WO2018223385A1 - 一种基于非授权频谱的同步方法及设备 - Google Patents

一种基于非授权频谱的同步方法及设备 Download PDF

Info

Publication number
WO2018223385A1
WO2018223385A1 PCT/CN2017/087763 CN2017087763W WO2018223385A1 WO 2018223385 A1 WO2018223385 A1 WO 2018223385A1 CN 2017087763 W CN2017087763 W CN 2017087763W WO 2018223385 A1 WO2018223385 A1 WO 2018223385A1
Authority
WO
WIPO (PCT)
Prior art keywords
rbs
pss
synchronization signal
carried
broadcast information
Prior art date
Application number
PCT/CN2017/087763
Other languages
English (en)
French (fr)
Inventor
李振宇
张武荣
李志军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/087763 priority Critical patent/WO2018223385A1/zh
Publication of WO2018223385A1 publication Critical patent/WO2018223385A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and in particular, to a synchronization method and device based on an unlicensed spectrum.
  • the synchronization signal used for synchronization will occupy a fixed frequency domain resource in the frequency domain.
  • a synchronization signal occupies a fixed number of Resource Blocks (RBs) in the frequency domain, where each RB occupies a bandwidth of 180 kHz.
  • eMTC Enhanced Machine Type Communication
  • the synchronization signal occupies a fixed 6 RBs in the frequency domain.
  • the synchronization signals are transmitted using licensed spectrum resources.
  • the unlicensed spectrum resources are larger than the licensed spectrum resources. If the unlicensed spectrum can be effectively utilized, the spectrum efficiency of wireless communication will be greatly improved.
  • the spectrum is the basis of wireless communication. In order to ensure the fair use of the spectrum, different countries have established different rules. In order to use wireless communication equipment in different regions, it is necessary to comply with the spectrum regulations of the corresponding regions. In some regions, wireless communication devices are also subject to specific regulations when used on unlicensed spectrum.
  • ETSI European Telecommunications Standards Institute
  • the FCC spectrum regulations for digital modulation devices, the channel bandwidth is greater than 500 kHz, the Power Spectral Density (PSD) is 8 dBm/3 KHz, and the maximum transmit power (Coducted) is less than 30 dBm. limit.
  • the embodiment of the present application provides a synchronization method and device based on an unlicensed spectrum, which achieves the transmission of a synchronization signal by using an unlicensed spectrum, and enables a terminal device with a bandwidth supporting one RB and a terminal device with a bandwidth supporting six RBs. Synchronize to the purpose of the cell.
  • a first aspect of the embodiments of the present application provides a synchronization method based on an unlicensed spectrum, including:
  • the base station sends the synchronization signal and the broadcast information by using the preset channel in the frequency domain based on the unlicensed spectrum resource; the preset channel occupies X RBs, the synchronization signal and the broadcast information occupy Y RBs of the X RBs, and the Y RBs occupy
  • the first bandwidth, X, Y are positive integers, and Y is less than or equal to X.
  • the base station sends the synchronization signal and the broadcast information by using a preset channel occupying X RBs in the frequency domain based on the unlicensed spectrum resource, and the synchronization signal
  • the broadcast information occupies Y RBs of the X RBs, and the Y RBs occupy the first bandwidth
  • the synchronization signal is transmitted by using the unlicensed spectrum, and the terminal device and the bandwidth supporting the bandwidth support 6 RBs are supported.
  • the terminal equipment of the RB can be synchronized to the purpose of the cell, and the system flexibility is good.
  • the synchronization signal includes a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS), where the SSS carries a physical cell identifier (Physical) Cell Identify, PCI), or PSS and SSS carry PCI.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PCI Physical Cell identifier
  • PSS and SSS carry PCI.
  • the synchronization signal and the broadcast information occupy the time domain T1, the transmission period is T2, and the T2 is greater than or equal to T1.
  • the information carried on each of the Y RBs is the same, and the information includes the synchronization signal and the broadcast information.
  • information carried on each of the Y RBs is different, and the information includes at least one of a synchronization signal and broadcast information.
  • the PSS carried on each of the Y RBs adopts the same root index, and each The broadcast information carried on the RBs includes an index of the RB, which is used to indicate the RB carrying the PSS.
  • the PSS carried on each of the Y RBs adopts a different root index.
  • the PSS carried on each of the Y RBs adopts a different root index.
  • the Y RBs are not adjacent to each other in the X RBs.
  • the Y RBs are partially or completely adjacent in the X RBs, and the synchronization signals carried on the adjacent RBs are in the frequency domain. There is a guard interval on it.
  • the system synchronization time is effectively reduced, and the preset channel is located on the protection bandwidth.
  • the first bandwidth is greater than or equal to 500 kHz.
  • a second aspect of the embodiments of the present application provides a synchronization method based on an unlicensed spectrum, including:
  • the terminal device receives the synchronization signal and the broadcast information on the preset channel in the frequency domain based on the unlicensed spectrum resource; the preset channel occupies X RBs, and the synchronization signal and the broadcast information occupy Y RBs of the X RBs, Y RBs A total of the first bandwidth is occupied, X and Y are both positive integers, and Y is less than or equal to X.
  • the terminal device receives the synchronization signal and the broadcast information by using the preset channels occupying X RBs in the frequency domain based on the unlicensed spectrum resources, and the synchronization signal and the broadcast information are occupied.
  • Y RBs of the X RBs, the Y RBs occupy the first bandwidth, and the synchronization signal is transmitted by using the unlicensed spectrum, and the terminal device supporting the bandwidth of 1 RB and the terminal device supporting the bandwidth of 6 RBs Both can be synchronized to the purpose of the cell, and the system flexibility is good.
  • the synchronization signal includes a PSS and an SSS; wherein the SSS carries the PCI, or the PSS and the SSS carry the PCI.
  • the synchronization signal and the broadcast information occupy the time length T1 in the time domain, the transmission period is T2, and T2 is greater than or equal to T1.
  • the terminal device receives the synchronization signal and the broadcast information on the preset channel in the frequency domain based on the unlicensed spectrum resource, and specifically includes: the terminal device pre-predicts the frequency domain based on the unlicensed spectrum resource according to T1 and T2. Let the channel receive the synchronization signal and broadcast information.
  • the information carried on each of the Y RBs is the same, and the information includes the synchronization signal and the broadcast information.
  • information carried on each of the Y RBs is different, and the information includes at least one of a synchronization signal and broadcast information.
  • the PSS carried on each of the Y RBs adopts the same root index
  • the broadcast information carried on each RB includes The index of the RB is used to indicate the RB carrying the PSS; or the PSS carried on each of the Y RBs has a different root index.
  • the PSS carried on each of the Y RBs adopts a different root index.
  • the terminal device when the PESs carried by the PSSs carried on each of the Y RBs are different, the terminal device is based on the unlicensed spectrum resources.
  • Receiving the synchronization signal and the broadcast information on the preset channel in the frequency domain including: for the terminal device supporting one RB in the bandwidth, when the terminal device detects the PSS carried by any one of the RBs on the at least Y RBs, performing system timing and Frequency offset calculation, complete SSS parsing and broadcast information reception; wherein, when the PCI is carried in the SSS, the PCI can be obtained by parsing the SSS of the RB bearer of the PSS, and the PSS and the detection are performed when the PCI is carried in the PSS and the SSS.
  • the SSS of the RB bearer to the PSS can obtain the PCI; for the terminal device that supports the X RBs in the bandwidth, when the terminal device detects the PSS carried by all the RBs on the Y RBs, the system timing and frequency offset calculation are performed, and the SSS parsing and broadcasting are completed. Information reception; among them, in order to improve system robustness, PSS detection can obtain better detection effects through correlation peak merging, and broadcast information can be combined by symbols or soft-valued bits. And gain.
  • the PCI is carried in the SSS
  • the SSS can be obtained by parsing the SSSs carried by the Y RBs and performing correlation peak merging.
  • the SSSs of the PSS and the Y RBs are parsed and related. PCI can be obtained after peak merging.
  • the terminal device when the PSSs carried on each of the Y RBs adopt the same root index, the terminal device is based on the unlicensed spectrum resources.
  • Receiving the synchronization signal and the broadcast information on the preset channel in the frequency domain including: for the terminal device supporting one RB in the bandwidth, when the terminal device detects the PSS carried by any one of the RBs on the at least Y RBs, performing system timing and Frequency offset calculation, complete SSS parsing and broadcast information reception, and determine the boundaries of X RBs according to the index of the RBs included in the broadcast information; wherein, when the PCI bearer is in the SSS, the SSS of the RB bearer detected by the PSS may be parsed Obtaining PCI, when the PCI is carried in the PSS and the SSS, the PCI can be obtained by parsing the PSS and detecting the SSS of the RB bearer of the PSS; for the terminal device supporting the
  • the PSS When the PSS is carried, the system timing and the frequency offset calculation are performed, and the SSS parsing and the broadcast information receiving are performed.
  • the PCI bearer When the PCI bearer is in the SSS, the SS that is carried by any one of the at least Y RBs is parsed.
  • S can get PCI, when PCI is carried in PSS and SSS, The PCI can be obtained by parsing the SSS carried by the PSS and any one of the at least Y RBs.
  • the first bandwidth is greater than or equal to 500 kHz.
  • a third aspect of the embodiments of the present application provides a base station, including:
  • the sending unit is configured to send the synchronization signal and the broadcast information by using a preset channel in the frequency domain based on the unlicensed spectrum resource; the preset channel occupies X RBs, and the synchronization signal and the broadcast information occupy Y RBs of the X RBs, Y
  • the RBs occupy a first bandwidth, X and Y are positive integers, and Y is less than or equal to X.
  • the synchronization signal includes a PSS and an SSS; wherein the SSS carries a PCI, or the PSS and the SSS carry a PCI.
  • the synchronization signal and the broadcast information occupy a time length T1 in the time domain, a transmission period is T2, and T2 is greater than or equal to T1.
  • the information carried on each of the Y RBs is the same, and the information includes the synchronization signal and the broadcast information.
  • information carried on each of the Y RBs is different, and the information includes at least one of a synchronization signal and broadcast information.
  • the PSS carried on each of the Y RBs adopts the same root index
  • the broadcast information carried on each RB includes The index of the RB is used to indicate the RB carrying the PSS; or the PSS carried on each of the Y RBs has a different root index.
  • the PSS carried on each of the Y RBs adopts a different root index.
  • the Y RBs are not adjacent to each other in the X RBs.
  • the preset channel is located on the protection bandwidth.
  • the first bandwidth is greater than or equal to 500 kHz.
  • a fourth aspect of the embodiments of the present application provides a terminal device, including:
  • the receiving unit is configured to receive the synchronization signal and the broadcast information on the preset channel in the frequency domain based on the unlicensed spectrum resource; the preset channel occupies X RBs, and the synchronization signal and the broadcast information occupy Y RBs of the X RBs, Y RBs occupy the first bandwidth, X and Y are positive integers, and Y is less than or equal to X.
  • the synchronization signal includes a PSS and an SSS; wherein the SSS carries the PCI, or the PSS and the SSS carry the PCI.
  • the synchronization signal and the broadcast information occupy the time domain T1, the transmission period is T2, and the T2 is greater than or equal to T1.
  • the information carried on each of the Y RBs is the same, and the information includes the synchronization signal and the broadcast information.
  • information carried on each of the Y RBs is different, and the information includes at least one of a synchronization signal and broadcast information.
  • the PSS carried on each of the Y RBs adopts the same root index, and the broadcast information carried on each RB includes The index of the RB is used to indicate the RB carrying the PSS; or the PSS carried on each of the Y RBs has a different root index.
  • the PSS carried on each of the Y RBs adopts a different root index.
  • the receiving unit when a PES adopted by each of the Y RBs adopts a different root index, the receiving unit is specifically configured to support the bandwidth.
  • the terminal devices of the X RBs perform system timing and frequency offset calculation when the terminal device detects the PSSs carried by all the RBs on the Y RBs, and complete SSS parsing and broadcast information reception, wherein the PSS detection can be obtained by correlation peak merging.
  • the broadcast information can be combined by the symbol or soft-valued bits to obtain the combined gain.
  • the SSS can be obtained by parsing the SSSs carried by the Y RBs and performing correlation peak merging.
  • the PCI is carried in the PSS and the SSS
  • the PCI can be obtained by parsing the SSS carried by the PSS and the Y RBs and performing correlation peak merging.
  • the first bandwidth is greater than or equal to 500 kHz.
  • a fifth aspect of the embodiments of the present application provides an apparatus, including: at least one processor, and a memory; the memory is configured to store a computer program, such that the first or first aspect is implemented when the computer program is executed by the at least one processor A possible implementation of the unlicensed spectrum based synchronization method of any of the second aspect or the possible implementation of the second aspect.
  • a computer storage medium is provided, the line storing a computer program, when the computer program is executed by the processor, implementing the first aspect or the possible implementation of the first aspect, or the second An unlicensed spectrum based synchronization method as described in any of the aspects or possible implementations of the second aspect.
  • a seventh aspect of the present application provides a system, comprising: the base station according to any one of the foregoing third aspect or the third aspect, and the fourth or fourth aspect A terminal device according to any of the possible implementations.
  • FIG. 1 is a simplified schematic diagram of a communication system according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a synchronization method based on an unlicensed spectrum according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of setting a preset channel according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a synchronization channel according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another synchronization channel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another base station according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another terminal device according to an embodiment of the present application.
  • the output power is less than or equal to 20 dBm
  • the Medium Utilization (MU) rate is not more than 10%
  • the single transmission time is not more than 5 ms
  • the cumulative transmission time is not (Accumulated time).
  • More than 15ms one channel occupied channel bandwidth (Occupied channel bandwidth (single channel) is less than or equal to 5MHz
  • the transmission interval (Tx gap) is greater than or equal to 5ms.
  • the output power needs to be less than or equal to 20 dBm
  • the PSD is less than or equal to 10 dBm/MHz
  • the transmission time is less than 10 ms (for Frame Based Equipment (FBE)). Or less than or equal to 13ms (for load based equipment (LBE)) and other restrictions.
  • max(a, b) represents the maximum value in a and b.
  • each channel bandwidth (Bandwidth/Each channel) must be greater than 500 kHz, PSD is 8 dBm/3 KHz, and transmit power (or The Coducted Power is less than 30 dBm, and the equivalent Isotropic Radiated Power (EIRP) is less than 36 dBm.
  • EIRP Isotropic Radiated Power
  • the Dwell time (Each channel) of each channel should be less than 0.4s/(0.4s*N)
  • N is the number of channels
  • the transmission power is less than 21dBm.
  • the letter FHSS equipment with a number of channels of not less than 75 shall meet the limit of transmission power greater than 30 dBm.
  • the mode that allows digital modulation and FHSS to be mixed that is, a device can contain two working modes.
  • the corresponding constraints of the digital modulation system must be observed, that is, the PSD limit is 8 dBm. /3KHz, the transmission power does not exceed 30dBm, etc.
  • the transmission power needs to be less than 21dBm (the number of channels is not less than 15) or 30dBm (the number of channels is not less than 75).
  • NB-IoT and eMTC systems have become an important branch of the Internet of Everything.
  • NB-IoT can be directly deployed in Global System for Mobile Communication (GSM), Universal Mobile Telecommunications System (UMTS) or Long Term Evolution (LTE) networks to reduce deployment. Cost, smooth upgrade, and consume only about 180KHz of bandwidth.
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • NB-IoT supports cellular data connections for low-power devices over the WAN, and supports efficient connection of devices with long standby times and high network connectivity requirements.
  • the eMTC system is based on the evolution of the LTE protocol. It is more suitable for communication between objects and objects by cutting and optimizing the LTE protocol, and also reduces the cost.
  • the eMTC system can be deployed based on a cellular network.
  • the terminal equipment in the eMTC system can directly access the existing LTE network by supporting the 1.4 MHz radio frequency and baseband bandwidth.
  • the synchronization signal occupies a fixed frequency domain resource in the frequency domain.
  • the synchronization signal occupies a fixed number of RBs in the frequency domain, and the bandwidth of the terminal equipment in the NB-IoT is 1 RB.
  • the synchronization signal occupies a fixed number of 6 RBs in the frequency domain, and the bandwidth of the terminal equipment in the eMTC system is 6 RBs.
  • the prior art uses the licensed spectrum for the transmission of the synchronization signal.
  • the embodiment of the present application provides a synchronization based on the unlicensed spectrum.
  • the basic principle of the method is: the base station sends the synchronization signal and the broadcast information by using a preset channel occupying X RBs in the frequency domain based on the unlicensed spectrum resource, and the synchronization signal and the broadcast information occupy Y RBs of the X RBs.
  • the Y RBs occupy a first bandwidth
  • X and Y are positive integers
  • Y is less than or equal to X.
  • the terminal device whose bandwidth supports one RB means that the bandwidth of the terminal device may be one RB or other bandwidth.
  • the bandwidth supports 6 RBs of terminal devices, which means that the bandwidth of the terminal device can be 6 RBs or other bandwidths.
  • the communication system may include a base station 11 and a terminal device 12.
  • the base station 11 may be a base station (BS) or a base station controller for wireless communication.
  • the base station may include a user plane base station and a control plane base station.
  • a base station is a device deployed in a radio access network to provide wireless communication functions for the terminal device 12. Its main functions are: management of radio resources, compression of an Internet Protocol (IP) header, and user data flow. Encryption, when the user device is attached Performing the selection of Mobile Management Entity (MME), routing user plane data to Service Gateway (SGW), organization and transmission of paging messages, organization and transmission of broadcast messages, and purpose for mobility or scheduling Configuration of measurement and measurement reports, etc.
  • MME Mobile Management Entity
  • SGW Service Gateway
  • the base station 11 can include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different, for example, in an LTE network, called an evolved base station (evolved NodeB, eNB or eNodeB), in the third generation.
  • eNB evolved base station
  • eNodeB base station
  • gNB next generation wireless communication system
  • base station 11 may be other means of providing wireless communication functionality to terminal device 12.
  • a base station a device that provides a wireless communication function for the terminal device 12 is referred to as a base station.
  • the terminal device 12 may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, Radio Access Network, RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • the terminal device 12 can also be a relay. In the embodiment of the present application, as shown in FIG. 1 , the terminal device 12 is used as a mobile phone as an example.
  • the communication system provided by the embodiment of the present application may refer to an unlicensed wireless communication system that is restricted by spectrum regulations.
  • an LTE-based system an LTE (LAA-LTE) system including licensed spectrum assisted access
  • an LTE system including unlicensed spectrum such as a Standalone Unlicensed LTE system.
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station may include at least one processor 21, a memory 22, a transceiver 23, and a bus 24.
  • the processor 21 is a control center of the base station, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 21 is a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • microprocessors Digital Signal Processors, DSPs
  • FPGAs Field Programmable Gate Arrays
  • the processor 21 can perform various functions of the base station by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the base station can include multiple processors, such as processor 21 and processor 25 shown in FIG.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 22 can be a Read-Only Memory (ROM) or other type of static storage device that can store static information and instructions, a Random Access Memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 22 can exist independently and is coupled to the processor 21 via a bus 24.
  • the memory 22 can also be integrated with the processor 21.
  • the memory 22 is used to store a software program that executes the solution of the present application, and is controlled by the processor 21 for execution.
  • the transceiver 23 is configured to communicate with other devices or communication networks. For example, it is used for communication with a communication network such as an Ethernet, a radio access network (RAN), or a wireless local area network (WLAN).
  • Transceiver 23 may include all or part of a baseband processor, and may also optionally include an RF processor.
  • the RF processor is used to transmit and receive RF signals
  • the baseband processor is used to implement processing of a baseband signal converted by an RF signal or a baseband signal to be converted into an RF signal.
  • the bus 24 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 2, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 2 does not constitute a limitation to a base station, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device may include at least one processor 31, a memory 32, a transceiver 33, and a bus 34.
  • the processor 31 can be a processor or a collective name for a plurality of processing elements.
  • processor 31 may be a general purpose CPU, or an ASIC, or one or more integrated circuits for controlling the execution of the program of the present application, such as one or more DSPs, or one or more FPGAs.
  • the processor 31 can perform various functions of the terminal device by running or executing a software program stored in the memory 32 and calling data stored in the memory 32.
  • processor 31 may include one or more CPUs.
  • the processor 31 includes a CPU 0 and a CPU 1.
  • the terminal device may include multiple processors.
  • a processor 31 and a processor 35 are included.
  • Each of these processors can be a single-CPU or a multi-CPU.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • Memory 32 may be a ROM or other type of static storage device that may store static information and instructions, RAM or other types of dynamic storage devices that may store information and instructions, or may be EEPROM, CD-ROM or other optical disk storage, optical disk storage. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 32 may be present independently and coupled to processor 31 via bus 34. The memory 32 can also be integrated with the processor 31.
  • the transceiver 33 is configured to communicate with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the transceiver 33 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the bus 34 can be an ISA bus, a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 3, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 3 does not constitute a limitation to the terminal device, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements.
  • the terminal device may further include a battery, a camera, a Bluetooth module, a GPS module, a display screen, and the like, and details are not described herein again.
  • FIG. 4 is a flowchart of a method for synchronizing unlicensed spectrum according to an embodiment of the present application. As shown in FIG. 4, the method may include:
  • the base station sends the synchronization signal and the broadcast information by using a preset channel in the frequency domain based on the unlicensed spectrum resource.
  • the preset channel occupies X RBs, and the synchronization signal and the broadcast information occupy Y RBs of the X RBs, and the Y RBs occupy the first bandwidth, X and Y are positive integers, and Y is less than or equal to X.
  • the first bandwidth may be set by the base station, or may be pre-configured, or the first bandwidth may be a value specified by a spectrum regulation, or may be a fixed value or the like. In the embodiment of the present application, the first bandwidth may be greater than or equal to 500 kHz. It can be obtained that the preset channel used for transmitting the synchronization signal and the broadcast information in the embodiment of the present application meets the requirements of the digital modulation device in the FCC spectrum regulations.
  • each RB occupies 180 kHz bandwidth, and Y RBs occupy 540 kHz bandwidth (greater than 500 kHz). Then, based on unlicensed spectrum resources, the base station transmits 6 times of RBs for synchronization signals and broadcast information. Three of the RBs in the middle. For example, if X is 6 and Y is 4, each RB occupies 180 kHz bandwidth, and Y RBs occupy a total of 700 kHz bandwidth (greater than 500 kHz), then the base station transmits 6 synchronization signals and broadcast information based on unlicensed spectrum resources. 4 of the RBs in the RB.
  • the preset channel may be located at a preset position of the system bandwidth, and the specific location may be pre-agreed by the base station and the terminal device. For example, if the preset channel occupies 6 RBs and the system bandwidth is 100 RBs, the preset channel can be located on the RB of the center [48 53]. For example, in order to reduce the interference to the out-of-band system, the system will have a protection bandwidth. As shown in Figure 5, the bandwidth of 20Mhz actually occupies 100 RBs, and each side has a protection bandwidth of 1Mhz. In this case, in order to be unauthorized. In the spectrum scenario, better synchronization performance can be obtained. The channel can be laid out on the protection bandwidth, specifically, on one side.
  • the synchronization signal may include PSS and SSS, and the SSS carries the PCI, or the PSS and the SSS carry the PCI.
  • the synchronization signal and the broadcast information occupy the time length T1 in the time domain, the transmission period is T2, and the T2 is greater than or equal to T1.
  • the terminal device can perform the synchronization signal search and the broadcast information detection in the transmission period T2.
  • the information carried on each RB may be the same, the information may include the synchronization signal and the broadcast information; or, in the Y RBs, the information carried on each RB may be different,
  • the information at the time may include at least one of a synchronization signal and broadcast information.
  • the Y RBs may be non-adjacent to each other among the X RBs. Certainly, the Y RBs may be partially or completely adjacent in the X RBs. In this case, the guard intervals between the adjacent RBs need to be increased in the frequency domain, or an algorithm may be used to make the phase. There is an interval between the synchronization signals carried on the adjacent RBs.
  • each RB occupies 180 kHz bandwidth
  • the synchronization signal and broadcast information A schematic diagram of the structure in the frequency domain (ie, a schematic diagram of the structure of the synchronization channel) can be as shown in FIG. 6.
  • the six RBs occupy a bandwidth of 1.08 Mhz, and the synchronization signals and broadcast information are carried on three of the six RBs, and the information carried on each RB is the same.
  • PSS1, SSS, and broadcast information are carried on the first RB
  • PSS2, SSS, and broadcast information are carried on the third RB
  • PSS3, SSS, and broadcast information are carried on the fifth RB.
  • the duration of the PSS and SSS carried on each RB in the time domain is 1 ms
  • the duration of the broadcast information in the time domain is 2 ms.
  • the root index used by the PSS carried in each of the three RBs may be the same.
  • the terminal device in order to enable the terminal device to detect the PSS, it may be determined that the detected The PSS of the RB is required to be included in the broadcast information carried on each RB, and is used to indicate the RB carrying the PSS.
  • the root index used by the PSS carried on each of the three RBs may also be different.
  • each RB occupies 180 kHz bandwidth
  • the synchronization signal and broadcast information A schematic diagram of the structure in the frequency domain can be as shown in FIG. As shown in FIG. 7, the six RBs occupy a bandwidth of 1.08 Mhz, and the synchronization signals and broadcast information are carried on three of the six RBs, and the information carried on each RB is different.
  • the first RB carries PSS3, which occupies 4 ms in the time domain, carries PSS2 and two SSSs on the third RB, and PSS2 occupies 2 ms in the time domain, each time.
  • the duration of the SSS is 1 ms in the time domain, and the PSS1, SSS, and broadcast information are carried on the fifth RB.
  • the duration of the PSS1 in the time domain is 1 ms, and the duration of the SSS in the time domain is 1 ms.
  • the duration of time spent in the time domain is 2ms.
  • the root index employed by the PSS carried on each of the three RBs is different.
  • the terminal device receives the synchronization signal and the broadcast information on a preset channel in the frequency domain based on the unlicensed spectrum resource.
  • the base station uses the synchronization channel as shown in FIG. 6 to transmit the synchronization signal and the broadcast information, and the PSS carried on each of the three RBs adopts a different root index.
  • the PSS carried on each of the three RBs adopts a different root index.
  • a terminal device whose bandwidth supports 1 RB, there are three independent synchronization channels, and synchronization to any of the three can complete cell synchronization.
  • Cell synchronization can also be completed by performing the above detection.
  • the process of receiving the synchronization signal and the broadcast information on the preset channel in the frequency domain may be performed when the terminal device detects the PSS carried by any one of the RBs on the at least three RBs.
  • the terminal device may acquire the PCI, and parse the broadcast information carried on the RB that detects the PSS according to the acquired PCI to obtain system broadcast information, thereby completing cell synchronization.
  • the PCI is carried in the SSS
  • the PCI is obtained by parsing the SSS of the RB bearer that detects the PSS.
  • the PCI is carried in the PSS and the SSS
  • the PCI is obtained by parsing the PSS and detecting the SSS of the RB bearer of the PSS. .
  • the process of receiving the synchronization signal and the broadcast information on the preset channel in the frequency domain may be: when the terminal device detects the PSS carried by all the RBs on the three RBs, performing system timing and Frequency offset calculation, and complete SSS parsing and broadcast information reception.
  • the terminal device may acquire the PCI, and parse the broadcast information carried by all the RBs on the Y RBs according to the PCI, and perform symbol or soft value bit combination to obtain system broadcast information, thereby completing cell synchronization.
  • PSS detection can achieve better detection results by correlating peaks.
  • the PCI is carried in the SSS, the PCI is obtained by parsing the SSSs carried by the Y RBs and performing correlation peak merging.
  • the PCI is carried in the PSS and the SSS, the PCI is carried by parsing the PSS and the Y RBs. SSS, and obtained after the relevant peak combination.
  • the base station uses the synchronization channel shown in FIG. 6 to transmit the synchronization signal and the broadcast information, and the PSS carried on each of the three RBs has the same root index.
  • the process of receiving the synchronization signal and the broadcast information on the preset channel in the frequency domain based on the unlicensed spectrum resource is similar to the receiving process of the terminal device supporting the bandwidth of 1 RB.
  • the terminal device needs to determine which of the six RBs the detected PSS is based on the index of the RB included in the broadcast information, thereby determining the boundary of the six RBs.
  • the process of receiving the synchronization signal and the broadcast information on the preset channel in the frequency domain based on the unlicensed spectrum resource is similar to the receiving process of the terminal device supporting the 6 RBs. The difference is that when parsing broadcast information, symbol or soft value bit merging cannot be performed, and only one broadcast information can be parsed.
  • the base station uses the synchronization channel as shown in FIG. 7 for transmission of the synchronization signal and the broadcast information
  • the PSS carried on each of the three RBs adopts a different root index.
  • the process of receiving the synchronization signal and the broadcast information on the preset channel in the frequency domain based on the unlicensed spectrum resource may be: performing system timing and frequency offset calculation when the terminal device detects the PSS1, and completing the SSS analysis. And broadcast information reception.
  • the terminal device may acquire the PCI, and parse the broadcast information carried on the RB carrying the PSS1 according to the obtained PCI to obtain system broadcast information, thereby completing cell synchronization.
  • the PCI is carried in the SSS
  • the PCI is obtained by parsing the SSS of the RB bearer carrying the PSS1.
  • the PCI is carried in the PSS and the SSS
  • the PCI is obtained by parsing the PSS1 and the SSS carrying the RB of the PSS1.
  • the process of receiving the synchronization signal and the broadcast information on the preset channel in the frequency domain based on the unlicensed spectrum resource is the same as the receiving process of the terminal device supporting the 6 RBs.
  • the unlicensed spectrum-based synchronization method provided by the embodiment of the present application, the base station is based on the unlicensed spectrum resource,
  • the synchronization signal and the broadcast information are transmitted by using a preset channel occupying X RBs in the frequency domain, and the synchronization signal and the broadcast information occupy Y RBs of the X RBs, and the Y RBs occupy the first bandwidth, thereby achieving utilization.
  • the unlicensed spectrum performs the transmission of the synchronization signal, and the terminal equipment supporting the bandwidth of 1 RB and the terminal equipment supporting the bandwidth of 6 RBs can be synchronized to the cell, and the system flexibility is good.
  • the synchronization channel designed by the present application can fully utilize the channel power of the digital modulation device and improve the downlink coverage capability of the system.
  • each network element such as a base station and a terminal device, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the algorithmic steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiments of the present application may divide the functional modules of the base station and the terminal device according to the foregoing method.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 8 is a schematic diagram showing a possible composition of the base station involved in the foregoing and the embodiment.
  • the base station may include: a sending unit 51.
  • the sending unit 51 is configured to support the base station to perform step 401 in the unlicensed spectrum-based synchronization method shown in FIG. 4.
  • the base station provided by the embodiment of the present application is configured to perform the foregoing unlicensed spectrum-based synchronization method, so that the same effect as the foregoing unlicensed spectrum-based synchronization method can be achieved.
  • FIG. 9 shows another possible composition diagram of the base station involved in the above embodiment.
  • the base station includes a processing module 61 and a communication module 62.
  • Processing module 61 is used to control management of the actions of the base station and/or other processes for the techniques described herein.
  • Communication module 62 is used to support communication between the base station and other network entities, such as with the functional modules or network entities shown in FIG. 1, FIG. 3, FIG. 10, or FIG. Specifically, the communication module 62 is configured to support the base station to perform step 401 in FIG.
  • the base station may further include a storage module 63 for storing program codes and data of the base station.
  • the processing module 61 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 62 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 63 can be a memory.
  • the base station involved in the embodiment of the present application may be the base station shown in FIG. 2.
  • FIG. 10 is a schematic diagram showing a possible composition of the terminal device involved in the foregoing and the embodiment.
  • the terminal device may include: a receiving unit 71. .
  • the receiving unit 71 is configured to support the terminal device to perform step 402 in the unlicensed spectrum-based synchronization method shown in FIG. 4.
  • the terminal device provided by the embodiment of the present application is configured to perform the foregoing unlicensed spectrum-based synchronization method, so that the same effect as the foregoing unlicensed spectrum-based synchronization method can be achieved.
  • FIG. 11 shows another possible composition diagram of the terminal device involved in the above embodiment.
  • the terminal device includes a processing module 81 and a communication module 82.
  • the processing module 81 is for controlling management of the actions of the terminal device and/or other processes for the techniques described herein.
  • the communication module 82 is for supporting communication between the terminal device and other network entities, such as communication with the functional modules or network entities shown in FIG. 1, FIG. 2, FIG. 8, or FIG. Specifically, the communication module 82 is configured to support the terminal device to perform step 402 in FIG.
  • the terminal device may further include a storage module 83 for storing program codes and data of the terminal device.
  • the processing module 81 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 82 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 83 can be a memory.
  • the terminal device involved in the embodiment of the present application may be the terminal device shown in FIG.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units can be selected according to actual needs. The purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present application may be embodied in the form of a software product in the form of a software product in essence or in the form of a contribution to the prior art, and the software product is stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种基于非授权频谱的同步方法及设备,涉及通信领域,达到了利用非授权频谱进行同步信号的传输,且使得带宽支持1个RB的终端设备和带宽支持6个RB的终端设备都可以同步到小区的目的。具体方案为:基站基于非授权频谱资源,在频域上采用预设信道发送同步信号和广播信息;预设信道占用X个RB,同步信号和广播信息占用X个RB中的Y个RB,Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。本申请实施例用于同步过程中。

Description

一种基于非授权频谱的同步方法及设备 技术领域
本申请涉及通信领域,尤其涉及一种基于非授权频谱的同步方法及设备。
背景技术
在现有通信系统中,为了使得终端设备能够快速同步到小区,通常情况下,用于进行同步的同步信号在频域上会占用固定的频域资源。例如,在基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IoT)中,同步信号在频域上占用固定的1个资源块(Resource Block,RB),其中,每个RB占用180kHz带宽。在增强机器类通信(Ehanced Machine Type Communication,eMTC)系统中,同步信号在频域上占用固定的6个RB。
现有通信系统中无论是NB-IoT还是eMTC系统,同步信号均是利用授权频谱资源进行传输的。但根据联邦通讯委员会(Federal Communications Commission,FCC)最新发布的国际频谱白皮书,非授权(unlicensed)频谱资源要大于授权频谱资源,如果能有效利用非授权频谱,必将大幅提高无线通信的频谱效率。另外,频谱是无线通信的基础,为了保证对频谱的公平使用,各个国家制定了不同的规则,无线通信设备要在不同的地区使用必须遵守相应地区的频谱法规。在某些地区,无线通信设备在非授权频谱上使用时也是需要遵循特定的法规的,例如,欧洲电信标准协会(European Telecommunications Standards Institute,ETSI)和FCC均对使用2.4GHz频段的设备进行了约束。其中,在FCC的频谱法规中,对于数字调制(digital modulation)设备,需满足信道带宽大于500kHz,功率谱密度(Power Spectral Density,PSD)是8dBm/3KHz,最大发射功率(Coducted)不超过30dBm等限制。
综上,如何利用非授权频谱进行同步信号的传输,且使得带宽支持1个RB的终端设备和带宽支持6个RB的终端设备都可以同步到小区已成为本领域技术人员研究的重点课题。
发明内容
本申请实施例提供一种基于非授权频谱的同步方法及设备,达到了利用非授权频谱进行同步信号的传输,且使得带宽支持1个RB的终端设备和带宽支持6个RB的终端设备都可以同步到小区的目的。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种基于非授权频谱的同步方法,包括:
基站基于非授权频谱资源,在频域上采用预设信道发送同步信号和广播信息;预设信道占用X个RB,同步信号和广播信息占用X个RB中的Y个RB,Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。
本申请实施例提供的基于非授权频谱的同步方法,基站基于非授权频谱资源,通过在频域上采用占用X个RB的预设信道发送同步信号和广播信息,且同步信号 和广播信息占用X个RB中的Y个RB,该Y个RB共占用第一带宽,达到了利用非授权频谱进行同步信号的传输,且使得带宽支持1个RB的终端设备和带宽支持6个RB的终端设备都可以同步到小区的目的,系统灵活性好。
结合第一方面,在一种可能的实现方式中,同步信号包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS),其中,SSS中承载有物理小区标识(Physical Cell Identify,PCI),或者,PSS和SSS中承载有PCI。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,同步信号和广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中每个RB上承载的信息相同,信息包括同步信号和广播信息。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的信息不同,信息包括同步信号和广播信息中的至少一个。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,为了减少终端设备的搜索负载度,Y个RB中的每个RB上承载的PSS采用的根指数相同,且每个RB上承载的广播信息中包括RB的索引,用于指示承载PSS的RB。或者,Y个RB中的每个RB上承载的PSS采用的根指数不同。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的PSS采用的根指数不同。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB在X个RB中互不相邻。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB在X个RB中部分或全部相邻,且相邻的RB上承载的同步信号之间在频域上存在保护间隔。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,为了避免不同系统之间的干扰,有效减少系统同步时间,预设信道位于保护带宽上。
结合第一方面或上述可能的实现方式,在另一种可能的实现方式中,第一带宽大于或等于500kHz。
本申请实施例的第二方面,提供一种基于非授权频谱的同步方法,包括:
终端设备基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息;预设信道占用X个RB,同步信号和广播信息占用X个RB中的Y个RB,Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。
本申请实施例提供的基于非授权频谱的同步方法,终端设备基于非授权频谱资源,通过在频域上的占用X个RB的预设信道接收同步信号和广播信息,且同步信号和广播信息占用X个RB中的Y个RB,该Y个RB共占用第一带宽,达到了利用非授权频谱进行同步信号的传输,且使得带宽支持1个RB的终端设备和带宽支持6个RB的终端设备都可以同步到小区的目的,系统灵活性好。
结合第二方面,在一种可能的实现方式中,同步信号包括PSS和SSS;其中,SSS中承载有PCI,或者,PSS和SSS中承载有PCI。
结合第二方面或上述可能的实现方式,在另一种可能的实现方式中,同步信号和广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1。相应的,终端设备基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息,具体的可以包括:终端设备根据T1和T2,基于非授权频谱资源在频域上的预设信道上接收同步信号和广播信息。
结合第二方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中每个RB上承载的信息相同,信息包括同步信号和广播信息。
结合第二方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的信息不同,信息包括同步信号和广播信息中的至少一个。
结合第二方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的PSS采用的根指数相同,且每个RB上承载的广播信息中包括RB的索引,用于指示承载PSS的RB;或者,Y个RB中的每个RB上承载的PSS采用的根指数不同。
结合第二方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的PSS采用的根指数不同。
结合第二方面或上述可能的实现方式,在另一种可能的实现方式中,当Y个RB中的每个RB上承载的PSS采用的根指数不同时,终端设备基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息,包括:对于带宽支持1个RB的终端设备,在终端设备检测到至少Y个RB上的任意一个RB承载的PSS时,进行系统定时和频偏计算,完成SSS解析和广播信息接收;其中,当PCI承载在SSS中时,通过解析检测到PSS的RB承载的SSS可以获得PCI,当PCI承载在PSS和SSS时,通过解析PSS和检测到PSS的RB承载的SSS可以获得PCI;对于带宽支持X个RB的终端设备,在终端设备检测到Y个RB上所有RB承载的PSS时,进行系统定时和频偏计算,完成SSS解析和广播信息接收;其中,为了提高系统健壮性,PSS检测可以通过相关峰值合并获取更好的检测效果,广播信息可以通过符号或软值比特合并获得合并增益。当PCI承载在SSS中时,通过解析Y个RB承载的SSS,并进行相关峰值合并后可以获得PCI,当PCI承载在PSS和SSS时,通过解析PSS和Y个RB承载的SSS,并进行相关峰值合并后可以获得PCI。
结合第二方面或上述可能的实现方式,在另一种可能的实现方式中,当Y个RB中的每个RB上承载的PSS采用的根指数相同时,终端设备基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息,包括:对于带宽支持1个RB的终端设备,在终端设备检测到至少Y个RB上的任意一个RB承载的PSS时,进行系统定时和频偏计算,完成SSS解析和广播信息接收,并根据广播信息中包括的RB的索引确定X个RB的边界;其中,当PCI承载在SSS中时,通过解析检测到PSS的RB承载的SSS可以获得PCI,当PCI承载在PSS和SSS时,通过解析PSS和检测到PSS的RB承载的SSS可以获得PCI;对于带宽支持X个RB的终端设备,在终端设备检测到至少Y个RB上所有RB承载的PSS时,进行系统定时和频偏计算,完成SSS解析和广播信息接收;其中,当PCI承载在所述SSS中时,通过解析至少Y个RB中任意一个RB承载的SSS可以获得PCI,当PCI承载在PSS和SSS时, 通过解析PSS和至少Y个RB中任意一个RB承载的SSS可以获得PCI。
结合第二方面或上述可能的实现方式,在另一种可能的实现方式中,第一带宽大于或等于500kHz。
本申请实施例的第三方面,提供一种基站,包括:
发送单元,用于基于非授权频谱资源,在频域上采用预设信道发送同步信号和广播信息;预设信道占用X个RB,同步信号和广播信息占用X个RB中的Y个RB,Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。
结合第三方面,在一种可能的实现方式中,同步信号包括PSS和SSS;其中,SSS中承载有PCI,或者,PSS和SSS中承载有PCI。
结合第三方面或上述可能的实现方式,在另一种可能的实现方式中,同步信号和广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1。
结合第三方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中每个RB上承载的信息相同,信息包括同步信号和广播信息。
结合第三方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的信息不同,信息包括同步信号和广播信息中的至少一个。
结合第三方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的PSS采用的根指数相同,且每个RB上承载的广播信息中包括RB的索引,用于指示承载PSS的RB;或者,Y个RB中的每个RB上承载的PSS采用的根指数不同。
结合第三方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的PSS采用的根指数不同。
结合第三方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB在X个RB中互不相邻。
结合第三方面或上述可能的实现方式,在另一种可能的实现方式中,预设信道位于保护带宽上。
结合第三方面或上述可能的实现方式,在另一种可能的实现方式中,第一带宽大于或等于500kHz。
本申请实施例的第四方面,提供一种终端设备,包括:
接收单元,用于基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息;预设信道占用X个RB,同步信号和广播信息占用X个RB中的Y个RB,Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。
结合第四方面,在一种可能的实现方式中,同步信号包括PSS和SSS;其中,SSS中承载有PCI,或者,PSS和SSS中承载有PCI。
结合第四方面或上述可能的实现方式,在另一种可能的实现方式中,同步信号和广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1。
结合第四方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中每个RB上承载的信息相同,信息包括同步信号和广播信息。
结合第四方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的信息不同,信息包括同步信号和广播信息中的至少一个。
结合第四方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的PSS采用的根指数相同,且每个RB上承载的广播信息中包括RB的索引,用于指示承载PSS的RB;或者,Y个RB中的每个RB上承载的PSS采用的根指数不同。
结合第四方面或上述可能的实现方式,在另一种可能的实现方式中,Y个RB中的每个RB上承载的PSS采用的根指数不同。
结合第四方面或上述可能的实现方式,在另一种可能的实现方式中,当Y个RB中的每个RB上承载的PSS采用的根指数不同时,接收单元,具体用于对于带宽支持X个RB的终端设备,在终端设备检测到Y个RB上所有RB承载的PSS时,进行系统定时和频偏计算,完成SSS解析和广播信息接收,其中,PSS检测可以通过相关峰值合并获得,广播信息可以通过符号或软值比特合并获得合并增益,当PCI承载在SSS中时,通过解析Y个RB承载的SSS,并进行相关峰值合并后可以获得PCI,当PCI承载在PSS和SSS时,通过解析PSS和Y个RB承载的SSS,并进行相关峰值合并后可以获得PCI。
结合第四方面或上述可能的实现方式,在另一种可能的实现方式中,第一带宽大于或等于500kHz。
本申请实施例的第五方面,提供一种装置,包括:至少一个处理器、以及存储器;存储器用于存储计算机程序,使得计算机程序被至少一个处理器执行时实现如第一方面或第一方面的可能的实现方式,或者,第二方面或第二方面的可能的实现方式中任一所述的基于非授权频谱的同步方法。
本申请实施例的第六方面,提供一种计算机存储介质,其行存储有计算机程序,该计算机程序被处理器执行时实现如第一方面或第一方面的可能的实现方式,或者,第二方面或第二方面的可能的实现方式中任一所述的基于非授权频谱的同步方法。
本申请实施例的第七方面,提供一种系统,包括:如上述第三方面或第三方面的可能的实现方式中任一项所述的基站,以及如上述第四方面或第四方面的可能的实现方式中任一项所述的终端设备。
附图说明
图1为本申请实施例提供的一种通信系统的简化示意图;
图2为本申请实施例提供的一种基站的组成示意图;
图3为本申请实施例提供的一种终端设备的组成示意图;
图4为本申请实施例提供的一种基于非授权频谱的同步方法的流程图;
图5为本申请实施例提供的一种预设信道的设置示意图;
图6为本申请实施例提供的一种同步信道的结构示意图;
图7为本申请实施例提供的另一种同步信道的结构示意图;
图8为本申请实施例提供的另一种基站的组成示意图;
图9为本申请实施例提供的另一种基站的组成示意图;
图10为本申请实施例提供的另一种终端设备的组成示意图;
图11为本申请实施例提供的另一种终端设备的组成示意图。
具体实施方式
根据FCC最新发布的国际频谱白皮书可以看到,非授权频谱资源要大于授权频谱资源,因此,如何有效利用非授权频谱已成为本领域技术人员研究的重点课题。另外,为了保证对频谱的公平使用,各个国家制定了不同的法规。例如,如表1所示,ETSI在频谱法规ETSI EN 300 328中,对使用2.4GHz频段的设备进行了以下约束。
表1
Figure PCTCN2017087763-appb-000001
其中,根据表1可以得到的是:欧洲的法规将使用设备分为跳频扩频技术(Frequency Hopping Spread Sprectrum,FHSS)设备和宽带调制(Wideband Modulation)设备,并进一步细化为自适应(Adaptive)设备和非自适应(Non adaptive)设备,不同类型的设备需遵守不同的规则。例如,对于基于先听后说(Listen before talk,LBT)的检测退避(Detect And Avoid,DAA)自适应FESS设备,需满足输出功率(Output power)小于或等于20dBm,发送时间(Tx time)不大于60ms,信道 数量(Number of channels)大于或等于15,跳频扩频(FH separation)大于或等于100KHz,需要做18us的空闲信道评测(Clear Channel Assessment,CCA)等限制。再例如,对于基于非自适应FESS设备,需满足输出功率小于或等于20dBm、媒体利用(Medium Utilization,MU)率不大于10%、单次发送时间不大于5ms以及累积发送时长(Accumulated time)不大于15ms、一个信道占用信道带宽(Occupied channel bandwidth(single channel))小于或等于5MHz,发送间隔(Tx gap)大于或等于5ms等限制。MU定义为MU=(P/100mW)*DC,其中,P为输出功率,DC为占空比,当P=100mW,DC<=10%时,MU<=10%。又例如,对于基于LBT的DAA自适应宽带调制设备,需满足输出功率小于或等于20dBm,PSD小于或等于10dBm/MHz以及发送时间小于10ms(对于基于帧结构的设备(Frame Based Equipment,FBE))或小于等于13ms(对于基于负载的设备(Load based equipment,LBE))等限制。其中,max(a,b)表示取a和b中的最大值。
与ETSI的频谱法规相比,如表2所示,FCC的频谱法规相对限制较少。
表2
Figure PCTCN2017087763-appb-000002
其中,根据表2可以得到的是:美国的法规中,对于数字调制(digital modulation)设备,需满足每个信道带宽(Bandwidth/Each channel)大于500kHz,PSD是8dBm/3KHz,发送功率(或称为传导功率(Coducted Power))不超过30dBm,等效全向辐射功率(Effective Isotropic Radiated Power,EIRP)小于36dBm等限制。对于信道数量不小于15个的FHSS设备,需满足每个信道的驻留时间(Dwell time(Each channel))小于0.4s/(0.4s*N),N为信道数量,发送功率小于21dBm等限制。对于信 道数量不小于75个的FHSS设备,需满足发送功率大于30dBm等限制。另外,在美国的法规中,允许数字调制和FHSS混合的模式,即某一设备可以包含两种工作模式,当工作在数字调制模式时,需遵守数字调制系统对应的约束,即PSD限制为8dBm/3KHz,发送功率不超过30dBm等,而工作在FHSS模式时,需遵守FHSS系统对应的约束,即发送功率需小于21dBm(信道数量不小于15条)或30dBm(信道数量不小于75条)。
另外,随着通信技术的不断发展,NB-IoT和eMTC系统均已成为万物互联网络的重要分支。其中,NB-IoT可直接部署于全球移动通信系统(Global System for Mobile Communication,GSM)、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)或长期演进(Long Term Evolution,LTE)网络,以降低部署成本、实现平滑升级,且只消耗大约180KHz的带宽。另外,NB-IoT支持低功耗设备在广域网的蜂窝数据连接,且支持待机时间长、对网络连接要求较高设备的高效连接。eMTC系统是基于LTE协议演进而来,其通过对LTE协议的裁剪和优化,更加适用于物与物之间的通信,也降低了成本。eMTC系统可以基于蜂窝网络进行部署,eMTC系统中的终端设备通过支持1.4MHz的射频和基带带宽,可以直接接入现有LTE网络。
在现有通信系统中,为了使得终端设备能够快速同步到小区,同步信号在频域上会占用固定的频域资源。在NB-IoT中,同步信号在频域上占用固定的1个RB,NB-IoT中的终端设备的带宽为1个RB。在eMTC系统中,同步信号在频域上占用固定的6个RB,eMTC系统中的终端设备的带宽为6个RB。且,现有技术均是采用授权频谱进行同步信号的传输的。
为了能够利用非授权频谱进行同步信号的传输,且使得带宽支持1个RB的终端设备和带宽支持6个RB的终端设备都可以同步到小区,本申请实施例提供一种基于非授权频谱的同步方法,其基本原理是:基站基于非授权频谱资源,通过在频域上采用占用X个RB的预设信道发送同步信号和广播信息,且同步信号和广播信息占用X个RB中的Y个RB,该Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X,这样,当X等于6时,便达到了利用非授权频谱进行同步信号的传输,且使得带宽支持1个RB的终端设备和带宽支持6个RB的终端设备都可以同步到小区的目的。
需要说明的是,在本申请实施例中,带宽支持1个RB的终端设备,指的是该终端设备的带宽可以是1个RB,也可以是其他带宽。带宽支持6个RB的终端设备,指的是该终端设备的带宽可以是6个RB,也可以是其他带宽。
下面将结合附图对本申请实施例的实施方式进行详细描述。
图1示出的是可以应用本申请实施例的通信系统的简化示意图。如图1所示,该通信系统可以包括:基站11和终端设备12。
其中,基站11,可以是无线通信的基站(Base Station,BS)或基站控制器等。具体的,基站可以包括用户面基站和控制面基站。基站是一种部署在无线接入网中用以为终端设备12提供无线通信功能的装置,其主要功能有:进行无线资源的管理、互联网协议(Internet Protocol,IP)头的压缩及用户数据流的加密、用户设备附着时 进行移动管理实体(Mobile Management Entity,MME)的选择、路由用户面数据至服务网关(Service Gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的的测量及测量报告的配置等等。基站11可以包括各种形式的宏基站、微基站、中继站、接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE网络中,称为演进的基站(evolved NodeB,eNB或eNodeB),在第3代移动通信技术(the third Generation Telecommunication,3G)系统中,称为基站(Node B),在下一代无线通信系统中,称为gNB等等。随着通信技术的演进,“基站”这一名称可能会变化。此外,在其它可能的情况下,基站11可以是其它为终端设备12提供无线通信功能的装置。为方便描述,本申请实施例中,为终端设备12提供无线通信功能的装置称为基站。
终端设备12,可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(如,Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)。终端设备12还可以是中继(Relay)。在本申请实施例中,如图1所示,以终端设备12为手机为例示出。
需要说明的是,本申请实施例提供的通信系统可以指的是受频谱法规限制的非授权的无线通信系统。例如,基于LTE的系统,包含许可频谱辅助接入的LTE(LAA-LTE)系统,也包含非授权频谱的LTE系统,如Standalone Unlicensed LTE系统。
图2为本申请实施例提供的一种基站的组成示意图,如图2所示,基站可以包括至少一个处理器21,存储器22、收发器23、总线24。
下面结合图2对基站的各个构成部件进行具体的介绍:
处理器21是基站的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行基站的各种功能。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,基站可以包括多个处理器,例如图2中所示的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以是独立存在,通过总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。
其中,存储器22用于存储执行本申请方案的软件程序,并由处理器21来控制执行。
收发器23,用于与其他设备或通信网络通信。如用于与以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等通信网络通信。收发器23可以包括基带处理器的全部或部分,以及还可选择性地包括RF处理器。RF处理器用于收发RF信号,基带处理器则用于实现由RF信号转换的基带信号或即将转换为RF信号的基带信号的处理。
总线24,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的设备结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图3为本申请实施例提供的一种终端设备的组成示意图。如图3所示,该终端设备可以包括至少一个处理器31、存储器32、收发器33和总线34。
下面结合图3对终端设备的各个构成部件进行具体的介绍:
处理器31可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31可以是一个通用CPU,也可以是ASIC,或一个或多个用于控制本申请方案程序执行的集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器31可以通过运行或执行存储在存储器32内的软件程序,以及调用存储在存储器32内的数据,执行终端设备的各种功能。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU。例如,如图3所示,处理器31包括CPU0和CPU1。
在具体实现中,作为一种实施例,终端设备可以包括多个处理器。例如,如图3所示,包括处理器31和处理器35。这些处理器中的每一个可以是一个single-CPU,也可以是一个multi-CPU。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器32可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器32可以是独立存在,通过总线34与处理器31相连接。存储器32也可以和处理器31集成在一起。
收发器33,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。收发器33可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线34,可以是ISA总线、PCI总线或EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的设备结构并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,终端设备还可以包括电池、摄像头、蓝牙模块、GPS模块、显示屏等,在此不再赘述。
图4为本申请实施例提供的一种基于非授权频谱的同步方法的流程图,如图4所示,该方法可以包括:
401、基站基于非授权频谱资源,在频域上采用预设信道发送同步信号和广播信息。
预设信道占用X个RB,且同步信号和广播信息占用这X个RB中的Y个RB,Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。第一带宽可以是基站设置的,也可以是预先配置的,或者,第一带宽可以是频谱法规规定的值,也可以是一固定值等。在本申请实施例中,第一带宽可以大于或等于500kHz。可以得到的是,本申请实施例的中用于发送同步信号和广播信息的预设信道是满足FCC的频谱法规中对数字调制设备的要求的。
例如,假设X为6,Y为3,每个RB占用180kHz带宽,Y个RB共占用540kHz带宽(大于500kHz),则,基站基于非授权频谱资源,发送的同步信号和广播信息占用6个RB中的其中3个RB。再例如,假设X为6,Y为4,每个RB占用180kHz带宽,则Y个RB共占700kHz带宽(大于500kHz),则,基站基于非授权频谱资源发送的同步信号和广播信息占用6个RB中的其中4个RB。
其中,预设信道可以位于系统带宽的预设位置上,具体的位置可以是基站和终端设备预先约定的。例如,假设预设信道占用6个RB,系统带宽为100个RB,则预设信道可以位于中心[48 53]的RB上。再例如,系统为了减少对带外系统的干扰都会留有保护带宽,如图5所示,20Mhz的带宽实际占用100个RB,两侧分别留有1Mhz的保护带宽,此时,为了在非授权频谱的场景下,能够获得更好的同步性能,预设 信道可以布局在保护带宽上,具体的,设置在一侧即可。
同步信号可以包括PSS和SSS,且SSS中承载有PCI,或者PSS和SSS中承载有PCI。同步信号和广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1,这样,终端设备可以在发送周期T2内进行同步信号的搜索和广播信息的检测。且在Y个RB中,每个RB上承载的信息可以是相同的,该信息可以包括同步信号和广播信息;或者,在Y个RB中,每个RB上承载的信息可以是不同的,此时的信息可以包括同步信号和广播信息中的至少一个。Y个RB在X个RB中可以是互不相邻的。当然,Y个RB在X个RB中也可以是部分或全部相邻的,此时,相邻的RB上承载的同步信号之间需要增加频域上的保护间隔,或者,可以采用算法使得相邻RB上承载的同步信号之间存在间隔。
示例性的,当在Y个RB中,每个RB上承载的信息是相同的时,假设X为6,Y为3,T1=5ms,每个RB占用180kHz带宽,那么,同步信号和广播信息在频域上的结构示意图(即同步信道的结构示意图)可以如图6所示。参见图6可知,6个RB共占用1.08Mhz带宽,且在6个RB中的其中3个RB上均承载有同步信号和广播信息,且,每个RB上承载的信息是相同的。例如,在第一个RB上承载有PSS1、SSS和广播信息,在第三个RB上承载有PSS2、SSS和广播信息,在第五个RB上承载有PSS3、SSS和广播信息。每个RB上承载的PSS和SSS在时域上占用的时长均为1ms,广播信息在时域上占用的时长为2ms。
另外,在图6所示的结构中,3个RB中的每个RB上承载的PSS采用的根指数可以是相同的,此时,为了使得终端设备在检测到PSS时,可以确定出检测到的PSS是6个RB中的哪个RB,需要在每个RB上承载的广播信息中包括该RB的索引,用于指示承载PSS的RB。当然,3个RB中的每个RB上承载的PSS采用的根指数也可以是不同的。
示例性的,当在Y个RB中,每个RB上承载的信息是不同的时,假设X为6,Y为3,T1=5ms,每个RB占用180kHz带宽,那么,同步信号和广播信息在频域上的结构示意图可以如图7所示。参见图7可知,6个RB共占用1.08Mhz带宽,且在6个RB中的其中3个RB上均承载有同步信号和广播信息,且,每个RB上承载的信息是不同的。例如,在第一个RB上承载有PSS3,其在时域上占用的时长为4ms,在第三个RB上承载有PSS2和两个SSS,PSS2在时域上占用的时长为2ms,每个SSS在时域上占用的时长为1ms,在第五个RB上承载有PSS1、SSS和广播信息,PSS1在时域上占用的时长为1ms,SSS在时域上占用的时长为1ms,广播信息在时域上占用的时长为2ms。另外,在图7所示的结构中,3个RB中的每个RB上承载的PSS采用的根指数是不同的。
402、终端设备基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息。
例如,假设基站采用如图6所示的同步信道进行同步信号和广播信息的传输,且3个RB中的每个RB上承载的PSS采用的根指数不同。对于带宽支持1个RB的终端设备,相当于存在3个独立的同步信道,同步到这3个中的任意一个均可以完成小区同步。并且,在某个同步信道受到严重干扰时,可以尝试在其他的同步信道 上进行检测也可以完成小区同步。具体的,其基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息的过程可以是:在终端设备检测到至少3个RB上的任意一个RB承载的PSS时,进行系统定时和频偏计算,并完成SSS解析和广播信息接收。例如,终端设备可以获取PCI,并根据获取到的PCI对检测到PSS的RB上承载的广播信息进行解析以获得系统广播信息,进而完成小区同步。并且,当PCI承载在SSS中时,PCI是通过解析检测到PSS的RB承载的SSS获得的,当PCI承载在PSS和SSS时,PCI是通过解析PSS和检测到PSS的RB承载的SSS获得的。
对于带宽支持6个RB的终端设备,可以完整接6个RB上承载的信息,且在进行时域搜索时,可以充分利用终端设备支持6个RB的能力,分别进行PSS、SSS相关峰值合并,对广播信息进行符号或软值比特合并,从何提高系统的健壮性。具体的,其基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息的过程可以是:在终端设备检测到3个RB上所有RB承载的PSS时,进行系统定时和频偏计算,并完成SSS解析和广播信息接收。例如,终端设备可以获取PCI,并根据PCI解析Y个RB上所有RB承载的广播信息,并进行符号或软值比特合并以获得系统广播信息,进而完成小区同步。PSS检测可以通过相关峰值合并获取更好的检测效果。并且,当PCI承载在SSS中时,PCI是通过解析Y个RB承载的SSS,并进行相关峰值合并后获得的,当PCI承载在PSS和SSS时,PCI是通过解析PSS和Y个RB承载的SSS,并进行相关峰值合并后获得的。
再例如,假设基站采用如图6所示的同步信道进行同步信号和广播信息的传输,且3个RB中的每个RB上承载的PSS采用的根指数相同。对于带宽支持1个RB的终端设备,其基于非授权频谱资源在频域上的预设信道上接收同步信号和广播信息的过程与上述带宽支持1个RB的终端设备的接收过程是类似的,区别在于,终端设备需根据广播信息中包括的RB的索引确定检测到的PSS是6个RB中的哪个RB,从而确定出6个RB的边界。对于带宽支持6个RB的终端设备,其基于非授权频谱资源在频域上的预设信道上接收同步信号和广播信息的过程与上述带宽支持6个RB的终端设备的接收过程是类似的,区别在于,在解析广播信息时,不能进行符号或软值比特合并,只需解析其中一个广播信息即可。
又例如,假设基站采用如图7所示的同步信道进行同步信号和广播信息的传输,且3个RB中的每个RB上承载的PSS采用的根指数不同。对于带宽支持1个RB的终端设备,只需要同步PSS1对应的同步信道即可。具体的,其基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息的过程可以是:在终端设备检测到PSS1时,进行系统定时和频偏计算,并完成SSS解析和广播信息接收。例如,终端设备可以获取PCI,根据获取到的PCI对承载PSS1的RB上承载的广播信息进行解析以获得系统广播信息,进而完成小区同步。并且,当PCI承载在SSS中时,PCI是通过解析承载PSS1的RB承载的SSS获得的,当PCI承载在PSS和SSS时,PCI是通过解析PSS1和承载PSS1的RB承载的SSS获得的。对于带宽支持6个RB的终端设备,其基于非授权频谱资源在频域上的预设信道上接收同步信号和广播信息的过程与上述带宽支持6个RB的终端设备的接收过程是相同的。
本申请实施例提供的基于非授权频谱的同步方法,基站基于非授权频谱资源, 通过在频域上采用占用X个RB的预设信道发送同步信号和广播信息,且同步信号和广播信息占用X个RB中的Y个RB,该Y个RB共占用第一带宽,达到了利用非授权频谱进行同步信号的传输,且使得带宽支持1个RB的终端设备和带宽支持6个RB的终端设备都可以同步到小区的目的,系统灵活性好。
并且,通过将预设信道可以布局在保护带宽上,有效避免了不同系统间的干扰,使得在非授权频谱的场景下能够获得更好的同步性能。本申请设计的同步信道能够充分利用数字调制设备的信道功率,提高了系统的下行覆盖能力。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对基站、终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图8示出了上述和实施例中涉及的基站的一种可能的组成示意图,如图8所示,该基站可以包括:发送单元51。
其中,发送单元51,用于支持基站执行图4所示的基于非授权频谱的同步方法中的步骤401。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的基站,用于执行上述基于非授权频谱的同步方法,因此可以达到与上述基于非授权频谱的同步方法相同的效果。
在采用集成的单元的情况下,图9示出了上述实施例中所涉及的基站的另一种可能的组成示意图。如图9所示,该基站包括:处理模块61和通信模块62。
处理模块61用于对基站的动作进行控制管理和/或用于本文所描述的技术的其它过程。通信模块62用于支持基站与其他网络实体的通信,例如与图1、图3、图10或图11中示出的功能模块或网络实体之间的通信。具体的,如通信模块62用于支持基站执行图4中的步骤401。基站还可以包括存储模块63,用于存储基站的程序代码和数据。
其中,处理模块61可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块62可以是收发器、收发电路或通信接口等。存储模块63可以是存储器。
当处理模块61为处理器,通信模块62为收发器,存储模块63为存储器时,本申请实施例所涉及的基站可以为图2所示的基站。
在采用对应各个功能划分各个功能模块的情况下,图10示出了上述和实施例中涉及的终端设备的一种可能的组成示意图,如图10所示,该终端设备可以包括:接收单元71。
其中,接收单元71,用于支持终端设备执行图4所示的基于非授权频谱的同步方法中的步骤402。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的终端设备,用于执行上述基于非授权频谱的同步方法,因此可以达到与上述基于非授权频谱的同步方法相同的效果。
在采用集成的单元的情况下,图11示出了上述实施例中所涉及的终端设备的另一种可能的组成示意图。如图11所示,该终端设备包括:处理模块81和通信模块82。
处理模块81用于对终端设备的动作进行控制管理和/或用于本文所描述的技术的其它过程。通信模块82用于支持终端设备与其他网络实体的通信,例如与图1、图2、图8或图9中示出的功能模块或网络实体之间的通信。具体的,如通信模块82用于支持终端设备执行图4中的步骤402。终端设备还可以包括存储模块83,用于存储终端设备的程序代码和数据。
其中,处理模块81可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块82可以是收发器、收发电路或通信接口等。存储模块83可以是存储器。
当处理模块81为处理器,通信模块82为收发器,存储模块83为存储器时,本申请实施例所涉及的终端设备可以为图3所示的终端设备。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现 本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种基于非授权频谱的同步方法,其特征在于,包括:
    基站基于非授权频谱资源,在频域上采用预设信道发送同步信号和广播信息;所述预设信道占用X个资源块RB,所述同步信号和所述广播信息占用所述X个RB中的Y个RB,所述Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。
  2. 根据权利要求1所述的方法,其特征在于,所述同步信号包括主同步信号PSS和辅同步信号SSS;
    其中,所述SSS中承载有物理小区标识PCI,或者,所述PSS和所述SSS中承载有所述PCI。
  3. 根据权利要求2所述的方法,其特征在于,所述同步信号和所述广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述Y个RB中每个RB上承载的信息相同,所述信息包括所述同步信号和所述广播信息。
  5. 根据权利要求2或3所述的方法,其特征在于,
    所述Y个RB中的每个RB上承载的信息不同,所述信息包括所述同步信号和所述广播信息中的至少一个。
  6. 根据权利要求4所述的方法,其特征在于,
    所述Y个RB中的每个RB上承载的所述PSS采用的根指数相同,且所述每个RB上承载的所述广播信息中包括所述RB的索引,用于指示承载PSS的RB;
    或者,所述Y个RB中的每个RB上承载的所述PSS采用的根指数不同。
  7. 根据权利要求5所述的方法,其特征在于,
    所述Y个RB中的每个RB上承载的所述PSS采用的根指数不同。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述Y个RB在所述X个RB中互不相邻。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述预设信道位于保护带宽上。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一带宽大于或等于500kHz。
  11. 一种基于非授权频谱的同步方法,其特征在于,包括:
    终端设备基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息;所述预设信道占用X个资源块RB,所述同步信号和所述广播信息占用所述X个RB中的Y个RB,所述Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。
  12. 根据权利要求11所述的方法,其特征在于,所述同步信号包括主同步信号PSS和辅同步信号SSS;
    其中,所述SSS中承载有物理小区标识PCI,或者,所述PSS和所述SSS中承载有所述PCI。
  13. 根据权利要求12所述的方法,其特征在于,所述同步信号和所述广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1。
  14. 根据权利要求12或13所述的方法,其特征在于,
    所述Y个RB中每个RB上承载的信息相同,所述信息包括所述同步信号和所述广播信息。
  15. 根据权利要求12或13所述的方法,其特征在于,
    所述Y个RB中的每个RB上承载的信息不同,所述信息包括所述同步信号和所述广播信息中的至少一个。
  16. 根据权利要求14所述的方法,其特征在于,
    所述Y个RB中每个RB上承载的所述PSS采用的根指数相同,且所述每个RB上承载的所述广播信息中包括所述RB的索引,用于指示承载PSS的RB;
    或者,所述Y个RB中每个RB上承载的所述PSS采用的根指数不同。
  17. 根据权利要求15所述的方法,其特征在于,
    所述Y个RB中每个RB上承载的所述PSS采用的根指数不同。
  18. 根据权利要求16或17所述的方法,其特征在于,当所述Y个RB中每个RB上承载的所述PSS采用的根指数不同时,所述终端设备基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息,包括:
    对于带宽支持X个RB的终端设备,在所述终端设备检测到所述Y个RB上所有RB承载的所述PSS时,进行系统定时和频偏计算,并进行所述SSS解析和所述广播信息接收;其中,所述PSS检测时进行相关峰值合并,所述广播信息接收时进行符号或软值比特合并,当所述PCI承载在所述SSS中时,通过解析所述Y个RB承载的所述SSS,并进行相关峰值合并后获得所述PCI,当所述PCI承载在所述PSS和所述SSS时,通过解析所述PSS和所述Y个RB承载的所述SSS,并进行相关峰值合并后获得所述PCI。
  19. 根据权利要求11-18中任一项所述的方法,其特征在于,所述第一带宽大于或等于500kHz。
  20. 一种基站,其特征在于,包括:
    发送单元,用于基于非授权频谱资源,在频域上采用预设信道发送同步信号和广播信息;所述预设信道占用X个资源块RB,所述同步信号和所述广播信息占用所述X个RB中的Y个RB,所述Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。
  21. 根据权利要求20所述的基站,其特征在于,所述同步信号包括主同步信号PSS和辅同步信号SSS;
    其中,所述SSS中承载有物理小区标识PCI,或者,所述PSS和所述SSS中承载有所述PCI。
  22. 根据权利要求21所述的基站,其特征在于,所述同步信号和所述广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1。
  23. 根据权利要求21或22所述的基站,其特征在于,
    所述Y个RB中每个RB上承载的信息相同,所述信息包括所述同步信号和所述广播信息。
  24. 根据权利要求21或22所述的基站,其特征在于,
    所述Y个RB中的每个RB上承载的信息不同,所述信息包括所述同步信号和所述广播信息中的至少一个。
  25. 根据权利要求23所述的基站,其特征在于,
    所述Y个RB中的每个RB上承载的所述PSS采用的根指数相同,且所述每个RB上承载的所述广播信息中包括所述RB的索引,用于指示承载PSS的RB;
    或者,所述Y个RB中的每个RB上承载的所述PSS采用的根指数不同。
  26. 根据权利要求24所述的基站,其特征在于,
    所述Y个RB中的每个RB上承载的所述PSS采用的根指数不同。
  27. 根据权利要求20-26中任一项所述的基站,其特征在于,所述Y个RB在所述X个RB中互不相邻。
  28. 根据权利要求20-27中任一项所述的基站,其特征在于,所述预设信道位于保护带宽上。
  29. 根据权利要求20-28中任一项所述的基站,其特征在于,所述第一带宽大于或等于500kHz。
  30. 一种终端设备,其特征在于,包括:
    接收单元,用于基于非授权频谱资源,在频域上的预设信道上接收同步信号和广播信息;所述预设信道占用X个资源块RB,所述同步信号和所述广播信息占用所述X个RB中的Y个RB,所述Y个RB共占用第一带宽,X、Y均为正整数,Y小于或等于X。
  31. 根据权利要求30所述的终端设备,其特征在于,所述同步信号包括主同步信号PSS和辅同步信号SSS;
    其中,所述SSS中承载有物理小区标识PCI,或者,所述PSS和所述SSS中承载有所述PCI。
  32. 根据权利要求31所述的终端设备,其特征在于,所述同步信号和所述广播信息在时域上占用的时长为T1,发送周期为T2,T2大于或等于T1。
  33. 根据权利要求31或32所述的终端设备,其特征在于,
    所述Y个RB中每个RB上承载的信息相同,所述信息包括所述同步信号和所述广播信息。
  34. 根据权利要求31或32所述的终端设备,其特征在于,
    所述Y个RB中的每个RB上承载的信息不同,所述信息包括所述同步信号和所述广播信息中的至少一个。
  35. 根据权利要求33所述的终端设备,其特征在于,
    所述Y个RB中每个RB上承载的所述PSS采用的根指数相同,且所述每个RB上承载的所述广播信息中包括所述RB的索引,用于指示承载PSS的RB;
    或者,所述Y个RB中每个RB上承载的所述PSS采用的根指数不同。
  36. 根据权利要求34所述的终端设备,其特征在于,
    所述Y个RB中每个RB上承载的所述PSS采用的根指数不同。
  37. 根据权利要求35或36所述的终端设备,其特征在于,当所述Y个RB中每个RB上承载的所述PSS采用的根指数不同时,所述接收单元,具体用于:
    对于带宽支持X个RB的终端设备,在所述终端设备检测到所述Y个RB上所有RB承载的所述PSS时,进行系统定时和频偏计算,并进行所述SSS解析和所述广播信息接收;其中,所述PSS检测时进行相关峰值合并,所述广播信息接收时进行符号或软值比特合并,当所述PCI承载在所述SSS中时,通过解析所述Y个RB承载的所述SSS,并进行相关峰值合并后获得所述PCI,当所述PCI承载在所述PSS和所述SSS时,通过解析所述PSS和所述Y个RB承载的所述SSS,并进行相关峰值合并后获得所述PCI。
  38. 根据权利要求30-37中任一项所述的终端设备,其特征在于,所述第一带宽大于或等于500kHz。
  39. 一种装置,包括:至少一个处理器,以及存储器;其特征在于,
    所述存储器用于存储计算机程序,使得所述计算机程序被所述至少一个处理器执行时实现如权利要求1-19中任一项所述的基于非授权频谱的同步方法。
  40. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1-19任一项所述的基于非授权频谱的同步方法。
PCT/CN2017/087763 2017-06-09 2017-06-09 一种基于非授权频谱的同步方法及设备 WO2018223385A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087763 WO2018223385A1 (zh) 2017-06-09 2017-06-09 一种基于非授权频谱的同步方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087763 WO2018223385A1 (zh) 2017-06-09 2017-06-09 一种基于非授权频谱的同步方法及设备

Publications (1)

Publication Number Publication Date
WO2018223385A1 true WO2018223385A1 (zh) 2018-12-13

Family

ID=64565645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087763 WO2018223385A1 (zh) 2017-06-09 2017-06-09 一种基于非授权频谱的同步方法及设备

Country Status (1)

Country Link
WO (1) WO2018223385A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796218A (zh) * 2014-01-17 2015-07-22 电信科学技术研究院 信号传输方法和装置
CN105122909A (zh) * 2014-01-29 2015-12-02 华为技术有限公司 同步方法、基站和用户设备
CN105207754A (zh) * 2014-05-30 2015-12-30 中兴通讯股份有限公司 信息发送方法、信息接收方法、装置及系统
CN105453654A (zh) * 2013-08-16 2016-03-30 高通股份有限公司 利用未许可频谱的lte/lte-a通信系统的下行链路过程
WO2016069144A1 (en) * 2014-09-24 2016-05-06 Interdigital Patent Holdings, Inc. Channel usage indication and synchronization for lte operation in unlicensed bands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453654A (zh) * 2013-08-16 2016-03-30 高通股份有限公司 利用未许可频谱的lte/lte-a通信系统的下行链路过程
CN104796218A (zh) * 2014-01-17 2015-07-22 电信科学技术研究院 信号传输方法和装置
CN105122909A (zh) * 2014-01-29 2015-12-02 华为技术有限公司 同步方法、基站和用户设备
CN105207754A (zh) * 2014-05-30 2015-12-30 中兴通讯股份有限公司 信息发送方法、信息接收方法、装置及系统
WO2016069144A1 (en) * 2014-09-24 2016-05-06 Interdigital Patent Holdings, Inc. Channel usage indication and synchronization for lte operation in unlicensed bands

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
US10652882B2 (en) Data transmission method, wireless network device, and communications system
TWI812603B (zh) 數據傳輸方法和裝置
US10051478B2 (en) Method for scheduling unlicensed spectrum, user equipment, and base station
WO2014169488A1 (zh) 一种异制式系统下的干扰协调方法、装置和设备
WO2012038912A1 (en) Autonomous unlicensed band reuse in mixed cellular and device-to-device network
CN110149732A (zh) 一种通信方法及无线通信装置
US20230015587A1 (en) Data sending method, terminal device, and non-transitory computer-readable storage medium
CN109121207B (zh) 一种通信方法及设备
CN104145494B (zh) 频谱分配方法和设备
WO2020063929A1 (zh) 一种发现参考信号发送方法及装置
WO2021026929A1 (zh) 一种通信方法及装置
EP3975637B1 (en) Method and device for adjusting pdcch monitoring period
WO2020030008A1 (zh) 一种传输信号的方法和装置
WO2020258051A1 (zh) 小区接入的方法和设备
WO2020056774A1 (zh) 信号传输的方法、终端设备和网络设备
TW201944823A (zh) 發送上行通道、接收上行通道的方法和設備
WO2021209013A1 (zh) 无线通信方法、终端设备和网络设备
WO2018223385A1 (zh) 一种基于非授权频谱的同步方法及设备
TWI829759B (zh) 同步信號傳輸的方法、發射端設備和接收端設備
CN110959258B (zh) 一种数据传输方法及装置
JP7425885B2 (ja) 無線通信における物理ブロードキャストチャネル拡張
EP4351229A1 (en) Method and apparatus for determining energy-saving signal monitoring occasion, and terminal device
WO2024131502A1 (zh) 一种通信方法和装置
WO2024098987A1 (zh) 信号传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912444

Country of ref document: EP

Kind code of ref document: A1