(例如快速)获取所述无授权频带。获取无授权频带的处理可以包括使用无授权频带和/或指示所述无授权频带繁忙。LTE-U eNB可以通过使用初始忙信号来指示无授权频带繁忙。
举例来说,LTE-U eNB可以发送带有用于使用无授权频带操作和/或在该频带上操作的同步和/或异步定时(例如DL定时)的初始忙信号。eNB可以在与LTE时间结构和/或LTE时间边界(例如LTE符号、时隙(TS)、子帧(SF)和/或无线电帧的开端)相对应的时间获取频带。
忙信号定时可以基于(例如取决于)是否可以使用同步和/或异步定时。eNB可以将DL定时用于传输和/或用作频带上的传输的参考。eNB可以将DL定时用于频带上的接收。DL定时可以包括与别的传输和/或定时相对的同步定时和/或异步定时。举例来说,其他传输和/或定时可以包括PCell的一个或多个DL传输和/或定时。PCell可以包括相关联的或聚合的PCell。作为示例,其他传输和/或定时可以包括该频带的先前活动时间的一个或多个DL传输和/或定时。
在使用同步定时的情况下,用于LTE-U频带的LTE时间结构和/或边界可以对应于相关联的或聚合的PCell的时间结构和/或边界。用于LTE-U频带的LTE时间结构和/或边界可以对应于该频带的先前活动时间(例如eNB在该频带上执行的先前的和/或DL传输)的时间结构和/或边界。在使用异步定时的情况下,用于LTE-U频带的LTE时间结构和/或边界可以不对应于相关联的或聚合的PCell的时间结构和/或边界。在使用异步定时的情况下,用于LTE-U频带的LTE时间结构和/或边界可以不对应于该频带的先前活动时间的时间结构和/或边界。
LTE-U eNB可以使用同步(Sync)DL定时。同步DL定时可以包括这样一种场景,其中当前活动时间的DL定时可以与先前活动时间中的定时和/或PCell定时相校准(例如与之对应或同步)。eNB可以等待下一个符号、TS、SF和/或帧的开端,以便传送一个或多个LTE信道(例如同步、数据和/或控制信道)。下一个符号、TS、SF和/或帧的开端可以对应于先前的活动时间和/或PCell定时。所述一个或多个LTE信道可以预定供一个或多个WTRU进行接收(例如被发送到所述WTRU)。在等待时间中,eNB可以发射忙信号(例如初始忙信号)。所述忙信号可以向一个或多个用户(例如潜在用户)指示一个或多个LTE信道有可能不是空闲的。
图3显示了例示的LAA eNB时间线。例示的LAA eNB时间线可以包括子帧n 302的开端。例示的LAA eNB时间线可以包括LAA eNB首次可观察到信道空闲的第一时间304。该例示的LAA eNB时间线可以包括LAA eNB观察到所述信道空闲了一个时段的第二时间。该时段可以包括信道清除时间帧(例如34毫秒)。eNB可以发射初始忙信号。所述初始忙信号可以保持该信道至下一个子帧边界。例示的LAA eNB时间线可以包括处于子帧n的末端以及下一个子帧的开端的第三时间308。所述下一个子帧可以用子帧n+1表示。在308,LAA eNB可以停止发射初始忙信号和/或可以开始发射数据和/或控制信号。
LTE-U eNB可以使用异步(Async)DL定时。异步DL定时可以对应于这样一种场景,其中当前活动时间中的DL定时可能没有与先前活动时间中的定时和/或PCell定时相校准(例如与之对应或同步)。用于LTE DL传输的开始时间可以始于eNB确定信道空闲的时候。该LTE DL传输的开始时间可以包括用于DL LTE信道传输的第一子帧的开端。LTE DL传输的开始时间可以包括定时偏移。使用异步DL定时的LTE-U eNB可以发射初始忙信号。作为示例,当定时偏移很小时(例如为零和/或低于最低的WiFi空闲信道评估(CCA)周期),LTE-U eNB可能不会使用和/或发射初始忙信号。当定时偏移很小时,一个或多个潜在用户在LTE-UeNB开始一个或多个LTE信道的DL传输之前是不会看到所述信道空闲的。
eNB和/或WTRU可以基于一个或多个eNB和/或WTRU能力来使用同步和/或异步DL定时。对于同步和/或异步DL定时的使用可以是可配置的。eNB可以通知WTRU(例如借助于经由相关联的或聚合的PCell传递的信令,比方说无线电资源控制(RRC)信令)是否可以使用同步和/或异步DL定时和/或可以使用何种参考定时。参考定时可以包括PCell定时和/或LTE-U小区的先前活动时间定时。
参考定时可以包括LTE-U小区的先前活动时间定时。LTE-U小区可以包括固定的定时调度。所述固定的定时调度可以排除定时漂移的一个或多个效应。如果参考定时是LTE-U小区的先前活动时间定时,那么LTE-U小区可以包括固定的定时调度。在活动时间中可以发送(例如打开)一个或多个信号。在不活动时间则不会发送(例如关断)一个或多个信号。所述固定的定时调度可以在活动时间和不活动时间保持相同。
eNB可以在一个时段中发送忙信号(例如初始忙信号)。该时段可以包括介于确定频带空闲与eNB发射一个或多个LTE信道和/或信号之间的时间。
eNB可以确定频带是否空闲。当eNB确定频带空闲时,该eNB可以在下一个LTE DL传输时机之前一直发送忙(例如初始忙)信号。所述下一个LTE DL传输时机可以包括下一个有效时间单元(例如其开端)。所述下一个有效时间单元可以根据同步DL定时。所述下一个LTEDL传输机会可以包括最早的时间单元(例如其开端)。WTRU可以在最早时间单元中或从最早时间单元接收LTE DL传输。WTRU可以接收LTE DL传输,例如在该WTRU确定存在LTE DL传输的时候。WTRU可以基于盲检测和/或基于接收到其存在或即将发生的存在的指示来确定LTEDL传输的存在。
WTRU可以在无授权频带上(例如在实际传输之前)接收即将到来的LTE DL传输的指示(例如被通知)。作为示例,无授权频带上的即将到来的LTE DL传输可以由eNB或者通过DL传输指示来指示。在相关联的或聚合的PCell上可以用信号通知DL传输指示。DL传输指示可以在物理层信令中提供和/或包含在所述信令中(例如包含在PDCCH、EPDCCH和/或下行链路控制信息(DCI)格式中或是由其提供)。
时间单元可以包括符号、时隙、子帧、帧(例如无线电帧)和/或LTE时间单元中的一个或多个。
LTE-U eNB可以通过发送或发射忙信号(例如初始忙信号)来保留和/或获取频带。WTRU可以检测到LTE信号(例如有意义的LTE信号)和/或DL传输。LTE-U eNB可以通过发送忙信号来保留频带,直到WTRU检测到LTE信号和/或DL传输。
切换时间可以包括介于eNB感测空闲频带的时间与传输(例如初始忙信号传输和/或LTE DL传输)时间之间的时间。切换时间可被最小化。长于阈值的切换时间有可能导致潜在用户确定信道空闲。潜在用户可以尝试获取该信道。尝试获取该信道的潜在用户可能会与取得该信道的eNB发生冲突。在这里可以提供一种或多种冲突避免技术(例如用于减小发生冲突的可能性)。所述一种或多种冲突避免技术可以包括回退技术。回退技术可以包括感测信道前的随机等待时间和/或随机的感测时间量。
忙信号可以包括一个或多个格式。忙信号的格式对于一个或多个WTRU来说可以是透明的(例如未知的)。忙信号可被格式化成LTE信号。举例来说,eNB可以将LTE信号作为忙信号来发射。一个或多个随机采样和/或信号可以用于忙信号。
LTE信号的最短时段可以包括一个OFDM时段。在将忙信号作为OFDM符号的一部分发射的时候,这时可以使用一个或多个与LTE类的时域采样(例如与CP相类似)。当在OFDM符号的一部分以及一个或多个完整的OFDM符号中发射忙信号时,在所述OFDM符号的所述部分中可以发射一个或多个采样等级信号,并且可以在所述一个或多个完整的OFDM符号中发射一个或多个LTE信号。当在OFDM符号的一部分以及一个或多个完整的OFDM符号中发射忙信号时,在所述OFDM符号的所述部分和/或所述一个或多个完整的OFDM符号中可以发射一个或多个采样等级符号。
一个或多个信号可供忙信号使用。所述一个或多个信号可以在信号传输中被发送。所述一个或多个信号可以用于忙信号的一部分。所述一个或多个信号可以包括PSS、SSS、PBCH、CRS、PDCCH以及EPDCCH。用于忙信号的信道和/或信号可以在对于LTE而言并非典型的时间和/或频率位置发射。所述时间和/或频率位置可以被重复。
忙信号的时间密度可以满足RAT(例如WiFi)的一个或多个LBT预期。忙信号可以启用对于LTE-U传输的检测。举例来说,忙信号可以在用于CCA的时间窗口(例如20微秒)中产生能量,由此能够检测到LTE-U传输(例如由邻近的Wifi节点)。
忙信号可以包括带宽(BW)和/或物理资源块(PRB)的一个或多个特定的静态和/或动态配置。所述BW和/或PRB的一个或多个特定的静态和/或动态配置可以依据一个或多个占优势(prevailing)的状况、资源分配和/或其他动态而改进忙信号的部署。
LTE-U eNB可以发送(例如发射)忙信号。所述忙信号可以包括初始和/或进行中忙信号。忙信号可以阻止频带的一个或多个用户(例如潜在用户)获取和/或接入该频带。所述频带的一个或多个用户可以包括一个或多个LTE-U eNB、WTRU和/或Wi-Fi用户。所述频带的一个或多个用户可以接收忙信号(例如正在进行的传输)(例如感知其存在)。在接收到忙信号之后,该频带的一个或多个用户可以不使用该信道。该频带的一个或多个用户可以使用能量检测(例如测量)来感测传输的存在。作为示例,检测到的能量可以与所关注的BW中的干扰相对应。
用户(例如WiFi用户)可以接收(例如仅查看)LTE-U传输的一部分。该LTE-U传输的所述部分可以包括该LTE-U传输的一部分能量。举例来说,用户关注的BW可能与LTE-U eNB的传输BW部分重叠。当用户关注的BW与LTE-U eNB的传输BW部分重叠时,用户可以确定所关注的BW是可以自由接入的(作为示例,即使其未必是可以自由接入的)。忙信号可以被配置成在所关注的BW与LTE-U eNB的传输BW部分重叠的时候阻止在LTE-U eNB的传输BW上进行的传输。
数据BW可以包括为LTE-U(例如为LTE-U SCell)配置和/或使用的频带的全部BW。举例来说,BW可以是1.4、3、5、10、20MHz或其他频率范围。数据BW可以包括供LTE-U会话使用的频带的BW。LTE-U会话可以是供eNB使用、预定使用或是保留信道的有限时段。举例来说,LTE-U会话可以在eNB确定频带空闲的时候开始。LTE-U会话可以在eNB获取频带的时候开始。当eNB腾出频带时,LTE-U会话可以结束。eNB可以在LTE-U会话期间(例如在LTE-U会话的每个子帧中)使用BW(例如使用全部BW或是其一部分)。所述BW可以是数据BW。数据BW可以少于该频带的全部BW。eNB可以配置数据BW。eNB可以向一个或多个WTRU指示数据BW。eNB可以借助信令(例如物理层和/或更高层信令)来指示数据BW。
用户关注的BW可能与完整的BW和/或数据BW重叠(例如部分重叠)。
LTE-U小区可以在工作BW内发射忙信号。该工作BW可以是LTE-U频带(例如使用中的LTE-U信道)的完整数据BW。LTE-U小区可以在BW上发送忙信号,由此占用LTE-U频带的工作BW的一部分(例如一些或全部)。LTE-U小区可以在覆盖范围超出LTE-U频带的工作BW的BW上发射忙信号。覆盖范围超过LTE-U频带的工作BW的BW可以包括最大BW。
一个或多个LTE-U eNB和/或WTRU和/或其收发信机可以在相同频带上工作。所述一个或多个LTE-U eNB和/或WTRU和/或其收发信机可以遵循相同的信道参数配置(numerology)。忙信号可以是在LTE-U频带的工作BW内发射的。在LTE-U频带的工作BW内发射的忙信号可以允许确定(例如由某一个或另一个LTE-U eNB或WTRU)LTE-U频带正被使用。作为示例,一个或多个忙信号能量采样可以是在LTE-U信道的工作BW(例如经过校准的工作BW)上接收的。
LTE-U小区可以在为LTE-U小区配置的或实际的数据/传输BW(例如完整或数据BW)之外发送忙信号(例如忙信号的一部分)。忙信号传输可能会与诸如802.11和/或802.11ac之类的WiFi系统的全部主信道(例如频带)或是其一部分重合和/或重叠。WiFi系统的主信道的所述部分有可能处于为LTE-U小区配置的或实际的数据/传输BW(例如完整或数据BW)之外。
WiFi接收机可以测量和/或检测忙信号。WiFi接收机可以解码主频带(例如20或22MHz的WiFi)上的一个或多个信号。所述主频带不会与LTE-U小区的传输BW(例如完整或数据BW)重合(例如重叠)。主频带可能会与LTE-U小区的传输BW之外的忙信号传输重叠。与在可能会与LTE-U传输BW重合的802.11n和/或802.11ac系统BW的辅助BW部分上测量忙信号相比,在主信道上测量忙信号可以提供更高的可靠性。
忙信号可被配置成在频带、信道和/或可能重合、重叠和/或处于LTE-U频带内部和/或LTE-U频带的BW(例如全部的或数据BW)内部(例如完全在其内)的一个或多个BW部分中发射。
忙信号可被配置成在频带、信道和/或可能重合、重叠和/或处于与LTE-U频带的工作BW相比更大的BW内部或是处于LTE-U频带的工作BW之外的BW内部的一个或多个BW部分中发射。
忙信号BW可以包括一组连续的物理资源块(PRB)。所述忙信号可以包括不连续的PRB(例如在BW内部和/或分布在BW中)。忙信号BW可以包括可以与数据BW无关的固定BW,例如20MHz或22MHz。忙信号BW可以包括频带的全部BW。忙信号BW可以包括数据BW。忙信号BW可以包括完整和/或数据BW的函数,例如与完整或数据BW相比更宽的一定数量的PRB。忙信号BW可以包括小区ID和/或LTE-U小区的一个或多个其他配置参数的函数。忙信号BW可以包括与LTE-U频带的完整和/或数据BW部分或完全重叠的BW。忙信号BW可以包括部分或全部处于LTE-U频带的完整或数据BW之外的BW。
初始忙信号可以对应于第一BW。进行中忙信号可以对应于第二BW。第一BW可以等于第二BW。
忙信号可以在一个或多个PRB上发送。一个或多个PRB可以处于忙信号BW内。忙信号可以在一个或多个PRB集合上传输。所述一个或多个PRB集合可以处于忙信号BW内。所述一个或多个PRB集合可以包括一个或多个连续和/或不连续的PRB的集合。
供忙信号使用的一个或多个PRB可以包括小区ID和/或为小区配置的一个或多个其他参数的函数。
被eNB用于忙信号的一个或多个PRB是可以动态改变的,也就是说,它可以依照子帧和/或子帧集合改变的。举例来说,eNB可以将具有最差和/或最佳信道质量的一个或多个PRB用于忙信号传输。eNB可以测量本地干扰。所述eNB可以从一个或多个WTRU接收所报告的一个或多个干扰测量。所述一个或多个PRB的信道质量可以基于本地干扰测量和/或所报告的干扰测量来确定。
忙信号可以在一个或多个固定的或是所配置的PRB集合中被发送。举例来说,一个或多个PRB可以位于完整或数据BW的边缘或是其附近。对于可以在与完整和/或数据BW局部重叠的邻居频带中工作的其他用户或潜在用户,例如其他LTE-U eNB、WTRU和/或WiFi用户来说,所述用户可以接收(例如检测)一个或多个忙信号PRB集合。
图4显示了可以与5MHz相对应的25个PRB的例示BW 400(例如根据授权的LTE规范)。在图4中,可用于数据传输的PRB带有阴影。可被分配给忙信号传输的PRB不带有阴影。如所示,前四个和最后四个PRB可以发送忙信号传输。中间的17个PRB可以用于数据传输。
作为示例,忙信号可以通过包含跳频来覆盖频率带宽。该频带宽度可以对应于以下的一项或多项:固定的BW设定,所配置的BW设定和/或数据带宽。频率带宽可以在一个时段中保持不变,和/或可以在一个时段上改变(例如依照传输设定)。
用于忙信号传输的跳频BW、一个或多个BW部分和/或PRB能使具有局部信道重叠的WiFi检测到LTE-U频带正被使用。
用于忙信号的跳频图案和/或信令序列可以借助一个或多个传输参数来被通告。用于忙信号的跳频图案和/或信令序列可以从一个或多个传输参数中得出。
作为示例,在完整信道BW或数据BW内可以依照图案来发射忙信号的一个或多个PRB。该图案可以包括一个或多个连续和/或分离的PRB集合。举例来说,PRB集合可以包括N1个连续PRB和/或N2个连续PRB。所述N1个连续PRB可以用于忙信号传递。所述N2个连续PRB可以用于数据和/或控制传输(例如在可以通过重复相同图案来占用完整频带的情况下)。
eNB可以用信号向WTRU和/或别的eNB通告关于它的一个或多个忙信号的图案和/或PRB使用。一个或多个图案和/或PRB集合可以用于忙信号。用信号通告图案和/或PRB集合使用可以包括用信号通告关于可供eNB使用和/或预定使用的图案和/或PRB集合使用的指示。
图5示出了可以与5MHz相对应的具有25个PRB的例示BW 500(例如依照授权的LTE规范)。在图5中,可用于数据传输的PRB带有阴影。可被分配给忙信号传输的PRB不带有阴影。如所示,每4个PRB中会有1个PRB可以发射忙信号。所述忙信号图案可被表示成“1000”,其中“1”可以代表可被分配给忙信号的PRB,“0”可以表示可发射数据信号的PRB。
用信号通告图案和/或PRB集合使用可以包括用信号通告位图。举例来说,eNB可以发射并且WTRU可以接收关于哪些PRB可用于忙以及哪些PRB可用于数据/控制的位图指示。作为示例,对于具有25个PRB的BW来说,位图指示可以包括25个元素,其中每一个比特的第一状态(例如‘1’)可以指示相应的PRB可用于忙信号,以及第二状态(例如‘0’)可以指示相应的PRB不可用于忙信号和/或相应的PRB可用于数据和/或控制传输。作为示例,位图可被表示成1100011000110001100011000。位图可以包括一个可重复的图案,例如11000。
对于忙信号的一个或多个参数,例如BW、可用PRB数量(例如最小或最大数量)、PRB位置等等来说,这些参数可以取决于发射忙信号的频率信道。举例来说,一个或多个参数可以取决于信道BW、信道中心频率和/或信道编号或ID中的一个或多个。
进行中忙信号可以在LTE-U eNB获取频带(例如信道)之后和/或在其开始传输之后被使用。LTE-U eNB有可能计划在一个时段中保持频带。该时段可以包括一个或多个LTE时间单元,在此期间,所述频带不能被LTE-U eNB和/或一个或多个WTRU充分使用(例如被其感知)。一个或多个其他用户可以在该时段中检测到(例如感测到)该频带是空闲的。所述一个或多个其他用户可以在该频带上进行传输。
举例来说,当eNB没有在用于一个或多个符号和/或子帧的DL中的频带上进行传输时(例如因为没有要发射的数据),这时在该频带上有可能会出现空闲的LTE时间单元。当在用于一个或多个符号和/或子帧的UL中的频带上没有活动的UL传输(例如PUSCH、PUCCH和/或SRS传输)时,该频带可能会出现空闲的LTE时间单元。在没有使用TDD UL子帧的时候(例如在LTE-U仅仅支持DL的情况下),频带有可能会出现空闲的LTE时间单元。在TDD UL/DL子帧转变过程中,频带有可能会出现空闲的LTE时间单元。
当发射信号的强度不足以被其他用户检测(例如作为频带的活动用户),那么LTE时间单元可被感知成是空闲的。其他用户可以包括其他LTE-U eNB、WTRU和/或WiFi用户。一个或多个其他用户可以将频带感知成是空闲的,和/或有可能会尝试接入和使用该频带。
在eNB获取了频带(例如信道)和/或在该频带上预备发射或者已经发射一个或多个LTE信号时,eNB可以发射进行中忙信号。其他用户或潜在用户,例如其他LTE-U eNB、WTRU和/或WiFi用户,可以检测到进行中忙信号。所述其他用户或潜在用户会将该频带视为是不可用的,而这将能使eNB发射进行中忙信号以保持频带。
进行中忙信号可以在已知的时间单位边界发射。LTE-U eNB可以在LTE时间单元中发送进行中忙信号。LTE时间单元可以是空闲或者可以被感知成是空闲的。作为示例,进行中忙信号传输可以跟随有、例如紧随有供LTE-U eNB和/或一个或多个相连接的WTRU执行一个或多个UL和/或DL信道传输的时段。
进行中忙信号可被用来保留用于UL传输(即tx)的频带(例如信道)。举例来说,eNB可以确定一个频带是否空闲,例如使用LBT(例如测量)技术来确定。所述eNB可以获取该频带。举例来说,eNB可以发送具有忙信号以及LTE DL信道或信号中的一个或多个的DL信号。eNB可以在子帧n中向WTRU提供关于子帧n+k中的UL资源的UL许可,其中对于FDD来说,k可以是4,并且可以取决于用于TDD的UL/DL配置。作为示例,eNB可以通过子帧n+k-1的全部或部分而在DL中继续传输,以便通过使频带显现成繁忙(例如持续繁忙)来保持所述频带,直至WTRU在子帧n+k中获取和/或使用所述频带以进行UL传输。作为示例,当eNB在该时间中不让通过其他方式保持频带时,所述eNB可以在子帧n+k之前的全部时间或一部分时间发射忙信号。当eNB没有足有DL数据发射到一个或多个WTRU时,所述eNB可能无法保持频带。
忙信号可以用一个或多个数据和/或控制信号来发射。eNB和/或WTRU可以发送忙信号(例如带有LTE数据、控制、同步信道和/或信号中的一项或多项的进行中忙信号)。
忙信号传输与数据/控制信号传输可以是同时的。举例来说,当LTE-U eNB和/或一个或多个相连的WTRU在频带上没有发射和/或接收其他信号,那么LTE-U eNB可以在频带(例如无授权频率信道)上发射忙信号,例如进行中忙信号。与非同时的进行中忙信号传输有关的操作可以类似于当在LTE-U小区或LTE-U频带中没有发射数据和/或控制信道或信号时的初始忙信号传输。
eNB可以在频带(例如无授权频率信道)上发射忙信号,例如进行中忙信号,与此同时,它可在相同的频带(例如在该频带的不同PRB中)上发射和/或接收DL和/或UL LTE信道和/或信号。
一个或多个控制信道和/或信号可以包括一个或多个同步信道和/或信号。
例如,eNB可以在LTE-U频带或小区的PRB(例如一个或多个或全部PRB)中发射一个忙信号,例如进行中忙信号,其中所述PRB不可用于在LTE-U频带或小区的完整或数据BW内传输数据和/或控制信道或信号。
图6显示了进行中忙信号传输600的示例。出于例证目的,在图6中,数据信号可以带有阴影,并且进行中忙信号不会带有阴影。eNB可以在将具有N个PRB的BW用于传输的频带中执行传输。作为示例,在图6显示的示例中可以使用六个PRB。eNB可以在一个或多个子帧、例如子帧n-1和n+1中通过N个PRB来发射数据(和/或控制)信号。所述eNB不会在一个子帧、例如子帧n中将全部BW用于数据(和/或控制)。在该子帧中,eNB可以在其不会发射数据(和/或控制)信号的一个或多个PRB、例如该图的子帧n的PRB 3、4和5中发射进行中忙信号。进行中忙信号能使其他用户检测(例如更好地检测)发射信号,和/或将所述频带解释成繁忙,并且作为示例,其他用户由此将不会获取该频带。
无论eNB是否发射任何数据和/或控制信号,eNB都可以在一个或多个PRB集合中发送忙信号,例如进行中忙信号。所述eNB可以在与发射LTE数据和/或控制信道的PRB集合不同的一个或多个PRB集合中发射忙信号。
eNB可以(例如始终可以)在一组动态共享的PRB上进行传输。所述动态共享的PRB可以在忙信号与一个或多个数据/控制信号之间被动态共享。作为示例,PRB集合中的传输可以包括忙信号和/或一个或多个数据/控制信号。
作为示例,对于不同的子帧来说,PRB集合上的忙信号与数据/控制信号的比例可以是不同的。举例来说,PRB集合上的忙信号与数据/控制信号的比例可以取决于为数据/控制传输请求、使用和/或调度的PRB。该PRB集合与忙信号PRB集合可以是相同的。
作为示例,对于为忙信号指定或使用的PRB集合来说,当在子帧中没有发射和/或没有计划发射数据/控制信号时,eNB可以在该子帧的PRB集合中发射忙信号。
对于为忙信号指定或使用的PRB集合来说,eNB不会在子帧中发射忙信号(例如可在用于数据/控制的子帧中发射或计划发射的PRB数量超出PRB集合中的PRB数量的时候)。eNB可以在PRB集合中的PRB的子帧上分配和/或发射数据/控制信号。所述数据/控制可以充当忙信号。
对于为忙信号指定或使用PRB集合来说,作为示例,当在用于数据/控制信号的子帧中可以发射或计划发射的PRB的非零数量小于PRB集合中的PRB的数量时,eNB可以在子帧中在数据/控制信号与忙信号之间共享该PRB集合。所述eNB可以在包含了PRB集合中的全部或部分PRB的PRB中分配和/或发射数据/控制。所述eNB可以在PRB集合的一个或多个剩余PRB中发射忙信号。
对于为忙信号指定或使用的PRB集合以及可以包含剩余PRB(例如完整或数据BW中)的另一个集合来说,作为示例,当在用于数据/控制的子帧中可以发射或计划发射的PRB的数量超出剩余PRB的数量时,eNB可以在忙信号与数据/控制信号传输之间共享PRB集合。在将子帧中的PRB分配给数据/控制之后,eNB可以在可用的PRB集合的一个或多个PRB中发射忙信号。作为示例,当在分配之后没有可用的PRB,那么eNB不会发射忙信号。
例如,当完整信道(或数据)BW可以是N个(例如100个)PRB时,这时可以将多个(例如前X个和/或后Y个)PRB分配或指定给忙信号。举例来说,PRB 0-19和80-99可被分配或指定给忙信号。在活动时间中,作为示例,当eNB具有一个频带或者可以在该频带上发射或接收信号,那么eNB可以在分配或指定给忙信号的多个PRB中发送信号。所述信号可以是忙信号和/或数据/控制信号中的一个或多个。作为示例,Y可以是0。
例如,当LTE-U eNB具有一个频带并且没有要发射的数据和/或控制信号时,eNB可以在前X和/或最后Y个PRB、例如PRB 0-19和80-99中发射忙信号。举例来说,当LTE-U eNB具有频带并且eNB具有要发射的数据/控制信号的完整(或数据)BW(例如100个PRB)时,所述eNB不会发送忙信号,作为示例,所述eNB可以将所有的完整(或数据)BW用于数据/控制信号传输。eNB可以在未被用于数据/控制的一个或多个剩余PRB中发射忙信号。举例来说,当LTE-U eNB具有所述频带并且该eNB具有的BW少于要发射的数据/控制信号的完整(或数据)BW(例如100个PRB)和/或多于要发射的数据/控制信号的BW-(X+Y)个PRB,例如数据/控制信号的值90个PRB,eNB可以在PRB 0-4和95-99中发射忙信号,在PRB 5-94中发射数据/控制。
具有频带可以包括使用和/或计划使用所述频带。在用于eNB的频带的活动时间,eNB可以具有或者可以考虑具有该频带。
LTE-U小区可以与一个或多个其他LTE-U小区和/或其他用户(例如WiFi用户)共享一个或多个频率资源(例如一个或多个PRB集合)。LTE-U eNB不会在可能被另一个LTE-UeNB使用的PRB集合上发送信号。
举例来说,在一个或多个子帧中,LTE-U eNB不会使用全部BW,例如完整或数据BW中的一个或多个或所有可用的PRB。LTE-U eNB可以在第一PRB集合(例如集合之一)上发射LTE数据、控制信道和/或信号。LTE-U eNB可以在第二例如指定的PRB集合上发送忙信号。作为示例,当没有足够数据来占用完整或数据BW,那么LTE-U eNB不会使用第三PRB集合(例如第三PRB集合或剩余PRB的集合)。LTE-U eNB可以与第二LTE-U eNB共享频带。所述第二LTE-U eNB可以使用一个或多个未被使用的PRB(例如第三PRB集合)来进行通信,例如将其用于LTE数据和/或控制信道(例如在DL中)。
频带共享布置可以由网络来配置,例如通过OA&M信令来配置。所述频带共享可以由一个或多个eNB来布置。第一eNB可以向第二eNB告知所述第一eNB意图在诸如一个时段和/或一个或多个子帧中使用无授权频带的一部分。作为示例,第一eNB可以通过X2来向第二eNB通告该意图。所述第一eNB可以在物理层、MAC和RRC信令中的一个或多个信令中指示频带使用和/或预定的频带使用。第二eNB可以通过监视物理层、MAC以及RRC信令来确定第一eNB的意图。
eNB可以通过监视LTE-U频带的一个或多个部分来确定LTE-U eNB和/或WTRU的使用。作为示例,当eNB确定别的LTE-U eNB或LTE-U WTRU可能具有该频带时,eNB可以通过监视该频带的一个或多个PRB子集来确定PRB的可用性。特别地,举例来说,当eNB确定一个或多个PRB可供使用和/或共享时,该eNB可以将这些PRB用于DL和/或UL传输。可用可以包括未被使用。作为示例,基于OFDM的属性或者基于低于某个阈值的预期干扰,还可以考虑一个或多个未被使用的PRB可用于共享。
对于可以共享、例如可以同时使用子帧中的无授权频带的一个或多个LTE-U eNB(和/或WTRU)来说,其可以在子帧中发射忙信号。该频带的多个用户(例如一个或多个eNB和/或WTRU)可以同时发射一个或多个忙信号,例如在相同或不同PRB集合的特定子帧中发射。
如果在相同的PRB集合中同时从不同的LTE-U用户(例如eNB和/或WTRU)发射一个或多个忙信号,那么可能会对导致产生更强的总的忙信号。该频带中的其他用户、例如其他的LTE-U eNB、WTRU和/或WiFi用户将会检测到较强的总的忙信号。较强的总的忙信号可以保护频带免受其他用户接入。
例如,第一eNB可以获取可包含100个PRB的20MHz频带(例如信道)。第一eNB可以在该频带上发送第一忙信号。所述第一eNB可以在该频带的边缘发射第一忙信号,例如在前和最后10个PRB上。所述第一eNB可以在第1到第10个PRB以及第91到第100个PRB上发射第一忙信号。第二eNB可以检测和/或被告知第一eNB的存在。所述第二eNB可以与第一eNB共享一个或多个频带资源。所述第二eNB可以与第一eNB在相同的PRB集合、例如在第1到第10个PRB以及第91到第100个PRB上发射第二忙信号。第二eNB可以在第11到第90个PRB上监视每个PRB的总接收功率等级。所述第二eNB可以识别具有最小的总接收功率和/或干扰等级的一个或多个PRB。所述第二eNB可以在所识别的PRB、尤其是诸如具有最小的总接收功率和/或干扰的一个或多个PRB上发射数据。在一个示例中,第二eNB可被提供和/或可以从第一eNB接收优先级PRB使用列表。所述优先级PRB使用列表可以指示供第一eNB用于数据传输的PRB使用优先级。所述第二eNB可以(例如仅仅可以)在所接收的优先级PRB使用列表中的被第一eNB使用且具有较低(例如最低)使用优先级的PRB上发射数据。
作为示例,eNB可以在不同的子帧中为忙信号使用不同的功率参数。一个或多个功率参数可以取决于子帧中是否支持忙信号和/或数据/控制信号的同时传输。
LTE-U频带的中心频率(例如信道)可以不同于WiFi信道。LTE-U频带的中心频率可以基于别的用户的RAT来确定,例如WiFi、信道中心频率。
作为示例,在忙信号中可以传达信息。举例来说,LTE-U eNB发射的忙信号可以携带有益于LTE-U频带的别的用户或潜在用户(例如别的LTE-U eNB或WTRU)的信息。
忙信号可以包括控制信道,例如PDCCH或EPDCCH。诸如PDCCH或EPDCCH之类的控制信道既可以用作或替换忙信号,也可以作为忙信号的一部分,和/或可以提供忙信号的函数。举例来说,忙信号可以被控制信道取代。
忙信号可以包括或以其他方式传达信息。举例来说,忙信号可以传达或指示以下的一项或多项。举例来说,忙信号可以指示在释放和/或腾出频带之前,忙信号的发射机可能会在多长时间、例如在多少个附加子帧和/或帧中计划保持和/或使用该频带。忙信号可以指示所述忙信号的发射机在其获取(例如首次获取)所述频带之前已经在多长时间、例如在多少个子帧和/或帧中保持和/或使用所述频带。忙信号可以指示所述忙信号的首次传输是在何时或是多久之前发生的。忙信号可以指示忙信号的发射机在其腾出该信道时可以允许或者计划允许多大的间隙时间(例如最小间隙时间)。举例来说,所述间隙时间可以对应于多个符号、时隙和/或帧中的一个或多个。忙信号可以指示所述忙信号的发射机可以发射和/或计划发射的数据的一个或多个传输参数,例如频率或BW信息。所述忙信号可以传达受忙信号发射机控制的WTRU所发射的数据的一个或多个传输参数。
忙信号、PDCCH和/或EPDCCH可以传达该信息。忙信号之外的其他机制可以用于传达该信息。
发射忙信号的eNB可以提供与忙信号的一个或多个参数有关的信息(例如配置信息),例如时间(例如一个或多个子帧和/或帧)和/或频率位置(例如PRB)。eNB可以在广播信令传输中和/或在专用信令传输中向一个或多个WTRU和/或eNB提供所述信息。该广播信号传输可以经由与LTE-U小区相关联和/或聚合的PCell来发送。
eNB可以经由可与LTE-U小区相关联或聚合的PCell来用信号向WTRU通告信息,例如使用RRC信令来通告。eNB可以用信号向别的eNB通告信息,例如通过在X2接口上使用X2信令来通告。
eNB可以通过读取其他eNB的广播信息来获取与别的eNB、例如与邻居eNB有关的信息。
eNB可以通过诸如广播或专用信令来向WTRU和/或eNB提供RNTI。RNTIh能使WTRU和/或eNB能够接收和/或解码忙信号的内容。
eNB和/或WTRU可以接收和/或解码别的eNB发射的忙信号的一个或多个内容。
eNB和/或WTRU可以使用该信息来确定何时获取频带。举例来说,当LTE-U用户具有频带并且同时使用可被允许和/或同时使用可行的时候,eNB和/或WTRU可以确定获取该频带。当当前用户将会腾出频带并且该频带可能空闲的时候,和/或当在允许将足够间隙时间用于其他用户的时候或者在此之后,等等,eNB和/或WTRU可以确定获取频带。
eNB和/或WTRU可以使用该信息来确定何时不尝试获取该频带。举例来说,当LTE-U用户可具有该频带的时候和/或在用于其他用户的间隙时间被超过之前,等等,eNB和/或WTRU可以确定不获取该信道。
LTE-U同步(sync)信号可以支持LTE-U操作。LTE-U同步信号可以在同步信号传输中被发送。在LTE系统中,eNB可以在一个或多个(例如全部)DL子帧中发送一个或多个参考信号,例如CRS。eNB可以在无线电帧的一个或多个DL子帧中发送一个或多个同步信号。eNB可以在一个或多个(例如全部)无线电帧中发送一个或多个参考信号和/或一个或多个同步信号。
WTRU可以在一个或多个DL子帧中接收来自eNB的一个或多个参考信号和/或同步信号。WTRU可以使用参考信号和/或同步信号中的一个或多个(例如用于获取和/或保持与eNB的频率和/或时间同步)。
LTE-U eNB可以周期性和/或非周期性地使用无授权频带(例如信道)。LTE-U eNB可以在第一时段在无授权频带上进行传输。LTE-U eNB可以在第二时间段内腾出(例如不使用)无授权频带。LTE-U eNB可以在在无授权频带上传输与腾出所述无授权频带之间交替。作为示例,由于这种交替操作,LTE-U eNB不会在一些子帧和/或帧中发射DL参考信号和/或同步信号。一个或多个DL参考和/或同步信号的间歇可用性可以阻碍WTRU用可接受(例如合理或足够)的性能来实现时间和/或频率同步。
无线发射/接收单元(WTRU)可以在授权频带上与第一小区建立连接。该WTRU可以接收第一下行链路传输。该第一下行链路传输可以是从在无授权频带上工作的第二小区接收的。WTRU可以使用一个或多个资源元素确定源自在无授权频带上工作的第三小区的同步信号传输。所述一个或多个资源元素可以对应于源自第二小区的下行链路传输的一个或多个资源块的一部分。同步信号传输可以包括主同步信号(PSS)、辅同步信号(SSS)、物理广播信道(PBCH)、小区专用参考信号(CRS)、信道状态信息参考信号(CSI-RS)和/或解调参考信号(DMRS)中的一个或多个。
WTRU可以通过在下行链路物理信道上接收下行链路控制信息(DCI)来确定源自在无授权频带上工作的第三小区的同步信号传输是用一个或多个资源元素传送的。该下行链路物理信道可以指示有哪些资源元素被用于同步信号传输。
LTE-U eNB可以提供和/或发射用于同步目的(例如频率和/或定时同步)的信号(或信号集合)。该信号可以被WTRU使用。WTRU可以使用该信号来获取和/或保持与eNB的频率和/或定时同步。该信号可以被称为“LTE-U同步信号”或同步信号。在一个示例中,LTE-U同步信号可以不同于在一些LTE系统中使用的PSS和/或SSS。在一个示例中,LTE-U同步信号可以包括PSS和/或SSS中的一个或多个。
LTE同步信号和忙信号可以由相同的信号(或信号集合)来实现和/或呈现。LTE同步信号和忙信号可以包括一个或多个相同的信号。
LTE-U同步信号可以包括特定的格式。在一个示例中,LTE-U同步信号的时间间隔可以根据一个或多个OFDM符号、一个或多个子帧和/或一个或多个帧。
举例来说,LTE-U同步信号可以在一个或多个OFDM符号和/或时隙中出现和/或重复,例如在一个子帧中,在子帧的开端,或者在子帧开端之前。LTE-U同步信号可以在一个或多个子帧中出现和/或重复,例如在一个帧中。
WTRU可以在在一个或多个OFDM符号和/或时隙中接收LTE-U同步信号,例如在子帧之中,子帧的开端或子帧开端之前。WTRU可以在一个或多个子帧中接收LTE-U同步信号,例如在一个帧中接收。在OFDM符号、时隙和/或子帧中,LTE-U同步信号可以是相同的,例如可以是重复的。
举例来说,LTE-U同步信号可以在诸如中心的六个PRB之类的PRB集合和/或多个PRB中的多个(例如两个)OFDM符号上发射。在一个或多个特定OFDM符号(例如第一OFDM符号)上发射的LTE-U同步信号可以与PSS序列相类似。在一个或多个其他OFDM符号(例如第二OFDM符号)上发射的LTE-U同步信号可以与SSS序列相类似。LTE-U同步信号可以包括PSS、CSS、PBCH、CRS、CSI-RS或DMRS中的一个或多个。
作为示例,在LTE-U频带(例如信道)上发送LTE数据和/或控制信号之前,eNB可以在该信道上以连续的方式或者在连续的符号中以选定的次数来发射一组LTE-U同步信号。
在一个或多个不同的符号和/或子帧中的一个或多个不同的频率资源上,例如在不同的PRB集合上,eNB可以发射和/或WTRU可以接收LTE-U同步信号。通过在一个或多个不同的频率资源上发射LTE-U同步信号,可以为LTE-U同步信号接收提供更高的频率分集增益。
LTE-U同步信号可以包括一个或多个LTE系统信号,例如PSS、SSS、PBCH(例如MIB)、CRS、CSI-RS、DMRS等等。作为LTE-U同步信号一部分的一个或多个LTE系统信号的传输可以根据LTE系统中的信号的符号和/或符号顺序。
LTE-U同步信号和数据是可以共存的。在一个或多个LTE-U同步信号和/或一个或多个DL信道信号(例如控制和/或数据信号)之间可以共享一个或多个LTE-U信道资源,例如PRB。WTRU可以在相同的信道资源集合、例如在PRB集合上接收LTE-U同步信号和/或一个或多个DL信道信号。
对于LTE同步信号和数据/控制时间共享而言,作为示例,WTRU可以在相同的PRB集合中接收LTE-U同步信号以及一个或多个数据/控制信号。所述LTE-U同步信号以及一个或多个数据/控制信号可以是在不同的时隙和/或OFDM符号中接收的。
举例来说,在使用不同时隙的情况下,在LTE-U同步信号与一个或多个数据/控制信号之间可以共享PRB集合,其中第一时隙可被分配给LTE-U同步信号,并且第二时隙可被分配给一个或多个数据/控制信号。举例来说,作为DL许可的一部分,WTRU可以接收规定了如何检测和/或解码一个或多个子帧的指示。共享可以应用于一个或多个子帧。
作为示例,可以使用一个或多个不同的OFDM符号。LTE-U同步信号可以在一个或多个OFDM符号(例如每一个或多个,时隙、子帧和/或无线电帧)中被发射。在一个示例中,一个或多个OFDM符号或是一个或多个OFDM符号的资源元素(RE)可被用于LTE-U同步信号传输。所述一个或多个OFDM符号和/或所述一个或多个OFDM符号的RE可以不用于LTE数据/控制信号。例如,在一个或多个子帧、例如所有子帧的PDSCH区域中的第一OFDM符号上,eNB可以发射和/或WTRU可以接收LTE-U同步信号。
WTRU可被eNB配置成具有哪些子帧可以包括用于LTE-U同步信号以及数据/控制信号的PRB共享,作为示例,所述配置可以借助较高层信令(例如RRC信令)来进行。
作为示例,在不同的PRB中,eNB可以发射和/或WTRU可以接收LTE-U同步信号和数据/控制信号。所述不同的PRB可以处于相同的子帧和/或时隙之中。WTRU可以在第一PRB群组中接收LTE-U同步信号。该WTRU可以在第二PRB群组中接收(例如同时接收)一个或多个数据/控制信号。作为示例,WTRU可以预期LTE-U同步信号被包括在该子帧的PRB子集中。
作为示例,一个或多个LTE-U同步信号可以借助码分复用(CDM)而被分离。第一eNB和第二eNB可以同时在相同的资源集合、例如在相同的PRB集合上发送各自的LTE-U同步信号。一个或多个非常邻近的eNB可能导致对一个或多个WTRU接收LTE-U同步信号接收产生很大的干扰。对LTE-U同步信号的接收产生的干扰可能会影响一个或多个WTRU的同步性能。作为示例,CDM可以用于减小小区间的LTE-U同步信号干扰。可以使用加扰和/或正交覆盖码(OCC)。
例如,可以通过使用OCC来在时间和/或频率上扩展LTE-U同步信号。时间扩展可以包括在时域中重复信号。信号的每一次重复可以乘以相应OCC的比特。频率中的扩展可以包括在一个或多个PRB中重复信号。信号的每一次重复可以乘以相应OCC的比特。时间和/或频率中的扩展可以增加分配给LTE-U同步信号的资源数量,这一点可能取决于OCC的长度。每一个eNB可以将OCC用于LTE-U同步信号。所述一个或多个eNB(例如相互靠近的eNB)的一个或多个OCC可以是不同的。
LTE-U同步信号可以用预定序列来加扰。对于不同的eNB,该预定序列可以是不同的。例如,加扰序列可以取决于特定LTE-U小区和/或相关联或聚合的LTE PCell的小区ID和/或参考序列。
LTE-U同步信号可以被配置。LTE-U同步信号配置可被指示。例如,WTRU可被配置成具有和/或可以隐性和/或显性地接收以下的一项或多项:可被分配给和/或用于LTE-U同步信号的所配置的频率和/或时间资源的标识以及其他适用的重复信息;或是LTE-U同步信号的存在或即将存在的指示。
LTE-U同步信号配置/指示可用于代表LTE-U同步信号的资源分配和/或存在指示。WTRU可以接收一个配置(例如LTE-U同步信号配置/指示)。该配置可以指示一个或多个资源元素将被小区用于传送异步信号传输。资源分配可以包括重复。资源分配和/或存在指示可以由eNB提供和/或由WTRU接收(例如单独或共同)。该资源分配和/或存在指示可以使用相同或不同的信令。举例来说,资源分配可以通过较高层信令来提供。作为示例,存在指示可以通过物理层信令来提供。作为示例,当WTRU可以用盲检测来确定LTE-U同步信号的存在,那么可以不提供和/或使用存在指示。并且作为示例,当LTE-U同步信号可以定期出现,例如周期性出现或者在已知或所配置的间隔出现,那么可以不提供和/或使用存在指示。
LTE-U同步信号可以包括小区专用配置和/或指示。LTE-U同步信号资源分配可以是小区专用的。被配置了LTE-U小区的两个或更多WTRU可以接收相同的LTE-U同步信号资源分配。被配置了LTE-U小区的两个或更多WTRU可以预期处于相同的时间和/或频率资源位置的LTE-U同步信号。
存在指示可以用小区专用的方式提供(例如借助具有公共RNTI的DCI格式)。作为示例,即使没有用于WTRU的DL数据,小区专用的存在指示也能使WTRU同步于LTE-U小区或是与之保持同步。
LTE-U同步信号可以是WTRU专用的,例如按需。被配置了LTE-U小区的两个或更多WTRU可以接收相同或不同的WTRU专用的LTE-U同步信号资源分配。具有不同资源分配的两个或更多WTRU可以预期处于不同时间和/或频率位置的LTE-U同步信号。
WTRU专用的LTE-U同步信号可被用在一个或多个场景中。例如,当LTE-U同步信号是为了一个或多个特定的WTRU而被执行了波束成形和/或预编码时,这时可以使用WTRU专用的LTE-U同步信号。WTRU专用的LTE-U同步信号可以在一组WTRU接收LTE-U同步信号的时候使用,由此,没有预定数据的其他WTRU不会尝试检测和/或解码LTE-U同步信号。
存在指示可以用WTRU专用的方式来提供,例如借助具有WTRU专用的RNTI(例如C-RNTI或别的RNTI)或是用于WTRU群组的RNTI的DCI格式来提供。WTRU专用的存在指示可以以DL数据在出现LTE-U同步信号或是其后不久所针对的一个或多个WTRU为目标。通过提供WTRU专用的存在指示,能够使得一个或多个WTRU执行一个或多个测量,报告一个或多个测量,和/或与LTE-U小区进行同步或保持同步。
两个或更多LTE-U同步信号配置/指示机制可以是不同的,并且作为示例,这一点取决于WTRU是否支持盲检测LTE-U同步信号,和/或LTE-U同步信号是否以周期性的方式或者在已知或已配置的间隔出现。
例如,对于LAA的情况来说,WTRU可以借助相关联或聚合的PCell来从eNB接收LTE-U同步信号配置/指示。
WTRU可以借助物理层和/或较高层信令、例如借助PCell DL许可(例如借助于跨载波调度或类似机制)来从PCell接收LTE-U同步信号资源分配和/或存在指示。
LTE-U同步信号资源分配和/或存在指示可被包括在诸如PCell上的DCI格式之类的物理层信令中。WTRU可以在PCell监视DCI格式。所述DCI格式可以指示LTE-U同步信号和/或LTE-U数据/控制信号的存在或即将出现。
WTRU可以在PCell上接收关于LTE-U SCell的跨载波调度的DL许可。所述跨载波调度的DL许可可以向WTRU指示在LTE-U频带上可能存在(或者可能即将存在)LTE-U同步信号。所述跨载波调度的DL许可可以在LTE-U频带上为WTRU提供一个或多个DL资源的许可。
WTRU可以获知存在指示符与LTE-U同步信号的存在之间的时序关系。
LTE-U SCell有可能会与授权的PCell时移多个符号或时隙(作为示例,由此允许在接收许可数据前将WTRU时间与LTE-U小区同步)。
在接收到诸如DL许可之类的可以指示LTE-U同步信号的出现或即将出现的物理层信令的时候、在此之后或者响应于此,WTRU可以使用LTE-U同步信号来实现、保持或校正其与LTE-U小区的同步。所述WTRU可以尝试根据DL许可来接收DL数据。所尝试的接收可以与同步处理同时进行和/或在同步处理之后进行。所述同步可以使用LTE-U同步信号。
LTE-U同步信号资源分配可以是在DL许可(例如用于指示所要使用的预先定义或预先配置的资源分配集合)中或者通过其他技术接收的,例如借助于来自eNB的半静态RRC信令。
作为示例,WTRU可以依照关于子帧、时隙、OFDM符号、资源元素和/或PRB中的一个或多个的预先定义和/或预先配置的图案来接收LTE-U同步信号。所述预先定义和/或预先配置的图案可被称为LTE-U同步信号图案。
eNB可以提供一种配置。WTRU可以借助RRC信令之类的较高层信令来接收该配置。eNB可以定义或者可以配置一组图案。WTRU可以借助较高层信令来接收该组图案。物理层信令(例如在PCell上)可以指示在特定时间可应用哪种图案。
在LTE-U频带的活动时间中,WTRU可以根据LTE-U同步信号图案预期在LTE-U频带(例如信道)中存在LTE-U同步信号。
无论LTE-U小区是活动还是非活动的,WTRU都可以根据LTE-U同步信号图案预期在LTE-U频带中存在LTE-U同步信号。
一个或多个指示可以是隐性的。举例来说,eNB可以每XX+YY毫秒将LTE-U信号和/或同步信号发射一次和/或一次以上。XX和/或YY可以被配置的值,例如由eNB向WTRU用信号通告。YY可以是0或可以不使用。
WTRU可被配置成具有用于预期LTE-U同步信号的PRB集合。作为示例,当WTRU在从最近的LTE-U同步信号和/或先前活动时间开端和/或先前活动时间结束时起经过了XX毫秒之后没有接收到LTE-U同步信号的实例时,该WTRU可以在从最近的LTE-U同步信号和/或先前活动时间开端和/或先前活动时间结束时起的子帧XX+YY中预期LTE-U同步信号。
WTRU可以根据最近的活动时间来确定(例如推导)一个或多个信号特征。举例来说,多个可以是连续的LTE-U同步信号重复与用于最近一个活动时间的信号重复可以是相同的。多个可以是连续的LTE-U同步信号重复可以取决于从最近的活动时间时起经过的时间。举例来说,当经过的时间小于阈值(例如20毫秒)时,WTRU可以预期LTE-U同步信号的一个实例,例如没有LTE-U同步信号重复。作为示例,当经过的时间大于另一个阈值(例如100毫秒)时,WTRU可以预期LTE-U同步信号的多次重复(例如2次重复)。
WTRU可以周期性或者持续性地搜索和/或执行关于潜在的LTE-U同步信号的盲解码。WTRU可以搜索可能的LTE-U同步信号的集合。WTRU可以从该集合中的LTE-U同步信号的索引推导出一些信息。例如,考虑到盲检测处理的复杂度会随着检测场景的数量而增加,因此,对于LTE-U同步信号所做的盲检测处理可以接受有限数量的波形。
举例来说,WTRU可以为LTE-U频带确定(例如推导)OFDM符号、时隙、子帧和/或帧中的一个或多个的开端。作为示例,该确定可以取决于为LTE-U同步信号检测到的定时(例如WTRU的检测到的定时),例如异步DL定时。
LTE-U小区可以与一个或多个LTE-U小区和/或其他用户(例如WiFi用户)共享一个或多个频率资源,例如一个或多个PRB集合。两个或更多eNB可以在相同PRB集合(例如重叠资源)和/或不同的PRB集合(例如不重叠的资源)上发射LTE-U同步信号。
举例来说,不同的LTE-U eNB可以在不同的PRB集合和/或不同子帧中发射LTE-U同步信号。用于两个或更多同步信号的不同PRB集合和/或不同子帧使用可以确保不会出现用于同步信号传输的资源使用重叠。
用于传输和/或接收的信号可以围绕一个或多个信道资源来进行速率匹配。例如,LTE-U eNB可以围绕其他eNB的LTE-U同步信号来执行速率匹配。作为示例,诸如在一个或多个信道资源上执行“速率匹配”和/或围绕其执行“速率匹配”的术语可以用于指代或包含以一种跳过或者不使用一个或多个信道资源的方式来进行发射或接收。作为示例,一个或多个信道资源可以包括一个或多个RE、符号(例如SC-FDMA或OFDM符号)、PRB、子载波、载波、时隙、子帧等等。
发射机(例如可以执行发射或计划执行发射的eNB或WTRU)可以对一个或多个信道资源周围的信号(例如所发射或计划发射的信号)执行速率匹配。例如,WTRU可以围绕一个或多个资源元素来执行速率匹配。在接收到DL传输时,WTRU可以在一个或多个资源元素周围执行速率匹配。在一个示例中,对一个或多个信道资源周围的信号执行速率匹配可以指代或包括发射机不会执行发射和/或不会将一个或多个信道资源中映射DL(或UL)信号和/或将将所述信号映射到一个或多个信道资源。
WTRU可以围绕与同步信号传输相对应的一个或多个资源元素来执行速率匹配。当从第二小区接收下行链路传输时,WTRU可以围绕一个或多个资源元素来执行速率匹配。WTRU可以通过去映射下行链路传输的符号来执行围绕一个或多个资源元素的速率匹配。在去映射过程中可以跳过与同步信号传输相对应的一个或多个资源元素。WTRU可以在授权频带上从第一小区接收配置。所述配置可以指示哪些资源元素将被第三小区用于传输同步信号传输。可以在无线电资源控制(RRC)消息中接收配置。
接收机(例如可以执行接收或尝试执行接收的eNB或WTRU)可以在接收或尝试接收信号时对一个或多个信道资源进行速率匹配。围绕一个或多个信道资源的速率匹配可以包括其接收机不会预期、接收和/或解码一个或多个信道资源中的DL(或UL)信号的过程。接收机可以跳过一个或多个信道资源中的信号接收(或尝试信号接收)和/或用信号通告从一个或多个信道资源的去映射。
eNB可围绕一个或多个其他eNB的一个或多个LTE-U同步信号来执行速率匹配。举个例子,eNB可以围绕一个或多个其他eNB的DL信号(例如邻居eNB的同步和/或忙信号)的一个或多个(例如全部)信道资源(例如RE)来对DL信号(例如PDSCH和/或(E)PDCCH之类的数据和/或控制信号)执行速率匹配。例如,eNB不会在可能被邻居eNB的同步信号使用的一个或多个信道资源上发送DL信号(例如在可调度邻居eNB发射其同步信号的子帧和/或帧中)。作为示例,通过避开在与邻居同步信号相同的资源中进行传输,可以改进邻居同步信号的接收(例如通过由WTRU接收或尝试接收邻居的同步信号)。通过避免在供别的eNB使用的信道资源中进行传输,同样可以避免来自别的eNB的传输的干扰。
在用于LTE-U频带(例如信道)的活动时间期间,LTE-U eNB不会在诸如可供一个或多个其他LTE-U eNB传输诸如LTE-U同步信号之类的一个或多个信号的信道资源(例如PRB集合)上发射(和/或不会期望从诸如WTRU接收)信号,例如数据、控制和/或忙信号。在活动时间中,能在信道上与eNB通信的WTRU不会在可供一个或多个其他LTE-U eNB传输诸如LTE-U同步信号之类的一个或多个信号的信道资源(例如PRB集合)上期望接收(例如从eNB)和/或不会在其上发射信号,例如数据、控制和/或忙信号。eNB和/或WTRU可以围绕一个或多个信道资源(例如PRB集合)来执行速率匹配。
eNB可以接收和/或确定与一个或多个其他eNB(例如邻居eNB)有关的同步和/或忙信号信息。eNB可以确定一个或多个其他eNB(例如受相同运营商管理的一个或多个邻居eNB)的同步和/或忙信号的一个或多个信道资源的时间和/或频率位置。举例来说,eNB可以基于以下的一个或多个因素来确定另一个eNB的同步和/或忙信号。eNB可以基于从网络接收同步和/或忙信号信息来确定另一个eNB的同步和/或忙信号。eNB可以基于通过X2接口(例如从另一个eNB)接收到同步和/或忙信号信息来确定另一个eNB的同步和/或忙信号,作为示例,所述信号信息可以是主动提供或者是响应于来自所述eNB的针对同步和/或忙信号信息的请求。eNB可以基于接收、检测和/或解码另一个eNB的空中广播信号来确定另一个eNB的同步和/或盲信号。eNB可以基于接收来自一个或多个相连接的WTRU的同步和/或忙信号信息来确定另一个eNB的同步和/或忙信号。作为示例,WTRU可以确定eNB的同步和/或忙信号信息,例如通过接收、检测和/或解码eNB的空中广播信号来确定。空中广播信号可以包括同步和/或忙信号。
eNB可以对其围绕一个或多个其他eNB的同步和/或忙信号的信道资源的一个或多个已确定时间和/或频率位置的一个或多个DL信号(例如全部)执行速率匹配。
eNB可以向另一个eNB发送针对同步和/或忙信号的一个或多个信道资源的一个或多个时间和/或频率位置的请求。作为示例,该请求可以由eNB通过X2接口来发送。eNB可以向另一个eNB发送同步和/或忙信号的一个或多个信道资源的时间和/或频率位置,例如在未经请求的情况下发送或者响应于来自其他eNB的请求来发送。作为示例,所述时间和/或频率位置可以由eNB通过X2接口来发送。
eNB可以向WTRU发送针对另一个eNB的同步和/或忙信号的一个或多个信道资源的时间和/或频率位置的请求。作为示例,该请求可以由eNB借助诸如RRC信令之类的较高层信令来发送。WTRU可以将第一eNB的同步和/或忙信号的一个或多个信道资源的时间和/或频率位置发送给第二eNB,例如在未经请求的情况下发送或者响应于来自第二eNB的请求来发送。作为示例,所述信息可以由WTRU经由诸如RRC信令之类的较高层信令来发送。
作为示例,作为同步和/或忙信号的替换和/或补充,一个或多个其他信号和/或信道可以被使用。
可以提供eNB速率匹配和符号映射过程。举例来说,eNB可以对围绕可被邻居eNB使用的一个或多个RE的DL信号执行速率匹配,例如用于同步和/或忙信号。在一个示例中,在速率匹配过程中,eNB不会将(例如任何)数据和/或控制信号符号映射到正对DL信号执行速率匹配所围绕的一个或多个RE,例如可被邻居eNB用于其同步和/或忙信号的一个或多个RE。eNB可以在符号到RE映射过程中跳过可被邻居eNB用于同步和/或忙信号的一个或多个RE。作为示例,跳过一个或多个RE可以被执行,例如通过如果在下一个可用RE中不被跳过则放置被映射到RE的调制符号来执行,例如根据可以是固定、预先配置、已知或已确定的RE映射过程或规则。一个或多个被跳过的RE可以对应于同步信号传输。
eNB可以将数据和/或控制信号符号映射到可用于数据和/或控制信号映射的一个或多个可用RE。eNB可以将可能与诸如邻居eNB之类的另一个eNB的同步和/或忙信号重叠的(例如任何)RE视为不可用RE,和/或不会在其符号到RE的映射过程中使用该RE。举个例子,eNB可以(例如仅仅可以)将有可能是经过编码的、复值数据和/或控制符号的块映射到不可用于传输一个或多个其他eNB的同步和/或忙信号的资源元素(例如一个或多个PRB集合内的RE)。
不同的速率匹配配置(例如可供或者应该供信号围绕以进行速率匹配的不同布置资源)可能会影响到不同子帧的有用RE的总数。传输块大小可以取决于速率匹配配置。举个例子,传输块大小(TBS)可以基于MCS索引以及所应用的速率匹配配置的组合来确定。在另一个示例中,TBS可以与速率匹配配置无关。编码方案可以取决于TBS和速率匹配配置。
WTRU接收可以基于所应用的速率匹配和/或符号到RE映射。WTRU可以确定哪些信道资源可以以及哪些信道资源不可以携带计划由WTRU接收的复值符号(例如数据和/或控制符号)。作为示例,该确定可以作为DL信号接收的一部分来进行,其中可以围绕一个或多个信道资源(例如RE)来对所述DL信号执行速率匹配。
WTRU可以确定能被围绕以进行速率匹配(例如可在符号-RE映射过程中由eNB执行)的一个或多个信道的资源(例如RE)。作为示例,该确定可以作为接收DL信号传输的一部分来执行,其中可以围绕一个或多个信道资源(例如RE)来对所述DL传输执行速率匹配。例如,WTRU可以去映射DL传输的一个或多个符号。在去映射过程中可以跳过与同步信号传输相对应的一个或多个RE。该确定能使WTRU去映射一个或多个符号,例如反转eNB的符号到RE的映射。WTRU可以依照所述确定来去映射符号。作为示例,在去映射过程中,WTRU可以跳过已被确定跳过或者围绕进行速率匹配的一个或多个RE,例如在DL传输中。通过在速率匹配时跳过一个或多个RE,能使WTRU检测和/或解码所发射的数据和/或控制DL信号。
可以提供和/或使用可在DL传输被围绕进行速率匹配的资源的指示。该指示可以是半静态或动态的。
作为示例,WTRU可以基于eNB借助信令提供的配置或信息来确定可被围绕进行速率匹配的一个或多个信道资源,作为示例,该信令可以是物理层或RRC信令。
WTRU可以被配置成具有和/或被eNB或网络通过或者经由PCell通知可用于传输一个或多个其他LTE-U eNB的LTE-U同步和/或忙信号的信道资源(例如RE、PRB和/或子帧的集合)。WTRU可以例如基于或者根据所接收的配置或信息来确定围绕信道资源的速率匹配。
作为示例,具有可被eNB用于同步和/或忙信号的信道资源的配置和/或所述信道资源的标识可以是与具有可被或者应被执行速率匹配的信道资源的配置和/或所述信道资源的标识相同的。
举例来说,WTRU可以从(例如服务)eNB接收可供或者已供DL信道围绕以执行速率匹配的一个或多个信道资源(例如围绕RE进行速率匹配)的指示。该指示可以包括另一个eNB的同步和/或忙信号的一个或多个信道资源的指示。
WTRU可以被配置成具有和/或可以接收一个指示,所述指示可以包括供eNB对DL信号传输执行速率匹配的一个或多个时间和/或频率资源(例如RE)。WTRU可被配置成具有和/或可以接收一个指示,其中该指示可以包括可供WTRU从中确定可被eNB用以对DL信号传输执行速率匹配的一个或多个时间和/或频率资源(例如RE)的信息。作为示例,在DCI之类的较高层信令和/或物理层信令中可以向WTRU发送一个配置,例如与速率匹配相关的配置。
WTRU可以从eNB接收用于指示信道资源集合的指示,其中eNB可以在发射DL信号传输的时候围绕所述信道资源集合来执行速率匹配。该信道资源集合可以是周期性的。作为示例,一个配置可以包括一个或多个时间位置,一个或多个频率位置和/或信道资源的一个或多个传输特性。一个配置可以包括以下的一项或多项:帧或子帧的时段,帧偏移,例如用于起始帧的帧偏移,子帧索引或偏移,以及时隙或时隙偏移。一个配置可以包括以下的一项或多项:一个或多个无线电帧内的子帧索引,诸如处于子帧内的时隙索引,PRB和/或可以处于时隙内的PRB和/或子载波,和/或可以处于这些PRB和/或子载波内的一个或多个OFDM或SC-OFDM符号。作为示例,在接收和/或去映射来自eNB的DL信号的时候,WTRU可以(或者可以理解或者可被配置成)顾及围绕所指示或确定的时间和/或频率位置的速率匹配。
在一个示例中,WTRU可以接收关于xx个子帧的子帧指示(例如来自服务eNB),例如用于xx=40个子帧的40比特的位图。一个(例如每一个)比特可以指示40个子帧的时段中的相应子帧是否有可能包含了可能是由别的eNB发射的同步和/或忙信号。WTRU可以在诸如所指示的子帧内接收可用于别的eNB的同步和/或忙信号的RE的指示。作为示例,在子帧被指示成有可能会有别的eNB发射同步和/或忙信号时,例如在40比特子帧的位图提供了一个指示的时候,WTRU可以确定(例如借助配置)DL信号(例如来自服务eNB)可围绕子帧中的所配置和/或指示的一个或多个RE来进行速率匹配。
WTRU可以在诸如DL许可之类的DCI中接收可以标识或者可供WRTU用来确定可被围绕以执行关于DL信号的速率匹配的信道资源(例如与DL许可或是更晚或其他DL信号相关联的PDSCH)的指示。举个例子,WTRU可以在子帧n中接收指示围绕子帧n+m中的信道资源所速率匹配的DCI。m的值可以是固定值和/或为WTRU所知的。m的值可以在相同的DCI中指示给WTRU,或者可以通过较高层信令来配置。指示可以包含位图,所述位图指示的是不会被用于符号到RE映射和/或去映射的资源。WTRU可被配置成(例如以半静态的方式)具有一组可能的RE映射配置。作为示例,诸如DL许可之类的DCI可以包括一个指示(例如码点),以便指示WTRU可以在诸如子帧n或n+m中采用或使用所配置的何种映射。
WTRU可以区分来自不同eNB的两个或更多LTE-U同步信号,例如基于可被分配给两个或更多LTE-U同步信号或是可供其使用的信道资源(例如RE、PRB和/或子帧集合)来区分。
一个或多个资源可以用不同的子帧来共享。举例来说,WTRU可被配置成具有可能处于不同子帧中的一个或多个信道资源(例如RE或PRB集合),其中所述信道资源可以用于不同的LTE-U同步信号传输。
作为示例,单个PRB集合可以在一个或多个子帧、所有子帧或子帧集合中被分配给一个或多个LTE-U同步信号。两个或更多个LTE-U eNB可以为其LTE-U同步信号传输使用相同的PRB集合。然而,每一个LTE-U eNB可以在子帧的不同子集中执行传输。例如,在LTE-U频带的活动时间,LTE-U eNB可以在LTE-U频带上每4个子帧发射一次LTE-U同步信号。WTRU可以在子帧中预期来自LTE-U eNB的LTE-U同步信号,其中所述子帧中的两个LSB SFN比特可以等于mod(PCell_cell_ID,4)或者mod(SCell_cell_ID,4)。
一个或多个资源可以用不同的PRB集合来共享。WTRU可被配置成具有可供不同的LTE-U eNB用以在相同子帧内执行LTE-U同步信号传输的一个或多个信道资源(例如RE或PRB集合)。
举例来说,假设可以在一个或多个子帧、所有子帧或子帧集合中将N个PRB集合(例如四个PRB集合)分配给LTE-U同步信号传输。两个或更多LTE-U eNB有可能在同一个子帧中发射LTE-U同步信号。所述两个或更多LTE-U eNB可以在不同的PRB集合上发射LTE-U同步信号。在所配置的PRB集合中,WTRU可以在索引等于mod(PCell_cell_ID,4)或mod(SCell_cell_ID,4)的PRB集合中预期来自LTE-U eNB的LTE-U同步信号。
虽然这里的示例可以依照PRB资源来描述,但是这里描述的方法和技术也可适用于其他类型的资源使用方式。举例来说,可用于LTE-U同步信号传输、忙信号传输、数据传输等等的其他资源可以由资源元素(RE)、虚拟资源块(VRB)、子载波、子帧、码、其他时频资源等等来标识或限定。由此,这里公开的将PRB作为参考资源的示例同样适用于基于RE或其他类型的资源定义来限定资源的场景(反之亦然)。
第一eNB可以将数据和/或控制信号符号映射到可供第二eNB用来传输其同步和/或忙信号的一个或多个信道资源(例如RE)。第一eNB可以静默在被第二eNB使用的这些信道资源(例如RE)的一个或多个(例如全部)上的一个或多个信号传输(例如执行信号静默)。
作为示例,静默一个或多个信道资源(例如RE)上的传输可以通过丢弃(例如不会发射或以零功率发射)映射到一个或多个信道资源(例如RE)的一个或多个调制符号来执行。相同的信号的一个或多个其他RE不会受到被静默的RE的存在、位置和/或密度的影响。
WTRU可以确定和/或被显性和/或隐性地告知一个或多个静默信道资源(例如RE)在时间和/或频率中的位置。这里描述的一种或多种用于配置、通知或确定围绕信道资源的速率匹配的方法可以应用于一个或多个被静默的信道资源。
举个例子,对于可以获知诸如时间和频率位置之类的静默信道资源(例如RE)的WTRU来说,在将所接收的与这些信道资源(例如RE)相对应的信号采样用于接收和/或解码处理之前,例如在将所述信号采样传递到接收机和/或解码处理之前,该WTRU可以促使(例如迫使)所述信号采样为零。通过迫使所接收的一个或多个信号采样,可以提升接收机的性能,作为示例,这种提升可以通过在不传送有意义的信息的时候限制输入干扰和/或噪声等级来实现。
一个或多个LTE-U同步信号可以结合资源重叠来使用。WTRU可以在相同的PRB集合和/或子帧集合接收不同LTE-U eNB的两个或更多LTE-U同步信号。所述两个或更多LTE-U同步信号可以是在考虑了诸如CDM之类的正交原理的情况下配置的,由此,在存在来自其他LTE-U eNB且有可能造成干扰的LTE-U同步信号的情况下,WTRU仍旧可以检测其LTE-U同步信号。与CDM相关联的一种或多种技术和/或设计原理是可以应用的。举例来说,所应用的可以是针对不同eNB的信号的不同OCC和/或加扰。
可以提供LTE-U同步信号功率偏移的指示。举例来说,eNB可以发射具有某个功率等级的LTE-U同步信号。与其他DL信号相比,该功率等级有可能是不同的(例如更高或更低的功率等级)。eNB可以发射具有第一功率等级的第一LTE-U同步信号和具有第二功率等级的第二LTE-U同步信号。与其他DL信号(例如其他同步信号、PDSCH、(E)PDCCH、PHICH)相比存在区别(例如更高或更低)的LTE-U同步信号传输功率可以改进WTRU的同步、信道估计、检测和/或其他机制。
诸如同步信号之类的信号的功率等级可以对应于在时间和/或频率中受到限制的资源集合中发射(和/或接收)的总功率。作为示例,在时间上受到限制的资源集合可以包括在单个(或是一组或一定数量的)无线电帧、子帧、时隙、OFDM符号等等中指示和/或包含的一个或多个资源。作为示例,在频率上受到限制的资源集合可以包括在单个(或是一组或一定数量的)无线电信道、PRB、子载波等等中指示和/或包括的一个或多个资源。在时间和频率上受到限制的资源集合可以包括携带例如同步信号的信号的RE的集合。在时间和频率上受到限制的资源集合可以包括构成特定数量的PRB的OFDM和/或SC-FDMA符号集合。
作为示例,WTRU可以通过检测信号和/或测量其接收功率等级来确定信号的功率等级。WTRU可以基于从网络中的其他实体、例如从其eNB(例如服务eNB)接收的功率指示来确定信号的功率等级。
WTRU可以接收功率偏移的指示。该功率偏移可以包括LTE-U同步信号与一个或多个其他DL信号之间的功率偏移(或潜在功率偏移)。eNB或网络可以向WTRU提供一个指示,作为示例,该指示可以通过或者借助能与LTE-U小区关联或聚合的PCell来提供。指示可以被提供给WTRU或由其接收,这可以是动态地,例如经由DL控制信令,或可以是半静态地,例如经由较高层信令,例如RRC信令。
WTRU可以确定一个功率偏移。该功率偏移可以是在同步信号传输与一个或多个其它下行链路传输之间。WTRU可以基于该功率偏移来确定第二下行链路传输的功率等级。
WTRU可以将所接收的功率偏移确定成是诸如first_dl_signal和second_dl_signal这样的两个DL信号传输之间的功率等级差,其中作为示例,first_dl_signal可以是在接收(或传输second_dl_signal)之前被WTRU接收(或传送到WTRU)的。
WTRU可以确定所指示的功率偏移的first_dl_signal。例如,WTRU可以确定与所接收的功率偏移相对应的first_dl_signal可以是在接收功率偏移指示之前最后接收的同步信号。作为另一个示例,作为功率偏移指示的一部分,WTRU可以接收first_dl_signal的子帧、信号类型和/或所分配的资源的指示。
WTRU可以确定所指示的功率偏移的second_dl_signal。举例来说,在接收到功率偏移指示之后,WTRU可以确定与所接收的功率偏移相对应的second_dl_signal包含接下来接收的DL信号(例如PDSCH、(E)PDCCH)。在另一个示例中,举例来说,作为功率偏移指示的一部分,WTRU可以接收second_dl_signal的子帧、信号类型和/或所分配的资源的指示。
举例来说,作为DL许可的一部分,WTRU可以接收功率偏移的指示(例如功率偏移)。作为示例,功率偏移可被解释成是与LTE-U同步信号的功率相比的数据信号(或是控制或参考信号)可被减小的功率量。作为示例,功率偏移可被确定成是诸如first_dl_signal和seoncd_dl_signal之类的相应信号之间的功率等级(例如每个PRB的发射功率等级)的差。WTRU可以将first_dl_signal确定(例如解释)成是在接收功率偏移指示之前最后接收的同步信号。WTRU可以借助测量来确定同步信号功率等级。WTRU可以将seoncd_dl_signal解释成是下一个PDSCH(或(E)PDCCH)信号。WTRU可以将second_dl_signal(例如下一个PDSCH)的功率等级确定成是测量得到的first_dl_signal(例如最近的同步信号)的功率等级与所指示的功率偏移等级的总和。该总和可以通过first_dl_signal和seoncd_dl_signal的资源块(例如PRB)的数量来缩放和/或调整。WTRU可以使用所指示的功率偏移,例如使用LTE-U同步信号的功率等级和/或数据(或控制或参考)信号的功率等级来确定另一个信号的功率。
在接收到功率偏移指示之后,WTRU可以将first_dl_signal解释成是下一个同步信号。WTRU可以测量同步信号功率等级。下一个同步信号可以在second_dl_signal之前,与其在时间上重叠,或与之处于相同子帧中。
WTRU可以接收LTE-U同步信号的功率等级的指示。WTRU可以接收一个或多个控制和/或数据信号的功率等级的指示。
WTRU可以执行频率估计、定时估计和/或同步(例如通过使用同步信号)。WTRU可以使用同步信号来执行信道估计。WTRU可以使用同步信号来执行相干解调和/或符号缩放。举例来说,WTRU可以使用同步信号来执行信道估计。WTRU可以使用所估计的信道和/或同步信号与数据/控制信号之间的所指示的功率偏移(例如,在执行符号去映射之前、在执行软信息计算之前,在执行比特概率计算之前和/或执行信道解码过程之前的任何其他过程之前恰当地缩放检测到的符号)。
WTRU可以执行频率和/或定时估计。所述频率和/或定时估计可以基于同步信号传输。WTRU可以执行解调和/或资源符号缩放。所述解调和/或资源符号缩放可基于同步信号传输。
不同的网络和/或运营商使用LAA信道有可能会导致LAA信道中发生小区(例如SCell)间的小区ID冲突。通过确定小区ID,可以避免或减少小区ID冲突。举例来说,LAASCell的小区ID可以基于以下的一项或多项来确定:eNB的标识符,例如小区ID,eNB的PCell的小区ID,eNB的运营商,供eNB使用的授权频带的中心频率,供LAA SCell使用的无授权频带的中心频率,或是随机种子等等。
小区ID可以在部署LAA SCell时被确定。LAA SCell的小区ID可以是在使用、计划使用或部署LAA SCell的时候得到的。eNB可以自主选择LAA SCell的小区ID。
对于可以由LAA SCell提供服务的WTRU来说,该WTRU可以经由PCell而被告知采取与LAA SCell相对的行动的定时。作为示例,可由PCell提供的信息可以包括LAA SCell的小区ID和/或此类小区ID何时可以应用于LAA SCell或是供其使用的定时。举例来说,WTRU可被配置成具有LAA SCell,和/或何时会发生诸如同步、测量和/或PDSCH传输之类的行动的指示。能为LAA SCell采用的一个或多个WTRU行动可以是之前调度的。该调度可以是隐性或显性的。WTRU可以在(例如仅仅在)接收到小区ID的指示之后和/或可以在小区ID所适用的时间之后预期来自使用了某个小区ID的LAA SCell的信号,其中小区ID所适用的时间可以是由eNB借助PCell提供或配置的。至于同步或测量,WTRU可以(例如可以仅仅)在PCell指示的有效时间使用RS采样。如果在PCell指示的某些时间使用RS采样,那么将能使单个LAA信道中受不同eNB控制的多个LAA SCell重用相同的小区ID。作为示例,由于与WTRU的配置的LAA SCell使用相同小区ID的其他LAA SCell发射的信号不会被WTRU认为有效的时间出现,因此,在WTRU上不会出现小区ID混乱。
小区ID可以采用分布的方式来配置。当eNB可以使用、打算使用或部署LAA SCell时,该eNB可以选择小区ID。通过选择该小区ID,可以避免LAA信道内部发生冲突。举例来说,对于可以配置LAA SCell的eNB来说,该eNB可能会使用这里描述的信息交换消息来与其他eNB进行通信或协商,以使该eNB能够选择在诸如地理区域内部和/或LAA信道上尚未使用的小区ID。这种通信或协商可以借助广播来执行。举例来说,eNB可以广播为LAA SCell选择的小区ID。该广播消息可以位于LAA信道(有可能是小区工作时所在的LAA信道)和/或授权频谱上。一个或多个其他(例如邻近)eNB可以做出答复,由此有可能指示是否会与它们部署的LAA SCell之一发生冲突。
在使用或部署LAA SCell之前,eNB可以在LAA信道上执行监听,作为示例,它可以通过发现过程来尝试确定有可能被部署在LAA信道上的小区的小区ID。eNB可以使用不会与当前部署的LAA SCell发生冲突的另一个小区ID。如果eNB可以确定LAA SCell(或小区ID)在某个(例如预先配置的)时间量上不会在LAA信道上处于活动状态,那么eNB可以确定该小区ID不再处于使用之中。该eNB可以将小区ID用于其使用或部署的LAA SCell。
小区ID是可以动态配置/指示的。对于与LAA SCell相关的WTRU行动来说,可调度此类行动的PCell可以指示所要使用或采取的小区ID。虚拟小区ID可以被使用。作为示例,LAASCell可以在活动时间之间更改小区ID。WTRU可以知道或者不知道新的小区ID是否代表的是先前使用过旧小区ID的小区。作为示例,旧小区ID与新小区ID之间的准协同定位可被提供给WTRU或者在WTRU中配置,以便能够实现更快的同步。举例来说,在先前测量时机进行的测量可以结合当前测量来使用。小区ID(或虚拟小区ID)跳变可以是预先配置的,并且WTRU可以获知小区ID(或虚拟小区ID)跳变序列,并且可以在未被动态指示新的(虚拟)小区ID的情况下正确地运作。
LAA SCell可以使用信道跳变。举例来说,eNB可以在多个信道上部署LAA SCell。在特定时间,LAA SCell可以在(例如仅仅在)单个信道上是活动的。除了中心频率之外,LAASCell的配置可以保持一致。举例来说,无论每一个活动时间的LAA信道是怎样的,LAASCell的小区ID都可以保持恒定。LAA SCell的小区ID可以基于时间和/或LAA信道,并且可以每活动时间而改变。WTRU可以获知活动时间、LAA信道与小区ID之间的关系。WTRU可以接收或可以不接收动态指示。与新的活动时间相关的LAA SCell的小区ID可被指示给WTRU。WTRU可以使用此类信息来确定LAA SCell是活动的所在的LAA信道。
一个或多个eNB使用一个或多个LAA信道和/或在其中工作。对于可以使用LAA信道和/或在其中工作的eNB来说,所述eNB可被认为具有、使用或操作LAA小区,例如LAA SCell。属于一个eNB的LAA小区或SCell可以与属于另一个eNB的另一个LAA小区或SCell竞争LAA信道的资源。这种竞争可以是与该信道的其他用户的竞争的补充或替换,该用户例如是WiFi用户或雷达。
作为示例,多个eNB可以共享信息和/或LAA信道,以便能在彼此之间以及与其他用户之间公平和/或有效地使用LAA信道。LAA信道可以被一个或多个eNB共享和/或使用,其中所述一个或多个eNB可以与不同的运营商相关联。举例来说,LAA信道可以同时被一个或多个eNB以TDM的方式和/或FDM的方式共享和/或使用。
在一些示例中,术语通信和协商是可以互换使用的。
LAA小区的参数可被传递。eNB可以部署或操作处于相同或不同无授权信道上的一个或多个LAA小区或SCell。eNB可以获取可供其监视业务量的无授权信道的列表。此类监视能使eNB或是一个或多个LAA小区或SCell获取一个或多个信道,例如用于下行链路传输的信道。
eNB可以使用或者希望或打算使用LAA信道。举例来说,所述eNB可以通过通信和/或协商(例如与可以或同样可以使用或者打算使用所述信道的别的eNB)来获取或者确定一个或多个LAA小区参数。所述一个或多个LAA小区参数可供所述eNB或其他eNB用于与该信道相关联的小区(例如LAA SCell)。
LAA小区参数可以包括以下的一个或多个:小区ID(例如LAA小区的小区ID),同步信号配置或信息,参考信号配置或信息,忙信号配置或信息,和/或活动时间配置或信息。
同步信号配置或信息可以包括与可供小区用于传输同步信号的资源有关的信息。
参考信号配置或信息可以包括与能在小区中传送的参考信号(例如CRS,CSI-RS,CSI-IM,DM-RS,PRS)有关的信息,例如在该小区中可以传送哪些参考信号,和/或与可供该小区使用以传输一个或多个(例如每一个)参考信号的资源有关的信息。
忙信号配置或信息可以包括与可被小区用于传输忙信号的资源有关的信息。
与用于传输(例如同步信号、参考信号和/或忙信号的传输)的资源有关的信息可以包括但不限于以下的一项或多项:RE映射,子帧配置和/或偏移,正交覆盖码(OCC),循环移位,随机序列生成器参数,一个或多个相关PRB等等。
活动时间配置或信息可以包括时机或图案(或是多个图案),其中所述时机或图案指示的是LAA小区(例如SCell)可能变成或尝试变成活动状态或启动的时机,或者eNB开启或尝试开启(置于活动状态)LAA小区(例如SCell)的时机。对于eNB。例如可以监视LAA信道的eNB来说,该eNB可以确定或协商(与一个或多个其他eNB)可供其尝试获取信道并且可将LAA小区(例如SCell)置于活动状态或是将其启动的时间实例(或时机)。
开启或活动的LAA小区可以发射一个或多个同步信号,可以发射一个或多个参考信号,可以发射一个或多个忙信号,和/或发射DL数据和/或控制信号。
eNB可以确定或者获取与别的eNB何时可以使用或尝试使用LAA信道有关的信息(例如活时间配置或信息)。所述eNB不会在全部的所述时间或是所述时间的一部分中尝试获取该信道。作为示例,这样做将不会在信道有可能繁忙的时候尝试获取该信道,由此可以节约电力。这样可以降低冲突尝试获取信道的概率。
WTRU可被配置成具有LAA SCell。该配置可以与在WTRU上激活SCell(例如LAASCell)相一致。在WTRU上可以对参数进行配置。这些参数能使WTRU被LAA SCell服务。所述参数可以包括一个或多个LAA小区参数。作为示例,LAA小区参数的值可以是(或者有可能已经)由eNB基于与另一个eNB的通信或信息交换协商、获取或确定的。LAA小区参数的值可以是或者不是与提供给WTRU(例如由eNB)或是在WTRU中配置的值相同的值。举例来说,eNB可以获得或确定用于传输同步信号的某个或某些资源。所述eNB可以为WTRU配置资源,其中所述资源与所述某些资源可以是相同的,不同的(或局部不同的),重叠的,或者可以是所述某些资源的子集。
eNB可以将WTRU配置成具有介于诸如LAA SCell和PCell之间的一个或多个准共同定位(QCL)假设或假设集合。QCL假设可以针对延迟扩展,平均延迟,多普勒扩展和多普勒频移中的一个或多个。WTRU可被配置成具有由多个QCL假设组成的集合,作为示例,所述配置可以是采用动态或半静态的方式进行。
LAA小区是可以撤销的。举例来说,当eNB不会(例如不再)使用或者不计划使用LAA信道,那么eNB可以撤销相应的LAA SCell。举例来说,当eNB可以停止监视某个LAA信道时,所述eNB可以撤销被该eNB配置成在某个LAA信道中使用或工作的SCell。
这种撤销可能意味着可以释放为LAA SCell配置和/或保留的一个或多个(例如全部)资源。LAA SCell或eNB可以向可能使用受影响的LAA信道或者在该信道上工作的一个或多个LAASCell(例如相邻LAA SCell)指示其有可能会释放LAA SCell和/或其一个或多个(例如所有)资源。
eNB可以基于以下的一项或多项来从LAA信道中撤销LAASCell:信道拥塞,业务量负载,获取信道的失败尝试次数,竞争LAA信道的eNB或小区的数量,干扰测量,和/或获取信道的过程中的典型、平均或峰值延迟中的一个或多个。所述一个或多个标准可以由eNB和/或WTRU测量或确定。由WTRU测量或确定的一个或多个标准可以由所述WTRU用信号通告给eNB。如果所述一个或多个标准超出或低于某个阈值,那么eNB可以撤销LAA SCell。
eNB可以确定有可能在LAA信道上工作的竞争部署和/或处于活动状态的LAASCell的数量。如果eNB确定竞争过多(例如信道中的其他LAA SCell过多),那么eNB将不会使用该信道,或者可以从该信道中撤销LAA SCell。
举例来说,如果相同LAA信道中的竞争LAA SCell的数量少于x,那么LAA SCell可被部署成在LAA信道上工作(例如仅仅在其上工作)。当第一LAA SCell(例如第一LAA SCell的eNB)确定新的LAA SCell已经进入LAA信道(例如已被部署在该信道和/或已在该信道活动)和/或竞争的LAA SCell的总数可能(或现在可能)超出某个阈值时,这时可以撤销所述第一LAA SCell。
第一LAA SCell(例如第一LAA SCell的eNB)可以就资源而与第二LAA SCell(例如第二LAA SCell的eNB)进行协商(例如就LAA信道的关键性或高重要性的用途进行协商)。基于该协商,LAA SCell或eNB中的一个或多个可以确定没有足够资源来满足调度需求,并且可以从LAA信道中撤销LAA SCell(例如没有足够的LAA信道资源的LAA SCell)。
作为示例,LAA小区可以是意图在该信道中使用所述小区的情况下配置或部署的。所描述的与撤销有关的一个或多个示例可以应用于配置或部署小区的处理,其中该处理的决策制定标准与所描述的标准可以是相同或相反的(举例来说,超出阈值可被替换为低于阈值,不足以可被替换成足以等等)。
LAA信道信息是可以交换的。举例来说,eNB可以共享与其当前或者将来使用一个或多个LAA信道有关的信息。这种信息交换可以用于这里描述的LAA SCell之间的资源协商或共享。
eNB之间的信息交换可以借助于X2或是类似于X2的接口。该信息交换可以是主动的(举例来说,eNB可以在因为使用LAA信道而导致出现问题之前将信息传送到另一个(例如相邻)eNB)或反应性的(例如,一旦因为使用LAA信道而导致出现了问题,则eNB可以向另一个(例如相邻)eNB传送信息)。
eNB之间的信息交换可以借助于广播消息。信息的空中广播可被用于传送与诸如eNB或LAA小区当前或未来使用一个或多个LAA信道有关的信息。这种消息可以是单向的。
所广播的消息可以触发受所包含的信息影响的相邻小区对所述广播信息做出响应,这种响应可以通过其自身的广播消息或者通过这里描述的其他任何手段来做出。
该消息可以是从PCell或是使用授权频谱的小区广播的。广播消息可以与使用一个或多个LAA信道相关。该广播消息可以源自LAA SCell(或是使用无授权频带的小区)。借助广播信息交换的信息可以与LAA SCell(或是LAA SCell使用的LAA信道)相关联(例如仅仅与之关联)。
广播消息可被包含在MIB和/或SIB中。LAA MIB和/或SIB传输可以用于传送这些消息。举例来说,当LAA SCell已经获取了信道时,这时可以在资源子集中传送MIB和/或SIB。作为示例,MIB和/或SIB可以是在某些子帧(例如子帧子集或是所有子帧)中传送的,并且可以是在一个或多个RB或子载波中传送的,其中所述RB有可能是中心RB的群组或是中心RB中的子载波。
MIB和/或SIB资源可被半静态地指配给LAA SCell,并且可以限制与同时操作的LAA SCell产生的冲突。所述MIB和/或SIB可以在LAASCell处于(或未处于)活动状态的时候被发射。MIB和/或SIB可以使用重复编码。举例来说,在活动时间内每x个子帧可以将包含在MIB和/或SIB中的消息重复一次。
在每一个LAA信道上都可以保留资源。在信道上部署的LAASCell可被分配一组这样的资源,以便向邻居LAASCell广播与LAA信道的当前或将来使用相关的信息。举例来说,一个或多个符号/时隙/子帧以及子载波/PRB/子频带可被保留。LAASCell可以控制这样的资源,例如通过先前成功获取LAA信道或者通过协商此类资源的半静态拥有权来控制。LAASCell可以广播相关的信息。
广播消息可以使用LAASCell专用的参考信号,其中该信号能使WTRU或其他LAASCell解调所述消息。举例来说,广播消息可以是在一个或多个天线端口上发射的,和/或可以使用预先配置的预编码和/或类似于CRS的信号来执行解调。作为示例,加扰和/或跳频可被用在广播消息上,以便减小对附近的LAASCell以及其他RAT接入点的干扰以及来自所述LAASCell和接入点的干扰的影响。
特定的资源有可能与LAASCell获取或可能获取到LAA信道的时间相联系。LAASCell可以在此类资源中传送广播消息。举例来说,LAA SCell可以在获取到频道之后的第x个符号中发射所广播的消息。
L1信令或信道可被用于信息交换。关于LAA信道的当前或未来使用的信息可以由(或者通过使用)一个或多个L1信号或信道来指示。忙信号、一个或多个同步信号和/或参考信号等等可以指示相关的信息。信号和/或信道的参数可以指示与LAA信道的当前或未来使用有关的信息。举例来说,第一组RE上的传输可以指示第一信息交换消息,第二组RE上的传输可以指示第二信息交换消息,并且这两组RE上的传输都可以指示第三信息交换消息。对于可用于指示与LAA SCell使用一个或多个LAA信道有关的信息的信号参数来说,该信号参数可以包括但不局限于:与子帧结合使用的资源,可用于产生信号序列的(虚拟)小区ID,信号的循环移位,信号的正交覆盖码,和/或可以发射信号的天线端口。作为示例,用于发射信号的RB、符号或RE可以指示的特定的信号。
举例来说,参考信号(RS)可被配置成具有一组可能的传输资源(例如RE映射,PRB集合,伪随机序列,OCC等等),并且用于传输RS的特定资源集合的使用可以向相邻小区通告相关的信息。
举个例子,对于可以在LAA SCell释放LAA信道和/或切换到无活动状态(或是休眠)之前的某个(例如最后一个)子帧中发送的RS来说,所述RS可以使用一个资源集合。而在另一个(例如其他任何)子帧中发送的相同(或另一个)RS则会使用另一个资源集合。eNB或小区可以监视所述RS,和/或可以使用另一个(例如邻居)LAA小区的RS的位置来确定其他LAA小区使用或计划释放所述信道。
在活动时间中的最后一个子帧供RS使用的资源可以指示LAA SCell在转到休眠状态是否保持部署状态,或者其是否会丢弃LAA信道。用于在LAA SCell变成活动状态时发送的同步信号的资源可以指示其保持活动状态的时间长度。用于在活动时间开端发射忙信号或同步信号的资源可以指示可以在该活动时间或是以后的活动时间保留和/或使用的资源。这样做能够让不同的LAA SCell并发或同时使用LAA。
L1信号和/或信道可用于交换与LAA信道的当前或未来使用有关的信息。此类信息可以在信道/信号内显性指示(例如通过信道/信号内的编码信息元素)。此类信息可以采用与提上针对某些信号所说明的方式相类似的方式来指示。信道可以借助(E)PDCCH来调度,并且有可能通过使用新的DCI格式来调度。举例来说,信道参数可以采用能够使用RNTI检测的DCI格式来指示。RNTI可以由LAA SCell在一个或多个LAA信道上使用,或者可以是LAASCell专用的。RNTI可以是在LAASCell部署时配置的。用于调度信道上的消息传输的(E)PDCCH可以指示如以下各项的信息,但是并不局限如此:用于新信道上的消息传输的资源(例如RB),与(E)PDCCH传输相关的消息定时,调制和编码方案,和/或解调参考信号参数(例如天线端口、正交覆盖码、循环移位、准协同位置假设、预编码器、解调参考信号与其他参考信号之间的发射功率比)。作为示例,与(E)PDCCH传输相关的消息定时可以指示所述消息可以与(E)PDCCH在相同的子帧中传送。与(E)PDCCH传输相关的消息定时可以指示所述消息有可能是在传输了(E)PDCCH之后的可能已被指示或是预先配置的子帧中传送的。
信道可以包括控制区域,其中所述控制区域表明所调度的信息交换消息的参数是可以被指示。包括在信道的控制区域中的参数可以是在这里为(E)PDCCH描述的任何参数。LAA SCell可以将信道的一部分(例如RB或RE集合)预先配置给控制信息。
与信道相关联的资源可以基于子TTI来分配。举例来说,该信道可以是在TTI中的两个时隙之一发射的。所述信道可被定义在时隙内的一组符号上。该信道可被定义在跨越了多个时隙和/或子帧的符号集合上。用于所述信道的传输功率可以不同于用于其他信道的传输功率。信道的控制区域可以指示信道与也许是一个或多个的其他信号和/或信道之间的传输功率偏移。该信道可以包括一些专用于传输解调参考信号的RE。
LAA SCell可以发射信标,以便传送与其当前或未来使用LAA信道的有关的信息。此类信标可以在预先配置的时间发射。该信标可以是在LAA SCell未处于活动模式的时候发射的。在信标与使用LAA信道的其他LAA SCell(或其他RAT)之间有可能会发生冲突。此类信标可以在共享LAA信道的已部署LAASCell之间先前协商的资源上传送。在其他LAASCell发射其信标时处于活动状态的LAA SCell可以使用供所述信标使用的资源上的空白图案。这样做可以限制其WTRU遭遇到的干扰。
对于活动的LAA SCell或其他任何LAASCell执行的信标传输来说,LAA信道的一些资源可以是固定的。例如,信标可以是由活动的LAASCell在预先配置以及有可能固定或可变的时间实例(一个或多个OFDM符号,一个或多个时隙,一个或多个子帧)以及子载波集合上传送的。该信标可以包含关于发射它的LAASCell的指示(例如小区ID)。一些资源可被保留并被当前部署但处于休眠的其他LAA SCell用作信标。为了避免在多个休眠的LAA SCell之间发生冲突,可以基于LAA SCell的小区ID来确定特定的资源(例如RE或OCC)。无论LAASCell处于活动还是休眠状态,信标都可以具有基于LAA SCell的参数(例如小区ID)所确定的资源。
信息可以经由一个或多个WTRU来交换。WTRU可以充当多个eNB之间的信息交换的中介。eNB可以为WTRU配置LAA SCell,并且通过这种配置,WTRU可被指示侦听共享相同LAA信道的一个或多个LAA SCell正在发射的可能的信息消息。WTRU侦听的消息可以将上述任一方法用于信息交换。例如,WTRU可以侦听相邻LAA SCell广播消息,其中该消息提供了与LAA信道的使用有关的信息。WTRU可被提供UL资源,以便报告它从一个或多个相邻LAASCell的广播消息中收集的信息,其中所述UL资源可以是以针对其PCell的UL许可的形式。
WTRU收集的信息可以由相邻的LAA SCell被动传送。信息的被动传输意味着相邻的LAA SCcell没有主动尝试与其他LAA SCcell交换信息,但其当前在LAA信道中的行为能使WTRU或其他LAA SCell对其使用LAA信道的情况做出假设。举例来说,WTRU可以执行发现,并且可以对相邻LAA SCell传输进行测量。WTRU可以反馈所述测量。基于该测量,WTRU的服务小区可以使用LAA信道和/或所配置的LAA SCell通常使用LAA信道的参数来确定特定LAASCell的参数。举例来说,WTRU可被配置具有关于相邻LAA SCell的测量。作为示例,WTRU可被给予一个阈值,并且可以确定相邻LAA SCell执行传输的时间量,其中该时间量会产生一个大于阈值的测量。这样则能使WTRU并且作为扩展能使eNB确定相邻LAA SCell的活动等级。
WTRU可被给予来自其服务小区的信息,以便于其他eNB共享。举例来说,WTRU可被提供与其PCell当前或未来使用LAA SCell有关的信息。此外,WTRU可被给予资源,以便尝试连接到相邻小区(在授权频带和/或无授权频带中,如果无授权频带允许UL传输)。此类资源可以包括小区ID,物理随机接入信道(PRACH)参数(前导码和资源),定时参考,并且有可能包括UL许可。WTRU可以通过在授权频带中连接到相邻小区来启用信息交换。服务小区可以知道LAA信道中的相邻LAA SCell的小区ID。服务小区有可能知道或者不知道由相同eNB操作的恰当的授权小区。服务小区会基于LAA SCell的小区ID和其有关的授权频带PCell之间的关系来确定恰当的授权小区。WTRU可以尝试连接到一个或多个相邻小区,以便发射该信息。WTRU可以借助UL资源来传送用于其服务小区(或是其服务eNB的一个或多个LAA SCell)的信息。相邻小区可以通过侦听此类资源来确定是否正在交换任何相关信息。WTRU的传输可以包括所述信息所源于的LAA SCell(或eNB)的标识符,和/或所述信息计划用于的LAASCell的标识符。
WTRU可以通过与相邻eNB进行通信来开始在服务eNB与相邻eNB之间建立直接链路。例如,WTRU可以向相邻小区发射相关信息(例如服务小区ID),并且相邻小区可以建立与服务小区对接的接口,以便交换信息。
用于在两个eNB之间交换信息的消息能够有效使用一个或多个LAA信道。在这里,术语消息和指示是可以互换使用的,并且可以指代源自eNB(或是已部署的LAA SCell)且可以被另一个eNB(或是另一个已部署的LAA SCell)使用的任何信息。这个消息或指示可以包括与一个或多个LAA信道的当前或未来使用有关的任何信息,并且在这里将会进一步描述这些内容。
在eNB之间可以周期性地传送消息。举例来说,在部署LAA SCell的时候,eNB可以借助这里描述的一个或多个接口来开始周期性地传送其LAA信道使用。这种周期性的消息传输可以是单向的。例如,eNB不会预期来自相邻eNB的任何答复。周期性的消息传输会导致来自相邻eNB的周期性或非周期性的答复。作为示例,该消息可以是非周期性的,例如单次的消息传输。eNB可以在消息中传送相关信息,并且可以预期或者不预期来自相邻eNB的答复(例如应答)。
信息交换消息可以(例如可以始终)是在部署LAA SCell的时候传送的(可能无论LAA SCell是活动还是休眠的)。该消息可以仅仅在休眠状态或活动状态中的一种状态中传送。为活动状态中的信息交换和休眠状态中的信息交换所配置的可以是不同的资源或接口集合。
所述消息可以通过由eNB发送消息来触发。举例来说,eNB可能希望借助LAA SCell来向相邻eNB告知其当前使用LAA信道,并且可以发射消息。该消息可以由另一个eNB提示。作为示例,第一eNB可能希望知道第二eNB的状态(例如信道监视集合)。第一eNB可以发送触发消息,该触发消息可以提示其他eNB发射指示其状态的消息。该触发消息本身可以视为信息交换消息。该触发消息可能导致消息答复的单次传输,和/或有可能触发所述消息的周期性传输。
消息参数可以取决于LAA SCell的活动或无活动(例如休眠)状态。举例来说,休眠小区可以在被提示的时候传送消息。活动小区可以周期性地传送消息。周期性消息的定时可以与PCell相对,和/或可以是相对于LAA SCell的定时的。举例来说,与PCell异步(并且其定时在活动时间中可以取决于LAA SCell获取LAA信道并且变成活动状态的时间)的LAASCell可以依照获取LAA信道的时间来传送信息交换消息。
所述消息可以用于传达与一个或多个LAA信道的当前或未来使用有关的信息。该消息可以借助如这里所述的接口或机制来传送。所述消息可以源自以下的一个或多个:具有一个或多个已被部署且当前在LAA信道中处于活动状态的LAA SCell的eNB,具有一个或多个已被部署且当前在LAA信道中处于休眠状态的LAA SCell的eNB,在一个或多个LAA信道中不具有已部署LAA的SCell的eNB,LAA小区或SCell,诸如PCell之类的授权频谱中的小区,等等。
对于包含在两个或更多eNB(或LAA SCell)之间传送的消息内的信息来说,所述信息能够实现公平有效地使用一个(或多个)LAA信道。该消息中的信息可用于单向传输。举例来说,该消息可以指示一个eNB当前或将来使用LAA信道。该消息中的信息可用于双向传输。例如,该信息可以能够实施多个eNB之间的协商,由此实现一个或多个LAA信道的公平有效的使用。
信息交换消息可以包括所述信息交换消息的来源的标识符(例如小区ID)。例如处于授权频谱中的eNB小区或是LAA SCell的小区ID。所述消息可以或者还可以包括已可能处于多个LAA信道上的已部署的LAA SCell的列表。该列表可以包括最近撤销的LAA SCell(或是即将撤销的LAASCell)。这样做能使邻居eNB或LAA SCell跟踪LAA信道中的业务量。
该信息交换消息可以包括消息的预定目的地的标识符(例如小区ID)。例如处于授权频谱中的目的地eNB小区的小区ID或是一个或多个LAA SCell的小区ID。
信息交换消息可以包括信道监视集合。eNB可以指示(例如向相邻eNB)其信道监视集合。作为示例,所述消息可以包括eNB有可能正在监视和/或有可能尝试获取的信道的列表。受监视的信道可以是具有一个或多个已部署的LAASCell的信道。该信道监视集合包含的信道可以是以下的一项或多项:1)未被监视,2)受到监视但是没有部署LAA SCell,3)受到监视且部署了LAA SCell。eNB可以在消息中指示其信道监视集合(例如一些或全部)变化。举例来说,消息可以包含被监视的信道的完整列表,或者可以(例如仅可以)包括关于先前集合的更新(可以采用将要在信道监视集合中添加或移除的信道或是每一个信道上的监视类型变化的形式)。
信息交换消息可以包括LAA SCell的当前活动时间的定时。该信息可以指示当前活动时间的开端,当前活动时间的结束,整个活动时间的长度,当前活动时间的剩余时长。对于某些系统、例如同步系统来说,定时信息可以参考源eNB的PCell。对于某些系统、例如异步系统来说,该消息可以(或者还可以)指示在信息交换时的时间基准(或对另一定时参考的指示)。这样做能使目的地eNB或LAA SCell理解包含在信息交换消息中的相对定时。
信息交换消息可以指示所预期的未来活动时间的定时。这可以包括预期活动时间开端、预期活动时间结束以及整个预期活动时间长度中的一个或多个的指示。
信息交换消息可以包括LAA SCell的部署/撤销的定时的指示。源eNB可以指示其何时会部署或者撤销一个或多个LAA SCell。
信息交换消息可以包括LAA信道接入类型。该消息可以指示同步接入(例如LAASCell可被同步到PCell)还是异步接入(例如,LAA SCell的定时可以取决于可获取LAA信道的时间)。LAA信道接入类型可以与消息定时解耦。在消息中可以指示LAA信道接入类型。例如,该消息传输可以依照与PCell同步的定时来调度。LAA SCell上的数据传输可以是异步的。LAA SCell数据传输可以使用一些RE上的空白图案(例如零功率传输)来启用消息传输。
信息交换消息可以包含LAA SCell传输功率。对于活动时间以内的RB和/或子帧来说,该传输功率可以是固定的。传输功率可以在活动时间的子帧和/或RB上改变。这样做能够允许多个LAA SCell并发或同时地使用LAA信道。可变传输功率可以由传输功率图案来指示,其中活动时间的RB和/或子帧的(例如每一个)子群组可具有介于0与预先配置的最大发射功率之间的任何位置的指配值。
信息交换消息可以指示干扰等级。该消息可以包括LAA信道中的干扰等级的指示,例如LAA SCell和/或LAASCell服务的WTRU遭遇到的干扰等级。此类干扰值可以是显性的。作为示例,干扰等级可被量化和/或可以用低、中和高来表示。干扰等级可以代表在LAA信道中测得的干扰和/或在当前或未来的活动时间源LAA SCell可接受的干扰。
信息交换消息可以包括资源优先级信息或图案。源eNB可以指示用于其活动时间传输以及在可能的情况下用于休眠时间传输的资源的不同优先级等级。此类优先级等级可被表示成是用于RB和/或符号/时隙/子帧中的一个或多个的不同优先级的图案。所述优先级图案可以指示eNB如何可以和/或将会对使用进行优先排序。这样做能使相邻LAA SCell使用较低优先级的资源。信息交换消息和/或优先级图案可以包括或指示可供忙或同步信号使用的资源集合。该信息可以用于启用由LAA信道中的多个LAA SCell执行的忙信号的协作和/或联合传输。
信息交换消息可以包括高优先级资源的指示(或请求)。例如,eNB(或LAA SCell)可以在相同或不同的LAA信道上指示其可以或者可以请求获取LAA信道的优先级。举例来说,对于LAA SCell、例如休眠的LAA SCell来说,它可以请求或预定将信道用于高优先级目的,例如向其服务的WTRU传送同步信号,以使该WTRU能够保持同步。高优先级资源的传输(作为示例,或是针对所述资源的请求)会触发在另一个(例如相邻)LAA SCell上的回退操作,例如使得LAA SCell能够发射指示了获取LAA信道的更高的可能性的高优先级指示。
信息交换消息可以包括雷达活动检测的指示。eNB(或LAA SCell)可以向另一个eNB(或LAA SCell)指示在LAA信道上检测到了雷达。这样做能使相邻eNB停止尝试获取LAA信道,和/或有可能导致eNB撤销LAA信道上的LAA SCell。
信息交换消息可以指示长期行为。这样做可以向消息的接收方指示这种LAA信道预期会在较长的时段中使用源LAA SCell。例如,源LAA SCell可以指示LAA SCell服务的WTRU所预期的业务量的量或类型。作为示例,源LAA SCell可以指示业务量是否预期会持续多个活动时间和/或持续多少个活动时间。该消息可以包括LAA SCell在以后尝试获取LAA信道所在的速率。业务量的量可以在与缓冲状态报告相似的报告中或者通过所述报告来指示。该消息可以包括可由LAA SCell所服务的WTRU的数量。
消息的内容可以被显性包含在消息内,或可以隐性地包括(例如基于所述消息或消息传输的一个或多个参数或特性来确定)。举例来说,信息交换消息的参数或特性(例如用于发射消息的资源,比方说子帧和/或PRB)可以隐性地指示如这里所述的该消息的一个或多个可能内容(例如活动时间的剩余时长)。
在eNB之间可以共享LAA信道资源。eNB可以使用信息交换消息来共享LAA信道。
第一eNB可以部署第一LAA SCell。举例来说,所述eNB或LAA SCell可以使用这里描述的一个或多个解决方案来指示其可以处于(或者可以变成)活动状态和/或可以在特定持续时间x中处于活动状态(所述持续时间可以用符号、时隙、子帧等等来衡量)。第二eNB或LAA SCell可以通过与第一eNB/LAA SCell进行协商来共享一个或多个信道。举例来说,所述第二eNB(或第二LAA SCell)可以借助信息交换消息向第一eNB(或LAA SCell)指示以下的一项或多项:使用或共享多个RB或某个RB集合的期望或请求,和/或预期或请求RB的时间量,其中所述时间量可以少于第一LAA SCell的剩余活动时间。
第一LAA SCell可以同意该请求,并且作为示例,其在所请求的时间量中有可能不停止或者有可能停止第二LAA SCell指示的RB上的调度。第一LAA SCell可以向第二LAASCell指示第一LAA SCell不进行传输和/或第二LAA SCell进行传输的资源(RB和/或子帧)集合或另一个资源集合。
对于第二LAA SCell可能希望或请求和/或第一LAA SCell可以释放以使第二LAASCell能够发送数据的RB集合来说,该集合可以包括LAA信道的部分或全部带宽。在第二LAASCell可具有该信道的时间(例如子帧的子集)中,第一LAA SCell可以保持活动状态,但是不会执行传输。
第二LAA SCell可以要求(和/或第一LAA SCell可以提供)RB集合,在该集合中,第一LAA SCell可以降低其传输功率,以使第二LAA SCell可以在相同的RB上执行同时的传输。
作为示例,第二eNB(或第二LAA SCell)可以借助信息交换消息来向第一eNB(或LAA SCell)指示在先前指示的第一LAA SCell的活动时间结束之前获取LAA(例如完整LAA)信道的意愿或请求。
如果第一LAA SCell同意,那么它可以在其最初指示或预期的时间之前返回无活动(或休眠)状态。第一LAA SCell可以通过与第二LAA SCell协作来确保在第二LAA SCell可获取信道的切换时间中信道保持(或者显现成保持)繁忙。这样做可以在第二LAA SCell开始其传输之前阻止其他小区或接入点获取该信道。只要小区可被允许保持一个信道(例如在此之前),则第二LAA SCell即可保持信道(例如直到),这一点与第一LAA SCell具有该信道的时长无关。只要第一LAA SCell保持处于其活动时段,则第二LAA SCell即可保持该信道。剩余时间可以取决于第一LAA SCell发送的指示,或者可以取决于监管允许的用于LAA信道获取的最大活动时段。
作为示例,第二eNB(或第二LAA SCell)可以借助信息交换消息来向第一eNB(或LAA SCell)指示来自与第一LAA SCell相连的WTRU的针对干扰报告的请求。作为示例,第一LAA SCell可以触发来自其WTRU的干扰测量报告,以便确定第二LAA SCell是否可以执行同时传输,而不会显著降低第一LAA SCell的WTRU性能。可供WTRU使用的测量资源可以是在第一与第二LAA SCell之前协商的。作为示例,第二LAA SCell可以发射伪干扰信号,以使第一LAA SCell的WTRU能够测量(例如适当地)来自第二LAA SCell的潜在传输的影响。
来自第二LAA SCell的干扰请求可能导致第一LAA SCell用干扰指示回复。例如,第一LAA SCell可以指示两个干扰等级之一:低(作为示例,这意味着第二LAA SCell可以执行同时传输)或高(作为示例,这意味着第二LAA SCell不应该执行同时传输)。两个以上的干扰等级可以用于该指示。第一LAA SCell可以向第二LAA SCell指示可以使用或者不可使用的预编码矩阵集合,例如用于限制第一LAA SCell的WTRU可能遭遇到的干扰。
作为示例,第二eNB(或第二LAA SCell)可以借助信息交换消息来向第一eNB(或LAA SCell)指示可供第二LAASCell的WTRU采取的干扰测量集合。作为示例,这样做能使第一LAASCell修改其传输功率或预编码,以便限制第二LAASCell的WTRU可能遭遇的干扰。作为示例,所述第二LAASCell可以提供可供第一LAASCell使用(或不可使用)的有利(或不利)的预编码矩阵列表,以便限制针对第二LAASCell的WTRU的干扰。
作为示例,第二eNB(或第二LAASCell)可以借助信息交换消息来向第一eNB(或LAASCell)指示第一LAASCell发射信号(例如忙信号)的请求。这样做可以向第二LAASCell指示第一LAASCell何时(例如精确或近乎精确的时刻)会放弃该信道。这样做能使第二LAASCell在其他LAA SCell或其他RAT之前优先接入该信道。该处理可以(例如仅仅可以)应用于或者用于传输高优先级信号(例如能使WTRU与LAASCell保持同步的参考信号传输)。LAASCell可以(或者仅仅可以)采用用于某种传输、例如高优先级传输的方式来获取(或者被允许获取)信道,并且可以限制其在传输了高优先级信号之后保持活动的时长。
作为示例,第二eNB(或第二LAA SCell)可以借助信息交换消息来向第一eNB(或LAA SCell)指示通过第一和第二LAA SCell共同发送忙(或同步)信号的请求。此类信号的传输可以在相同的资源中完成,并且由此可能增大其他节点接收该信号的功率,或者有可能提升该信号的覆盖范围。此类信号的传输可以在正交资源上进行。例如,第一LAA SCell可以在符号的第一组子载波中发送忙信号。第二LAA SCell可以在相同符号的第二组子载波中发送忙信号。
作为示例,第二eNB(或第二LAA SCell)可以借助信息交换消息来向第一eNB(或LAA SCell)指示第一LAA SCell发射能使第二LAA SCell进行同步的同步信号的请求。响应于该请求,第一LAA SCell可以发射同步信号。这样做能使这两个LAA SCell在同时的活动时间中共享资源,并且可以在LAA SCell没有与其相应的PCell同步的时候使用。
作为示例,第二eNB(或第二LAA SCell)可以借助信息交换消息来向第一eNB(或LAA SCell)指示所述第二LAA SCell会在即将到来的活动时间中选择的信道。第二LAASCell可以请求第一LAA SCell指示其可以在下一个活动时间中使用的信道。这些解决方案能使这两个LAA SCell在使用动态频率选择的时候协调其工作。两个或更多的LAA SCell可以通过协商来减小尝试获取相同信道的可能性。LAASCell可以使用动态频率选择。LAASCell可以向另一个(例如邻居)LAA SCell指示其可能使用的跳频图案。所述LAA SCell可以通过协商来共享信道的重叠部分的资源。
举例来说,第一eNB或第一LAA SCell可以向第二eNB或第二LAA SCell指示其已经获取了LAA信道。该指示可以采用前导码的形式发送。该指示能使多个LAA SCell同时共享第一LAA SCell的活动时间,例如使用相同的资源。所述前导码可以指示LAA SCell的一个或多个定时(以使其他LAA SCell能够同步到最初获取该信道的小区),活动时间的定时/长度(以使其他LAA SCell知道其在多长时间里可以保持活动状态),LAA SCell(虚拟)小区ID,LAA SCell的传输功率,和/或LAA SCell的忙和/或同步信号配置。
这里描述的方法和手段可以单独使用或以任何组合的方式应用于其它无线技术以及其它服务。
WTRU可以指代物理设备的身份,或者指代用户的身份,例如与订阅相关的身份,比方说MSISDN、SIP URI等等。WTRU可以指代基于应用的身份,例如依照应用使用的用户名。
上述过程可以在结合到计算机可读介质以供计算机和/或处理器运行的计算机程序、软件和/固件中实施。计算机可读介质的示例包括但不局限于电信号(经由有线或无线连接传送)以及计算机可读存储介质。计算机可读存储介质的示例包括但不局限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储设备、内部硬盘盒可拆卸磁盘之类的磁介质、磁光介质、以及CD-ROM碟片和数字多用途碟片(DVD)之类的光介质。与软件关联的处理器可以用于实施在WTRU、UE、终端、基站、RNC和/或任何主计算机中使用的射频收发信机。

Claims (14)

1.一种由无线发射/接收单元(WTRU)实施的方法,包括:
接收针对物理下行链路共享信道(PDSCH)传输的下行链路控制信息(DCI),该DCI指示针对所述PDSCH传输的速率匹配配置;
基于所述DCI,确定用于所述PDSCH传输的资源元素总数;
基于所述PDSCH传输的所述资源元素总数,确定用于所述PDSCH传输的传输块大小(TBS);以及
根据所述DCI内指示的所述速率匹配配置,接收所述PDSCH传输,该传输包含具有所述所确定的TBS的传输块。
2.根据权利要求1所述的方法,其中所述速率匹配配置指示在去映射过程中跳过的一个或多个资源元素。
3.根据权利要求1所述的方法,还包括接收同步信号,其中所述同步信号包括以下中的至少一者:
主同步信号(PSS)、辅同步信号(SSS)、物理广播信道(PBCH)、小区专用参考信号(CRS)、信道状态信息参考信号(CSI-RS)或解调参考信号(DMRS)。
4.根据权利要求3所述的方法,进一步包括:
基于所述同步信号来执行频率或定时估计。
5.根据权利要求1所述的方法,其中所述速率匹配配置指示当接收所述PDSCH传输时将在其周围被速率匹配的一个或多个时间或频率资源。
6.根据权利要求1所述的方法,其中所述速率匹配配置为第一速率匹配配置,且其中所述方法进一步包括:
接收对应于多个速率匹配配置的半静态配置,且所述DCI指示将所述多个速率匹配配置的所述第一速率匹配配置用于所述PDSCH传输。
7.根据权利要求1所述的方法,进一步包括:
基于所述速率匹配配置,确定将在其周围被速率匹配的一个或多个资源元素,且其中PDSCH数据未被映射至将在其周围被速率匹配的所述一个或多个资源元素。
8.一种无线发射/接收单元(WTRU),包括:
处理器,被配置成:
接收针对物理下行链路共享信道(PDSCH)传输的下行链路控制信息(DCI),该DCI指示针对所述PDSCH传输的速率匹配配置;
基于所述DCI,确定用于所述PDSCH传输的资源元素总数;
基于分配用于所述PDSCH传输的所述资源元素总数,确定用于所述PDSCH传输的传输块大小(TBS);以及
根据所述DCI内指示的所述速率匹配配置,接收所述PDSCH传输,该传输包含具有所述所确定的TBS的传输块。
9.根据权利要求8所述的WTRU,其中所述速率匹配配置指示在去映射过程中跳过的一个或多个资源元素。
10.根据权利要求8所述的WTRU,其中所述处理器还被配置为接收同步信号,且其中所述同步信号包括以下中的至少一者:
主同步信号(PSS)、辅同步信号(SSS)、物理广播信道(PBCH)、小区专用参考信号(CRS)、信道状态信息参考信号(CSI-RS)或解调参考信号(DMRS)。
11.根据权利要求10所述的WTRU,其中所述处理器进一步被配置成:
基于所述同步信号来执行频率或定时估计。
12.根据权利要求8所述的WTRU,其中所述速率匹配配置指示当接收所述PDSCH传输时将在其周围被速率匹配的一个或多个时间或频率资源。
13.根据权利要求8所述的WTRU,其中所述速率匹配配置为第一速率匹配配置,且其中所述处理器进一步被配置成:
接收对应于多个速率匹配配置的半静态配置,且所述DCI指示将所述多个速率匹配配置的所述第一速率匹配配置用于所述PDSCH传输。
14.根据权利要求8所述的WTRU,其中所述处理器进一步被配置成:
基于所述速率匹配配置,确定将在其周围被速率匹配的一个或多个资源元素,且其中所述WTRU的PDSCH数据未被映射至将在其周围被速率匹配的所述一个或多个资源元素。
CN201580063144.4A 2014-09-24 2015-09-24 用于无授权频段中的lte操作的信道使用指示和同步 Ceased CN107005960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010530521.3A CN111836384A (zh) 2014-09-24 2015-09-24 用于无授权频段中的lte操作的信道使用指示和同步

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201462054881P 2014-09-24 2014-09-24
US62/054,881 2014-09-24
US201462075720P 2014-11-05 2014-11-05
US62/075,720 2014-11-05
US201562203734P 2015-08-11 2015-08-11
US62/203,734 2015-08-11
PCT/US2015/051995 WO2016069144A1 (en) 2014-09-24 2015-09-24 Channel usage indication and synchronization for lte operation in unlicensed bands

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010530521.3A Division CN111836384A (zh) 2014-09-24 2015-09-24 用于无授权频段中的lte操作的信道使用指示和同步

Publications (2)

Publication Number Publication Date
CN107005960A CN107005960A (zh) 2017-08-01
CN107005960B true CN107005960B (zh) 2020-07-07

Family

ID=54291636

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201580063144.4A Ceased CN107005960B (zh) 2014-09-24 2015-09-24 用于无授权频段中的lte操作的信道使用指示和同步
CN202010530521.3A Pending CN111836384A (zh) 2014-09-24 2015-09-24 用于无授权频段中的lte操作的信道使用指示和同步

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010530521.3A Pending CN111836384A (zh) 2014-09-24 2015-09-24 用于无授权频段中的lte操作的信道使用指示和同步

Country Status (4)

Country Link
US (3) US10313990B2 (zh)
EP (2) EP3629514A1 (zh)
CN (2) CN107005960B (zh)
WO (1) WO2016069144A1 (zh)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501632A (ja) * 2014-09-29 2017-01-12 日本電気株式会社 非ライセンス帯域におけるシグナリング送信のための方法及びデバイス
US11197317B2 (en) * 2014-12-23 2021-12-07 Qualcomm Incorporated Techniques for determining a symbol period for a starting symbol of a transmission in a shared radio frequency spectrum
US10455544B2 (en) 2015-01-30 2019-10-22 Qualcomm Incorporated Enhanced paging procedures for machine type communications (MTC)
US11678313B2 (en) * 2015-02-04 2023-06-13 Alcatel Lucent Network controlled acquisition of uplink channels in unlicensed frequency bands
US10506594B2 (en) * 2015-02-05 2019-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Time multiplexing communication with secondary cells
US10136452B2 (en) * 2015-02-24 2018-11-20 Qualcomm Incorporated Enhanced PRACH for standalone contention based communications including unlicensed spectrum
WO2016148221A1 (ja) * 2015-03-17 2016-09-22 京セラ株式会社 通信装置及び通信方法
EP3823408A1 (en) * 2015-04-09 2021-05-19 LG Electronics, Inc. Method for performing cca in wireless access system supporting unlicensed band, and apparatus for supporting same
JP6591037B2 (ja) * 2015-07-20 2019-10-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信システムにおける共有ワイヤレス媒体へのアクセスの制御
CN107079488B (zh) * 2015-08-10 2020-05-08 华为技术有限公司 一种随机接入方法及装置
US11716187B2 (en) * 2015-08-14 2023-08-01 Apple Inc. Methods for CQI feedback and RRM measurements with dynamic power sharing among multiple LAA SCells for DL-only transmission
CN107925976B (zh) * 2015-09-01 2021-09-21 株式会社Ntt都科摩 用户装置、无线基站以及无线通信方法
CN108029098B (zh) * 2015-09-25 2022-07-22 瑞典爱立信有限公司 用于在无线网络中降低干扰的方法和网络节点
US10194439B2 (en) * 2015-10-01 2019-01-29 Ofinno Technologies, Llc Subframe configuration in a wireless device and wireless network
CN108293245B (zh) * 2015-12-30 2021-05-11 华为技术有限公司 一种数据通信的方法、终端设备及网络设备
CN105634710B (zh) * 2016-01-20 2019-03-22 宇龙计算机通信科技(深圳)有限公司 Srs发送方法、srs发送装置和终端
WO2017128104A1 (zh) * 2016-01-27 2017-08-03 华为技术有限公司 一种传输资源的获取方法及用户终端
WO2017135712A1 (ko) * 2016-02-02 2017-08-10 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN107041013A (zh) * 2016-02-03 2017-08-11 索尼公司 无线通信设备和无线通信方法
US10805953B2 (en) * 2016-02-04 2020-10-13 Ofinno, Llc Channel access procedures in a wireless network
US10200169B2 (en) * 2016-03-11 2019-02-05 Qualcomm Incorporated Narrowband wireless communications cell search
EP3437359B1 (en) * 2016-04-01 2022-06-01 Telefonaktiebolaget LM Ericsson (PUBL) Methods for controlling relative measurements in the presence of lbt
CN114286436B (zh) 2016-06-23 2023-06-23 中兴通讯股份有限公司 一种同步信号的发送方法、接收方法,通信节点
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
CN109417541B (zh) * 2016-07-01 2021-01-01 Oppo广东移动通信有限公司 信号检测的方法和装置
EP3955687B1 (en) 2016-07-13 2023-06-21 Samsung Electronics Co., Ltd. Terminal, base station and corresponding methods
KR102332992B1 (ko) * 2016-07-13 2021-12-01 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 랜덤액세스 프리앰블 송수신 방법 및 장치
US10687330B2 (en) 2016-07-21 2020-06-16 Qualcomm Incorporated Techniques for communicating on an uplink in a shared radio frequency spectrum band
CN109565484B (zh) * 2016-08-10 2021-02-09 华为技术有限公司 用于支持不同子载波间隔的新无线载波的公共同步信号
US10530544B2 (en) 2016-08-12 2020-01-07 Motorola Mobility Llc Method and apparatus for receiving reference signals in support of flexible radio communication
KR102606781B1 (ko) * 2016-09-02 2023-11-27 삼성전자 주식회사 무선 통신 시스템에서 효율적인 데이터 송수신 방법 및 장치
US10313888B2 (en) * 2016-09-30 2019-06-04 Intel Corporation Methods and devices for channel selection and access coordination
US10512050B2 (en) 2016-10-07 2019-12-17 Qualcomm Incorporated Synchronization and broadcast channel design with flexible bandwidth allocations
CN110445596B (zh) * 2016-10-10 2020-08-07 华为技术有限公司 同步信号的发送方法、接收方法及装置
KR102513979B1 (ko) * 2016-10-25 2023-03-27 삼성전자주식회사 전자 장치 및 전자 장치의 통신 방법
US10085281B2 (en) * 2016-11-29 2018-09-25 Qualcomm Incorporated Channel access for a mixed numerology carrier
US20180160405A1 (en) * 2016-12-02 2018-06-07 Qualcomm Incorporated Rate matching and signaling
CN108282202B (zh) * 2017-01-06 2021-09-14 华为技术有限公司 一种功率配置方法及相关设备
US10499416B2 (en) * 2017-01-10 2019-12-03 Qualcomm Incorporated Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system
US10735121B2 (en) 2017-02-02 2020-08-04 Qualcomm Incorporated Unified spatial operation for dynamic medium sharing
JP6804641B2 (ja) 2017-02-06 2020-12-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末と基地局の間の信号送受信方法及びそれを支援する装置
CN108696921A (zh) * 2017-02-21 2018-10-23 中国科学院沈阳自动化研究所 基于广播前导侦听的认知传感器网络介质访问控制方法
US10779259B2 (en) 2017-04-03 2020-09-15 Qualcomm Incorporated Quasi co-location of antenna ports used to transmit paging message and synchronization signals
US11228398B2 (en) * 2017-04-18 2022-01-18 Lg Electronics Inc. Method for rate matching in wireless communication system and apparatus therefor
US10897753B2 (en) * 2017-05-04 2021-01-19 Sharp Kabushiki Kaisha Systems and methods for supporting multiple allocations in UL/DL grant for a 5G NR UE and gNB
US11184878B2 (en) 2017-05-05 2021-11-23 Beijing Xiaomi Mobile Software Co., Ltd. Signal transmission method, signal transmission apparatus, electronic device and computer-readable storage medium
WO2018226039A2 (ko) 2017-06-09 2018-12-13 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2018223385A1 (zh) * 2017-06-09 2018-12-13 华为技术有限公司 一种基于非授权频谱的同步方法及设备
US11064424B2 (en) * 2017-07-25 2021-07-13 Qualcomm Incorporated Shared spectrum synchronization design
US10757583B2 (en) * 2017-08-10 2020-08-25 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems
US20190052406A1 (en) * 2017-08-11 2019-02-14 Mediatek Inc. Transmission For Ultra-Reliable And Low-Latency Communications In Mobile Communications
CN110622596B (zh) 2017-09-07 2021-05-25 Oppo广东移动通信有限公司 一种信息传输的方法、设备及系统
KR102568599B1 (ko) * 2017-09-08 2023-08-21 주식회사 윌러스표준기술연구소 무선 통신 시스템의 데이터 전송 방법, 수신 방법 및 이를 이용하는 장치
US11751147B2 (en) 2017-09-08 2023-09-05 Qualcomm Incorporated Techniques and apparatuses for synchronization signal scanning based at least in part on a synchronization raster
US10972990B2 (en) * 2017-09-11 2021-04-06 Qualcomm Incorporated System information rate matching
CN111357351B (zh) * 2017-11-17 2024-09-03 上海诺基亚贝尔股份有限公司 NR中的无中断SCell操作
CN108616345B (zh) * 2017-11-25 2019-03-26 华为技术有限公司 一种参考信号的配置方法和装置
CN109842475A (zh) * 2017-11-29 2019-06-04 中兴通讯股份有限公司 一种控制信道导频生成方法、装置和设备
BR112020014199A2 (pt) * 2018-01-10 2020-12-01 Idac Holdings, Inc. método para uso em uma unidade de transmissão/recepção sem fio, unidade de transmissão/recepção sem fio, e, gnb
CN110035529B (zh) * 2018-01-12 2021-07-16 华为技术有限公司 一种资源配置的方法和通信装置
KR102547263B1 (ko) 2018-01-12 2023-06-22 삼성전자주식회사 무선 통신 시스템에서 데이터채널 및 제어채널을 송수신하는 방법 및 장치
US10904909B2 (en) 2018-01-23 2021-01-26 Huawei Technologies Co., Ltd. System and method for time domain grant-free PUSCH resource allocation
US11044675B2 (en) * 2018-02-13 2021-06-22 Idac Holdings, Inc. Methods, apparatuses and systems for adaptive uplink power control in a wireless network
MX2020008365A (es) * 2018-02-14 2020-10-19 Idac Holdings Inc Métodos, aparato, y sistema que usan múltiples técnicas de antena para operaciones de nueva radio (nr) en bandas sin licencia.
US11223456B2 (en) * 2018-02-20 2022-01-11 Qualcomm Incorporated Transmission gap configuration
US11071138B2 (en) * 2018-02-23 2021-07-20 Qualcomm Incorporated OTA dynamic TDD with CUI-R multiplexed in UL
JP2019149759A (ja) * 2018-02-28 2019-09-05 シャープ株式会社 通信装置および通信方法
US11363630B2 (en) * 2018-03-01 2022-06-14 Qualcomm Incorporated Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
US11160050B2 (en) * 2018-03-28 2021-10-26 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
US11070984B2 (en) 2018-03-30 2021-07-20 T-Mobile Usa, Inc. Licensed assisted access based on low utilization of unlicensed channels
CN108601091B (zh) * 2018-04-12 2021-08-17 西安电子科技大学 一种LTE-U/WiFi共用未授权频段避免碰撞的方法及系统
WO2019245199A1 (ko) * 2018-06-22 2019-12-26 엘지전자 주식회사 측정을 수행하는 방법 및 무선 통신 기기
US10701679B2 (en) * 2018-07-05 2020-06-30 Huawei Technologies Co., Ltd. Method and system for enhancing data channel reliability using multiple transmit receive points
CN110798298B (zh) * 2018-08-03 2021-11-02 维沃移动通信有限公司 控制信息指示、接收方法和设备
EP3834460A1 (en) 2018-08-08 2021-06-16 Convida Wireless, Llc Radio link monitoring and radio resource management measurement procedures for nr-u
JP7245901B2 (ja) 2018-09-26 2023-03-24 アイディーエーシー ホールディングス インコーポレイテッド バースト送信のための方法および装置
EP3876623B1 (en) * 2018-11-01 2024-10-09 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method, information reception method, base station and terminal
CN110536412B (zh) * 2019-04-29 2023-03-24 中兴通讯股份有限公司 上行定位的实现方法、装置和存储介质
US11595982B2 (en) * 2019-05-13 2023-02-28 Qualcomm Incorporated Intra-device collision handling
CN114944905A (zh) * 2019-11-21 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210243789A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated Physical downlink shared channel including part of a downlink control information
US11990993B2 (en) * 2020-03-02 2024-05-21 Qualcomm Incorporated Rate matching between uplink and downlink
WO2021203239A1 (zh) * 2020-04-07 2021-10-14 Oppo广东移动通信有限公司 一种下行同步方法、电子设备及存储介质
US11659569B2 (en) * 2020-04-29 2023-05-23 Qualcomm Incorporated Rate matching for piggyback downlink control information
US11558158B2 (en) * 2020-11-10 2023-01-17 Intel Corporation Methods and devices for dynamically avoiding radio frequency interference
CN115088346A (zh) * 2021-01-13 2022-09-20 北京小米移动软件有限公司 资源的确定方法、装置及通信设备
US20240097843A1 (en) * 2022-08-19 2024-03-21 Nvidia Corporation Reference signal configuration information transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730257A (zh) * 2008-10-13 2010-06-09 大唐移动通信设备有限公司 信号发送方法及设备、系统随机接入方法及用户设备
CN103037431A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种多载波系统中基于载波分组的测量方法及装置
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波
CN103931133A (zh) * 2011-11-07 2014-07-16 日本电气株式会社 通信系统
CN103959826A (zh) * 2011-04-29 2014-07-30 华为技术有限公司 信号传输和接收的方法和系统以及相关的发送方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823193B1 (en) * 2000-02-28 2004-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Downlink transmit power synchronization during diversity communication with a mobile station
JP4842900B2 (ja) * 2007-08-22 2011-12-21 日本電信電話株式会社 移動端末受付制御方法、無線基地局装置、および無線パケット通信システム
GB2461159B (en) * 2008-06-18 2012-01-04 Lg Electronics Inc Method for transmitting Mac PDUs
CN101772086B (zh) * 2009-01-04 2014-02-05 夏普株式会社 实现中继节点透明传输与非透明传输共存的方法
CN101784081B (zh) * 2009-01-21 2014-04-16 电信科学技术研究院 一种配置下行物理控制信道的方法、基站和终端
CN103716893B (zh) * 2010-04-06 2015-03-11 华为技术有限公司 一种信道状态信息的传输方法及用户设备及基站
US20140192663A1 (en) * 2011-04-06 2014-07-10 Claudio Rosa Power Difference Between SCell and PCell in a Carrier Aggregation System
WO2012148236A2 (ko) * 2011-04-28 2012-11-01 엘지전자 주식회사 반송파 집성 시스템에서 동기화 신호 전송 방법 및 장치
CN103548409B (zh) * 2011-05-02 2017-07-28 Lg电子株式会社 在无线通信系统中发射/接收数据的方法及其基站
US9237584B2 (en) * 2011-05-30 2016-01-12 Broadcom Corporation Methods and apparatus for managing wireless communication using unlicensed frequency bands
EP3958472A1 (en) * 2011-08-12 2022-02-23 Interdigital Patent Holdings, Inc. Method and apparatus for multiple-input multiple-output operation
US9357543B2 (en) 2012-04-18 2016-05-31 Lg Electronics Inc. Method and apparatus for receiving downlink data in wireless communication system
US9532337B2 (en) * 2012-05-19 2016-12-27 Google Technology Holdings LLC Method and apparatus for transport block signaling in a wireless communication system
WO2014007538A1 (ko) * 2012-07-03 2014-01-09 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
US8761109B2 (en) * 2012-08-03 2014-06-24 Motorola Mobility Llc Method and apparatus for receiving a control channel
CN103634074B (zh) * 2012-08-29 2018-04-10 中兴通讯股份有限公司 下行数据的速率匹配方法及装置
JP6121124B2 (ja) * 2012-09-28 2017-04-26 株式会社Nttドコモ 無線通信システム、無線通信方法、ユーザ端末及び無線基地局
US11139862B2 (en) 2012-11-02 2021-10-05 Samsung Electronics Co., Ltd. Configuration of rate matching and interference measurement resources for coordinated multi-point transmission
US9591632B2 (en) 2012-11-06 2017-03-07 Lg Electronics Inc. Method and apparatus for transmitting and receiving data in a wireless communication system
US9160485B2 (en) * 2012-12-03 2015-10-13 Lg Electronics Inc. Method and apparatus for encoding transport block
US9871636B2 (en) * 2013-01-18 2018-01-16 Qualcomm Incorporated Enhanced control channel element (ECCE) based physical downlink shared channel (PDSCH) resource allocation for long-term evolution (LTE)
CN103945538B (zh) * 2013-01-18 2017-11-03 华为终端有限公司 资源配置方法及装置
US9060321B2 (en) * 2013-02-26 2015-06-16 Samsung Electronics Co., Ltd. Methods and apparatus for demodulation reference signals and synchronization signals in extension carrier of LTE advanced
WO2015042176A1 (en) * 2013-09-17 2015-03-26 Futurewei Technologies Inc. Device and method of enhancing downlink ue-specific demodulation reference signal to facilitate inter -cell interference supression
NO2710652T3 (zh) * 2014-03-18 2018-03-17
US9800363B2 (en) * 2014-06-18 2017-10-24 Qualcomm Incorporated NAICS signaling for advanced LTE features
US10447517B2 (en) * 2016-09-27 2019-10-15 Qualcomm Incorporated Methods and apparatus for using synchronization signals as reference for demodulating multi-port broadcast channel
US20200053798A1 (en) * 2018-08-10 2020-02-13 Mediatek Inc. Methods for mitigating impact of listen-before-talk in unlicensed spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730257A (zh) * 2008-10-13 2010-06-09 大唐移动通信设备有限公司 信号发送方法及设备、系统随机接入方法及用户设备
CN103959826A (zh) * 2011-04-29 2014-07-30 华为技术有限公司 信号传输和接收的方法和系统以及相关的发送方法
CN103037431A (zh) * 2011-09-30 2013-04-10 中兴通讯股份有限公司 一种多载波系统中基于载波分组的测量方法及装置
CN103931133A (zh) * 2011-11-07 2014-07-16 日本电气株式会社 通信系统
CN103580840A (zh) * 2012-08-10 2014-02-12 捷讯研究有限公司 未授权频带中的td lte辅分量载波

Also Published As

Publication number Publication date
EP3629514A1 (en) 2020-04-01
US20190246366A1 (en) 2019-08-08
US11483781B2 (en) 2022-10-25
US20170303220A1 (en) 2017-10-19
US20230016295A1 (en) 2023-01-19
WO2016069144A1 (en) 2016-05-06
CN111836384A (zh) 2020-10-27
EP3198772B1 (en) 2019-11-20
US10313990B2 (en) 2019-06-04
CN107005960A (zh) 2017-08-01
EP3198772A1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
CN107005960B (zh) 用于无授权频段中的lte操作的信道使用指示和同步
US10992428B2 (en) Communications device
CN107660348B (zh) 用于未许可频带中的lte操作的系统和方法
KR102381913B1 (ko) 비인가 대역에서의 롱 텀 에볼루션(lte) 동작을 위한 채널 측정 및 보고 메커니즘을 위한 방법 및 프로시져
US10334627B2 (en) Method and apparatus for enhanced uplink reference signal in listen-before-talk systems
US9872181B2 (en) Method for transmitting data on unlicensed band and base station therefor
EP3018938B1 (en) System for LTE licensed assisted access in unlicensed bands
JP2023105030A (ja) 無線システムにおける参照信号測定のためのシステムおよび方法
JP5960258B2 (ja) 帯域幅制限のある通信デバイスに対するセルラー通信システムサポート
EP3334201A1 (en) Terminal device, base station device, and communication method
KR102392524B1 (ko) 비인가 반송파의 측정을 수행하기 위한 통신 장치 및 방법
US20170280479A1 (en) Radio access node, communication terminal and methods performed therein
EP3334234A1 (en) Terminal device, base station device, and communication method
US9913297B2 (en) Method and device for communicating in unlicensed band
JP6494862B2 (ja) 1つ以上の制御信号を第2通信デバイスへ送信するための第1通信デバイス及びそれにおける方法
JP2018518861A (ja) 非ライセンススペクトラム上のrrm測定のための方法及び装置
JP2019054311A (ja) 端末装置、基地局装置および通信方法
EP3158663A1 (en) Lte-u communication devices and methods for aperiodic beacon and reference signal transmission
WO2015185256A1 (en) Communications device, infrastructure equipment, mobile communications network and methods
US10383109B2 (en) Method for receiving data in unlicensed band and device using same
JP2019054312A (ja) 端末装置、基地局装置および通信方法
JP6527882B2 (ja) 高速セル・オン/オフ機能のためのアクティブ化コマンド
KR20160013505A (ko) 비면허대역 셀의 스케줄링 정보 수신 방법 및 그 장치
WO2018073812A1 (en) Coverage extension frequency hopping scheme

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
IW01 Full invalidation of patent right
IW01 Full invalidation of patent right

Decision date of declaring invalidation: 20220225

Decision number of declaring invalidation: 54123

Granted publication date: 20200707