CN107004782B - 具有自由浮动棱柱形电池单元的锂离子电池组模块 - Google Patents

具有自由浮动棱柱形电池单元的锂离子电池组模块 Download PDF

Info

Publication number
CN107004782B
CN107004782B CN201580057145.8A CN201580057145A CN107004782B CN 107004782 B CN107004782 B CN 107004782B CN 201580057145 A CN201580057145 A CN 201580057145A CN 107004782 B CN107004782 B CN 107004782B
Authority
CN
China
Prior art keywords
lithium ion
prismatic
ion battery
battery cells
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580057145.8A
Other languages
English (en)
Other versions
CN107004782A (zh
Inventor
理査德·M·德克斯特
罗伯特·J·麦克
詹妮弗·L·查尔内基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Technology Co
Original Assignee
Johnson Controls Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Co filed Critical Johnson Controls Technology Co
Publication of CN107004782A publication Critical patent/CN107004782A/zh
Application granted granted Critical
Publication of CN107004782B publication Critical patent/CN107004782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本公开实施例包括具有棱柱形锂离子电池单元阵列的锂离子电池组模块,所述棱柱形锂离子电池单元定位在所述锂离子电池组模块的外壳的电池单元容置区内。所述阵列中的棱柱形锂离子电池单元通过从所述外壳的形成所述电池单元容置区的内表面延伸出来的固定突出物以间隔布置彼此间隔开,并且所述固定突出物向内延伸以横跨所述电池单元容置区的宽度形成多个不连续狭槽。

Description

具有自由浮动棱柱形电池单元的锂离子电池组模块
相关申请的交叉引用
本申请要求2014年9月26日提交的标题为“LITHIUM ION BATTERY MODULE WITHFREE FLOATING PRISMATIC BATTERY CELLS”的美国临时申请序列号62/056,376的优先权和权益,出于所有目的,所述申请通过援引以其全部内容并入本文。
背景技术
本公开总体上涉及电池组和电池组模块领域。更具体地,本公开涉及电池单元在锂离子(Li离子)电池组模块内的放置。
本部分旨在向读者介绍下文所描述和/或要求保护的本公开的各个方面可能涉及的本领域各个方面技术。这种讨论被认为有助于向读者提供背景信息以便于更好地理解本公开的各个方面。因此,应当理解,这些陈述以该角度来阅读,并且不视为承认现有技术。
使用一个或多个电池组系统以用于对车辆提供所有或一部分的原动力的车辆可称为xEV,其中术语“xEV”在本文中定义为包括将电功率用于其车辆原动力的全部或一部分的所有下述车辆或其任何变型或组合。例如,xEV包括将电功率用于全部原动力的电动车辆(EV)。如本领域的技术人员将理解,也视为xEV的混合动力电动车辆(HEV)将内燃机推进系统和电池组供能电动推进系统(诸如48伏特(V)或130V系统)相组合。术语HEV可包括混合动力电动车辆的任何变型。例如,全混合动力系统(FHEV)可利用一个或多个电动机,仅利用内燃机或利用两者将原动力和其它电功率提供至车辆。相比之下,轻度混合动力系统(MHEV)在车辆空转时停用内燃机,并利用电池组系统来对空气调节单元、收音机或其它电子装置持续供能以及在需要推进时重新启动发动机。轻度混合动力系统还可应用一定程度的功率辅助,例如在加速期间,以增补内燃机。轻度混合动力通常为96V至130V,并且通过皮带或曲轴集成启动器发电机回收制动能量。另外,微混合动力电动车辆(mHEV)也使用类似于轻度混合动力的“启-停”系统,但是mHEV的微混合动力系统可向或不向内燃机提供功率辅助并且以低于60V的电压操作。出于当前讨论的目的,应当指出的是,mHEV通常技术上不将直接提供至机轴或传动装置的电功率用于车辆的任何部分的原动力,但是mHEV仍可视为xEV,因为其在车辆空转(其中内燃机停用)以及通过集成启动器发电机回收制动能量时确实使用电功率来增补车辆的功率需求。此外,插入式电动车辆(PEV)为可从外部电源(诸如壁插座)进行充电的任何车辆,并且存储于可充电电池组中的能量驱动或有助于驱动车轮。PEV为EV的子类,包括纯电动或电池组电动车辆(BEV)、插入式混合动力电动车辆(PHEV),以及混合动力电动车辆和传统内燃机车辆的电动车辆变换。
上述xEV相比于仅使用内燃机和传统电气系统(通常为由铅酸电池组供能的12V系统)的较传统气体供能车辆可提供多个优点。例如,相比于传统内燃机车辆,xEV可产生较少不期望的排放产物并且可表现出较高燃料效率,并且在一些情况下,此类xEV可如同特定类型的EV或PEV那样完全消除汽油的使用。
随着技术持续发展,存在对此类车辆和其他实现方式提供改进的电源、特别是电池组模块的需求。例如,某些传统电池组模块可以包括多个电池单元。在这类传统模块中,电池单元在使用(例如,充电和放电)过程中可能发生膨胀,这可能影响其运行,并且在一些情况下,引起电池单元在电池组模块内移动。精心制作的夹紧机构传统上用于将电池单元压紧就位,这提供压紧来抵消膨胀并维持其在模块内的位置。因此,现在认识到,传统的电池组模块可以通过例如降低或完全消除对这类夹紧机构的需要来得到进一步改进。进一步,还认识到可能期望减少或减轻电池单元膨胀。
发明内容
以下阐述了在此公开的某些实施例的概述。应当理解的是,这些方面仅仅呈现为给读者提供这样的某些实施例的简要概述且这些方面不旨在限制本公开的范围。实际上,本公开可涵盖下文可能未说明的各个方面。
本公开实施例涉及具有多个电池单元(其在此还可以称为电化学电池)的一系列电池组模块。例如,一方面,本公开涉及一种锂离子电池组模块,其具有棱柱形锂离子电池单元阵列,所述棱柱形锂离子电池单元放置在所述锂离子电池组模块的外壳的电池单元容置区内。所述阵列中的棱柱形锂离子电池单元通过从所述外壳的形成所述电池单元容置区的内表面延伸出来的固定突出物以间隔布置彼此间隔开,并且所述固定突出物向内延伸以横跨所述电池单元容置区的宽度形成多个不连续狭槽。
在另一方面,本公开还涉及一种锂离子电池组模块系统,其包括外壳,所述外壳具有:底座;与所述底座相对的顶部部分;第一电池单元容置区,所述第一电池单元容置区包括第一列不连续狭槽,所述第一列以从所述底座到所述顶部部分的方向延伸。所述外壳还包括第二电池单元容置区,所述第二电池单元容置区平行于所述第一电池单元容置区定向并且具有第二列不连续狭槽。所述第一和第二列不连续狭槽均被构造为接纳棱柱形电池单元,并且由固定到所述外壳的内表面上的多个突出物形成。
在又一个方面,本公开还涉及一种锂离子电池组模块,包括外壳,所述外壳具有底座和与所述底座相对的顶部部分并且具有被构造为能够与所述锂离子电池组模块电连接的端子。所述锂离子电池组模块还包括被放置成彼此相邻并且平行并且在所述外壳内的第一和第二棱柱形锂离子电池单元阵列。所述第一和第二棱柱形锂离子电池单元阵列均具有一组对齐的棱柱形锂离子电池单元,所述棱柱形锂离子电池单元具有定位在所述外壳的单侧面上的它们各自的正和负端子。每个棱柱形锂离子电池单元通过气隙与紧邻的棱柱形锂离子电池单元间隔开。
附图说明
图1是根据本公开的一方面具有根据本公开实施例构造的电池组系统的xEV的透视图,所述电池组系统为xEV的各种部件提供功率。
图2是根据本公开的一方面具有利用图1的电池组系统的启停系统的xEV的实施例的剖面示意图,所述电池组系统具有锂离子电池组模块。
图3是根据本公开的一方面各种电池组模块的俯视透视图,图示了单种类型的电池单元可以并入不同类型的锂离子电池组模块外壳内的方式从而使多个电池单元处于浮动布置下。
图4是根据本公开的一方面与图3的锂离子电池组模块相对应的锂离子电池组模块尺寸的覆盖物的俯视透视图;
图5是根据本公开的一方面图3的锂离子电池组模块的可用电池单元容积的覆盖物的俯视透视图;
图6是根据本公开的一方面可以并入图3的电池组模块中的棱柱形电池单元的透视图;
图7是根据本公开的一方面与图6的电池单元相对应的、并入图4中描述的外壳覆盖物中的多个电池单元的剖面俯视透视图;
图8是根据本公开的一方面放置在电池组模块外壳内并且具有产生浮动电池单元布置的固定突出物放大视图的多个电池单元的俯视透视图;
图9是根据本公开的一方面具有浮动布置的多个电池单元的锂离子电池组模块的剖面侧视透视图,其中移除了外壳来描绘在处于图8的浮动布置下时电池单元的相对定位;
图10是根据本公开的一方面在充电前后可膨胀的电池单元与基本上不可膨胀的电池单元的对比侧视图;
图11是根据本公开的一方面具有电池单元的锂离子电池组模块的分解俯视透视图,集成汇流条和电压感测子组件向内促动所述电池单元抵靠着外壳的后部;
图12是根据本公开的一方面图11的电池组模块中的一列电池单元沿线12-12截取的剖面侧视图,并且具有在所述电池单元之间放置的一个或多个垫片;
图13是根据本公开的一方面被构造为拾取电池单元并将其放置到电池组模块外壳内而不将电池单元分级的制造系统的框图;
图14是根据本公开的一方面使用由图13的系统进行的拾放技术的制造电池组模块的方法的流程图;
图15是根据本公开的一方面被构造为对电池组模块外壳标引并根据所述标引将电池单元与其他部件放置在外壳内的制造系统的框图;
图16是根据本公开的一方面使用由图15的系统进行的标引技术制造电池组模块的方法的流程图;
图17是根据本公开的一方面图16的标引技术的示意性图示;和
图18是根据本公开的一方面具有基本上不可膨胀电池单元的部分组装锂离子电池组模块的正视图,所述电池单元具有不同的荷电状态、但基本上相同的电池单元厚度。
具体实施方式
以下将描述一个或多个具体实施例。为了提供这些实施例的简洁描述,本说明书未描述实际实施方式的所有特征。应当理解,在任何此类实际实施方式的开发中,如同在任何工程或设计项目中,必须做出许多特定于实施方式的决策以达到开发者的特定目标,诸如兼容系统相关和业务相关约束条件,这些约束条件可根据实施方式而变化。而且,应当理解,此类开发工作可能是复杂的并且耗时的,然而对于受益于本公开的普通技术人员而言将为设计、制作和制造的例行任务。
在此描述的电池组系统可以用于给各种类型的电动车辆(xEV)和其他高电压储能/耗能应用(例如,电网电力储存系统)提供电力。此类电池组系统可以包括一个或多个电池组模块,每个电池组模块具有外壳和多个电池单元(例如,锂离子(Li离子)电池单元),所述多个电池单元布置在所述外壳内用于提供对例如xEV的一个或多个部件供能有用的特定电压和/或电流。作为另一个实例,根据本公开实施例的电池组模块可与固定式功率系统(例如,非机动性系统)合并或将功率提供至所述固定式功率系统。
锂离子电池组模块中使用的电池单元还可以称为电池组单元,并且例如基于每个电池单元内含有的活性物质,不同类型的这类电池单元可以具有不同的电压和/或容量。一般而言,锂离子电池单元将包括阴极(正电极)、阳极(负电极)、和提供离子源(例如锂离子)的电解液。在某些构造中,阴极和阳极均包括使电极能够在充电和放电循环过程中存储和传递离子(例如,锂离子)的电极活性材料。电极是阴极还是阳极一般由各自的电极活性物质及其相对于Li/Li+的参比电压来决定。因此,电极活性物质一般将是不同的。
如本领域的技术人员领会的,在每个正电极和负电极处发生电化学半反应。例如,在正电极处的电化学半反应可以是其中一个或多个锂离子可逆地(基于平衡)与正电极活性物质解离的反应,由此还释放一个或多个电子(数量上等于离解的锂离子的数量)。在负电极,发生的电化学半反应可以是其中一个或多个锂离子和(相等数量的)一个或多个电子可逆地与负电极活性物质(例如,碳)结合。
在电池组放电过程中,电极处的平衡有利于锂离子和电子从负电极活性物质离解并且电子与锂离子与正电极活性物质重新结合。另一方面,在充电过程中,情况相反。离子移入电极中常常称为嵌插或注入,并且离子远离电极的移动常常称为脱嵌或引出。因此,在放电过程中,在正电极处发生嵌插而在负电极处发生脱嵌,并且在充电过程中,情况相反。因此,锂离子电池单元一般将基于在其电极处的锂离子嵌插和脱嵌来运行。
就此而言,电池单元的多个特性可以起源于电池单元的物理构造的组合(例如,其形状、大小、布局)、及其化学构造(例如,电极活性物质、电解液、添加剂)。例如,在使用石墨作为阳极活性材料的传统棱柱形电池单元中,由于充电和放电循环,可能发生相对大程度的尺寸变化,其中,在充电过程中,锂嵌插进活性物质(石墨)中,从而引起阳极膨胀,而在放电过程中,活性物质释放锂,从而引起阳极尺寸减小。这类膨胀可能存在的问题在于其减小了电池单元的功率密度,并且随着阳极膨胀,这引起阳极与阴极之间发生电阻,这降低了电池单元的效率。在传统方法中,通过例如在电极(阳极和阴极)位于的棱柱形电池单元活动区相对应的位置处将相对大程度的压力施加于所述棱柱形电池单元来在某种程度上减轻这种膨胀。然而,这些夹紧机构可能是笨重的并且对具体锂离子电池组模块增加显著重量。
例如,附接至电池组模块上的可致动夹紧机构(诸如夹钳)、设置在电池组模块外壳内的可以(例如,使用曲柄、夹钳、可调系紧螺栓机构)致动以紧靠电池单元的可移动板、或用于致动电池组模块外壳的部件(例如,外壁或内壁)的可调系紧螺栓机构可以用于以具体量将电池单元压紧。可以如此操作以使电池单元的能量密度和性能维持在预定范围内。棱柱形电池单元例如传统上通过这类可致动夹紧机构保持就位,所述夹紧机构是电池组模块外壳的一部分或与其成一体。
根据本公开,现在认识到可能期望在不必依赖于这类笨重的夹紧机构的情况下减轻、减少或完全消除这类膨胀。现在还认识到,消除这类传统的夹紧机构可以实现其他锂离子电池组模块特征。例如,在本公开的某些实施例中,锂离子电池组模块可以被设计为具有用于电池单元的具体容积,而锂离子电池组模块的其他部分可以用于其他模块特征,诸如控制和调节电路(例如,电池组监测系统(BMS)、电池组控制模块(BCM))、热管理特征(例如,风扇、冷却路线)等等。实际上,减少膨胀和对夹紧机构的依赖性还可以实现可以特别适合于某些应用(诸如微混合动力应用)的电池组模块尺寸和设计。
考虑到前述内容,本公开一方面涉及锂离子电池组模块,其包括浮动装配(在此又称为浮动布置)的多个电池单元(锂离子电池单元,在此又称为电化学电池或电池单元)。本公开实施例的浮动装配可以包括其中每个电池单元通过多个固定突出物(例如,两个或更多)悬浮在模块的外壳内,并且所述固定突出物沿着电池单元的外围(诸如仅沿着它们的外围的一部分)支撑所述电池单元。在某些实施例中,所述电池单元可以包括具体的化学成分,所述化学成分使本公开电池组模块中利用的电池单元发生极小或没有膨胀,其在这类实施例中能够在电池单元之间维持间隙(例如,气隙)而无需在电池单元的活动区上放置夹紧特征。例如,在正常运行(例如,充电/放电维持在一定荷电状态(SOC)范围内)过程中,与传统锂离子电池组模块中使用的其他电池单元相比较,在此描述的电池单元可能膨胀程度大大减小或完全消除。下面另外详细描述这类实施例。
现在还认识到,并入在此描述的电池组模块中的棱柱形电池单元的膨胀减小可以用于实现某些制造过程的效率提高。例如,在组装锂离子电池组模块的过程中,可以在自动化或非自动化制造过程中“拾放”电池单元。也就是,可以将电池单元逐一从进给路线或从箱子拾取出来而无需确定具体电池单元是否适合于包括在具体电池组模块或电池单元组内。相反,电池单元可以简单地放置到模块外壳内。
虽然本公开包括可以从某些类型的膨胀已经减小的电池单元的使用中获益的多个实施例,但应注意,某些公开的实施例还可以适用于使用各种各样的电池单元(包括膨胀的电池单元)的锂离子电池组模块。就此而言,以下阐述的描述不应解释为局限于某些锂离子电池单元化学成分,除非另外指明。实际上,各种各样的电极活性材料、电解液材料等等可以根据本公开的某些方面来使用。
一方面,例如,可以选择锂离子电池单元中的电极的阴极活性物质和阳极活性物质以具有与阳极和阴极的电极活性物质的其他组合相比减小的膨胀。虽然电极活性物质一般可以具有任何类型、构造、或化学成分,在一个实施例中,阴极活性物质可以包括锂钴镍锰氧化物(NMC、LiNi1/3Co1/3Mn1/3O2),其可以与其他阴极活性物质组合(例如,混合),诸如锂钴氧化物(LCO,LiCoO2),而阳极活性物质可以是钛酸锂(LTO,Li4Ti5O12)。在预期包括具有总体上矩形形状和硬(例如,金属)外壳体的电池单元的棱柱形电池单元中,这些活性物质的组合可以减小由于充电和放电循环引起的膨胀和相关联的尺寸可变性。就此而言,这类棱柱形电池单元在可能依赖电池单元的情况下对可靠的充电和放电循环对汽车设备、家用设备等等供能可能特别有用。
例如,在某些xEV背景下(除其他事项以外,诸如非机动性或固定的耗能应用),锂离子电池组模块的12V输出对某些类型的部件(例如,由传统车辆中传统铅酸电池组传统地供能的相似类型的部件)供能可能令人期望,而48V输出可能更适合于对可能需要更高电压的其他类型部件(诸如空调系统)供能。有鉴于此,现在认识到,本公开电池组模块实施例可能特别适用于这种类型的电池组模块。实际上,本公开方法可以实现生产这样的锂离子电池组模块,其可以被设计成适合在xEV的不同位置上、或在家或其他环境的不同位置上。
为了帮助进行说明,图1是车辆10的实施例的透视图,所述车辆可以利用再生制动系统。尽管针对带有再生制动系统的车辆介绍以下讨论内容,但在此描述的技术可适用于使用电池组捕获/储存电能的其他车辆,可以包括电力供能的和气体供能的车辆、以及其他非机动性(例如,固定)应用。
现在认识到,可能期望非传统性电池组系统12(例如,锂离子汽车电池组)与传统车辆设计很大程度上相容。在此方面,本公开实施例包括用于xEV和包括xEV的系统的各种类型的电池组模块。因此,电池组系统12可以放置在车辆10中原本容纳传统电池组系统的位置上。例如,如所图示的,车辆10可以包括与典型的燃烧式发动机车辆的铅酸电池组类似地定位(例如,在车辆10的发动机罩下面)的电池组系统12。另外,如以下将更详细描述的,电池组系统12可以定位为帮助管理电池组系统12的温度。例如,在一些实施例中,将电池组系统12定位在车辆10的发动机罩下面可以使风道引导气流经过电池组系统12并冷却电池组系统12
图2中描述了电池组系统12的更详细的视图。如所描绘的,电池组系统12包括与点火系统16、交流发电机18、车辆中控台20、和可选地电动机22耦连的储能部件14。一般而言,储能部件14可以捕获/储存车辆10中产生的电能并将电能输出以便为车辆10中的电气装置供能。
换言之,电池组系统12可以向车辆的电气系统的部件供应功率,这些部件可以包括散热器冷却风扇、气候控制系统、电动转向系统、主动式悬架系统、自动驻车系统、电动油泵、电动增压器/涡轮增压器、电动水泵、加热挡风玻璃/除霜器、车窗升降电机、装饰灯、胎压监测系统、天窗电机控制器、电动座椅、报警系统、资讯娱乐系统、导航特征、车道偏离警告系统、电动驻车制动器、外灯、或以上的任意组合。说明性地,在所描绘的实施例中,储能部件14向车辆中控台20和点火系统16供应功率,其可以用于启动(例如,用曲柄启动)内燃机24。
此外,储能部件14可以捕获交流发电机18和/或电动机22产生的电能。在一些实施例中,交流发电机18可以在内燃机24运转的同时产生电能。更具体地,交流发电机18可以将由内燃机24的旋转产生的机械能转换成电能。附加地或可替代地,当车辆10包括电动机22时,电动机22可以通过将车辆10的移动(例如,车轮旋转)产生的机械能转换成电能来产生电能。因此,在一些实施例中,储能部件14可以捕获在再生制动过程中交流发电机18和/或电动机22产生的电能。因此,交流发电机和/或电动机22在此通常被称为再生制动系统
为了帮助捕获和供应电能,储能部件14可以经由总线26电耦连至车辆的电气系统。例如,总线26可以使储能部件14能够接收由交流发电机18和/或电动机22产生的电能。此外,总线可以使储能部件14将电能输出至点火系统16和/或车辆中控台20。因此,当使用12V电池组系统12时,总线26可以携带通常在8-18伏特之间的电功率。
此外,如所描绘的,储能部件14可以包括多个电池组模块。例如,在所描绘的实施例中,储能部件14包括锂离子(例如,第一)电池组模块28和铅酸(例如,第二)电池组模块30,每个电池组模块包括一个或多个电池单元。在其他实施例中,储能部件14可以包括任意数量的电池组模块。此外,尽管锂离子电池组模块28和铅酸电池组模块30被描绘为彼此相邻,但它们可以放置在车辆周围的不同区域中。例如,铅酸电池组模块30可以放置在车辆10内部中或周围,而锂离子电池组模块28可以放置在车辆10的发动机罩下面。
在一些实施例中,储能部件14可以包括多个电池组模块以利用多种不同的电池化学性质。例如,当使用锂离子电池组模块28时,电池组系统12的性能可以得到提高,因为锂离子电池化学性质通常比铅酸电池化学性质具有更高的库仑效率和/或更高的功率充电接受率(例如,更高的最大充电电流或充电电压)。因此,电池组系统12的捕获、储存、和/或分配效率可以得到提高。
为了帮助控制电能的捕获和储存,电池组系统12还可以包括控制模块32。更确切地,控制模块32可以控制电池组系统12中的部件的运行,诸如在储能部件14、交流发电机18、和/或电动机22内的继电器(例如,开关)的运行。例如,控制模块32可以调节每个电池组模块28或30捕获/供应的电能量(例如,对电池组系统12降低定额和重新定额),在电池组模块28与30之间进行负荷平衡,确定每个电池组模块28或30的充电状态,确定每个电池组模块28或30的温度,控制由交流发电机18和/或电动机22输出的电压等等。
因此,控制单元32可以包括一个或多个处理器34和一个或多个存储器单元36。更确切地,一个或多个处理器34可以包括一个或多个专用集成电路(ASIC)、一个或多个现场可编程门阵列(FPGA)、一个或多个通用处理器、或以上的任意组合。此外,一个或多个存储器36可以包括易失性存储器,诸如随机存取存储器(RAM),和/或非易失性存储器,诸如只读存储器(ROM),光盘驱动器、硬盘驱动器、或固态驱动器。在一些实施例中,控制单元32可以包括车辆控制单元(VCU)的多个部分和/或单独的电池组控制模块。另外,如所描绘的,锂离子电池组模块28和铅酸电池组模块30跨其端子并联连接。换言之,锂离子电池组模块28和铅酸电池组模块30可以经由总线26并联耦连至车辆的电气系统。
应注意,本公开的实施例可以适用于具有上述和以下详细描述的相同或不同构造和/或取向的任何电池组模块。本领域的技术人员将认识到,除非明确指明,用于描述根据本公开的电池组模块的部件和实例不应被解释为将本公开限制于仅仅那些部件和实例。相反,所公开的实例仅旨在用作帮助讨论本公开的非限制性实例。
如上所述,在本公开方法的一方面中,锂离子电池组模块28的尺寸可以被确定为适合在xEV 10的具体部分中,包括在发动机罩下面、在客厢下面、在后备箱中等。另外,在另一方面,根据本公开方法生产的多种不同类型的锂离子电池组模块28可以通过将电池单元占用的体积、或电池单元可用的体积设计为具有恒定的长度和宽度并且根据模块中电池单元的数量而在高度方向上不同来被设计为具有共同的占地面积。此外,电池单元在模块28中的体积的设计可以包括各种其他特征,诸如气隙,以便能够实现某些类型的无源和/或有源冷却。
根据本公开的一方面,不同类型的锂离子电池组模块28可以利用具体类型的棱柱形电池单元,如图3中所示。具体地,如所示,第一锂离子电池组模块28A、第二锂离子电池组模块28B、和第三锂离子电池组模块28C均具有相应的外壳40A-40C,并且全都使用棱柱形电池单元44的共用源42。也就是,符合一组具体制造规格(例如,具有标准容差的标准化的尺寸、结构和化学成分)的棱柱形电池单元44可以用于任何所图示的锂离子电池组模块28。还如所示,每个锂离子电池组模块28包括电池单元44在它们的外壳44内基本上相同的布局,其中仅总数上有不同。
例如,在图3中,第一锂离子电池组模块28A可以具有第一输出电压(例如,12V)和第一容量(例如,10amp小时(Ah)),并且第二锂离子电池组模块28B可以具有与所述第一输出电压相同的第二输出电压,同时根据电池单元44的电互连具有比所述第一容量大的第二容量(例如,20Ah)。从功率部件观点出发,第二锂离子电池组模块28B与第一锂离子电池组模块28A不同在于在它们各自的外壳40内电池单元44的总数量。在一个实施例中,第一锂离子电池组模块28A可以包括以串联布置电耦连的第一数量(例如,6个)电池单元,而具有更大容量(例如,二倍容量)的第二锂离子电池组模块28B具有使用串联和并联电连接的组合耦连的第二数量(例如,12个)相同类型的电池单元。如下面更详细描述的,电池单元在外壳40内的布置是引起锂离子电池组模块28A的相应高度H1(图4中所示)和锂离子电池组模块28B的相应高度H2(图4中所示)的主要因素。与第一和第二锂离子电池组模块28A、28B相比较,第三锂离子电池组模块28C具有显著更大的高度H3(图4中所示)。这至少部分是由于锂离子电池组模块28达到更高电压(例如,48V,使用第三数量(诸如20个)相同类型的串联连接的电池单元)所需的电池单元44的额外数量。
外壳40均可以是一件式外壳或多件式外壳(例如,两件式、三件式、或更多),该外壳的尺寸可以被确定为适应达到期望电压和容量所需的具体数量电池单元44。为了方便讨论,外壳40的不同部分(其总体上对应于整个锂离子电池组模块28的多个部分)在此如下进行定义:底座46,其还可以被称为底部部分并且总体上限定为当投入运行时锂离子电池组模块28的占地面积(例如,在xEV 10中)。锂离子电池组模块28的顶部部分48处于与底座46相对,并且顶部部分48和底座46在搁置在平坦表面上时可以认为是相对于重力(即,地球引力)垂直定向,并且顶部部分48一般包括电池组模块28的端子47、49(如模块28A上所示)。然而,应注意,外壳40的这些部分仍然可被称为底座46和顶部部分48,即使电池组模块28以不同取向设置(即,底座46和顶部部分48将不会始终垂直于重力,诸如当放置在另一侧时)。可以认为底座46的尺寸构成模块28的长度(L)和宽度(W),这在下面另外详细描述。
外壳40还包括可能由于不同锂离子电池组模块28的高度差引起的不同的左侧50A-50C和右侧52A-52C,这在下面另外详细描述。这些侧面通常在底座46与顶部部分48之间延伸。在所图示的实施例中,参照每个模块28的电池单元容置区域54A-54C,确定左侧50A-50C和右侧52A-52C,所述电池单元容置区域可以被认为对应于每个锂离子电池组模块28的前端56A-56C。每个模块28的后端58A-58C定位在前端56对面。
如所示,电池单元容置区域54被构造为接纳具体取向的多个电池单元(例如,棱柱形电池单元)。例如,根据本公开,电池单元44均可以具有棱柱形壳体60。棱柱形壳体60取决于并且可以符合一组制造规格,包括其所有维度的尺寸、某些特征的位置(例如,排气口、端子)等等。为了方便讨论,棱柱形电池单元44的布置在此进行如下定义:通常具有硬质材料(例如,金属)的棱柱形壳体60均包括总体上矩形形状,所述形状可以包括一个或多个圆化侧面。在所图示的实施例中,棱柱形电池单元44包括壳体顶部部分62,电池单元端子组64、66(例如,电池单元正和负端子)位于所述壳体顶部部分中。一个或多个电池单元排气孔68也可以位于壳体顶部部分62上。每个电池单元44的电池单元端子组64、66使电池单元能够电连接到各种电气部件,包括其他电池单元,电连接到锂离子电池组模块28的端子49、和负载,该负载可以与锂离子电池组模块28耦连。电池单元排气口68被构造为能够在某些条件下排出气体。
棱柱形电池单元壳体60还包括与壳体顶部部分62相对定位的壳体底部部分70,并且如所示,壳体底部部分70可以首先放到外壳40中,使得电池单元端子64、66朝同一方向从电池单元容置区域54向外指向。第一和第二圆化侧面72、74在与电池单元端子64、66相对应的相应位置上在壳体顶部部分62与壳体底部部分70之间延伸。总体上平坦的第一和第二面76、78在每个电池单元44的相对端耦连第一和第二圆化侧面72、74。
还为了方便讨论,电池单元44的所图示的构造还可以被构造成水平叠层,其中电池单元44被放置成使得第一和第二面76、78基本上平行于底座46和顶部部分48,并且当底座42放置在平坦表面上时基本上垂直于重力。可以认为具体列80、82(所图示的模块28中具有两个这种列)中的电池单元44垂直间隔开(例如,垂直间隔布置)使得第一电池单元的各自的第一面和第二电池单元的各自的第二面之间具有间隙。下面另外详细描述这类实施例。然而,应注意所述列还可以概括地称为外壳40中的电池单元“阵列”,其中所述阵列可以概括表示电池单元44的对齐阵列,如所示,并且还旨在包含不同于所图示的特定取向的其他取向。
电池单元44的列状构造(例如,两个相邻列,诸如阵列和额外阵列)和标准化尺寸可以是可取的,例如以便于在锂离子电池组模块28A-28C的不同实施例上维持底座46的标准尺寸。实际上,现在认识到,电池化学(例如,NMC/LTO电池单元)、电池单元形状和电池单元尺寸的组合可以方便以此方式生产模块28。例如,现在认识到NMC/LTO电池单元、或膨胀不超过预定量(例如在任何方向不超过0.1%与15%(例如,0.5%与5%)之间,诸如在任何方向不超过5%)的其他电池单元可以实现针对每个外壳40限定总电池单元体积,并且相对于这个体积限定锂离子电池组模块28的其余布局。这种方法可以参考图4-7进一步理解,所述图描绘了生产具有限定的占地面积(即,它们各自的底座46的尺寸)的多个锂离子电池组模块28的方法的各个方面。虽然下面在具体占地面积的背景下阐述了本公开,但应注意所述方法可以适合于其他占地面积和其他类型的电池单元。
如以上阐述的,锂离子电池组模块28的底座46概括限定了其占地面积。关于车辆集成,这可能是重要的设计关注点,因为由于例如空间限制,底座46的某些尺寸可能期望集成到具体车辆中。另外,底座46可以由电池组模块外壳40的最终安装到或搁置在xEV10的表面上(例如,最接近地面/地板)的部分的尺寸来表示。
如图4中所示,所述图是图3所示的模块28A-28C的外部尺寸的组合图示90,所有外壳40包括底座46,所述底座总体上对应于每个锂离子电池组模块28的长度(L)和宽度(W)。尽管锂离子电池组模块28旨在表示具有锂离子电池单元的高级电池组模块,但底座46可以符合针对传统铅酸电池组(例如,图2中的铅酸电池组模块30)成立的许多组织代表(例如,国际电池理事会(BCI)组织编号、德国工业标准(DIN准则)、欧洲标准(EN)准则)中的任一者。这些成立的标准集合的每个组织(例如,组织编号)针对与具体组织名称相对应的具体电池组的底座具有标准长度和宽度。在此描述的辅助锂离子电池组模块可以具有或可以不具有基本上匹配或符合至少已知铅酸电池标准(例如,BCI组织、DIN准则、或EN准则)的底座的标准尺寸要求的尺寸。
作为一个实例,L和W尺寸可以被确定为具有H5(其中“H5”是DIN准则)底座,所述底座是242mm L乘175mm W。H5底座还常常称为LN2底座。然而,锂离子电池组模块28的底座46可以具有适合于基本上匹配铅酸电池组的具体底座的任何长度和宽度。另外,应注意,尽管针对铅酸电池组进行了标准化,但使用锂离子电池单元技术可能难以符合这类标准,尤其是当考虑到诸如在此描述的那些锂离子电池组模块可能与在传统铅酸电池组中找不到的设备(诸如智能控制特征、热管理特征、高级排气特征等等)相关联时。使用以上阐述的和下面进一步详细描述的电池单元44的构造,可以实现这类标准。
应注意,本公开不局限于尺寸与铅酸标准相同的锂离子电池组模块28的底座46。相反,锂离子电池组模块28的各自的底座46可以具有任何尺寸,这在某些实施例中可能对于不同锂离子电池组模块28而言是相同的。作为非限制性实例,L可以是在150mm与450mm之间的值,而W可以是在100mm与200mm之间的值,其中所述值匹配所有模块化锂离子电池组模块28。另外,还如所示,模块28在底座46上具有唇缘92,其可以是被构造为使电池组模块28能够紧固到xEV 10上的压紧特征。在所图示的实施例中,W对应于唇缘92确立的尺寸,而在其他实施例中,唇缘92不存在,宽度可以是“W”,其可以更短。
另外,电池组模块28A-28C的相应的高度H1、H2、H3分别可以基于其功率部件而不同。在一个实施例中并且通过非限制性实例的方式,H1可以是在130与160mm之间,诸如150mm,H2可以是在160与180mm之间,诸如170mm,而H3可以是在160与200mm之间,诸如190mm。应注意,不同模块28的相应高度也可能受到设计限制。作为一个实例,如果意欲将模块28放置在xEV 10的发动机罩下面,则高度H1-H3应足够高以允许使用期望数量的电池单元44,但足够低以便能够关闭xEV 10的发动机罩。根据(除其他事项以外)预期放置,可以对电池组模块设计加以相似的空间限制。
为了确定不同于电池单元44的某些部件的可用空间,可能期望确定在外壳40内的模块28的可用电池单元体积,这进而根据模块28的期望输出、提供所述输出所需的电池单元44的数量等等。图5描绘了第一、第二、和第三锂离子电池组模块28A-28C的相应可用电池单元体积102A-102C的示例性覆盖物100。可以认为所图示的电池单元体积102A-102C表示结合外壳40A-40C内的任何固位、夹紧和间隔特征,外壳40A-40C内可供电池单元44占用的体积和尺寸。现在认识到,电池单元44及其相关联的固定特征占用的相应体积102A-102C的一部分根据在此描述的某些实施例可以减小或最小化,诸如当电池单元44基本上无膨胀时,和/或当模块28没有使用电池单元44的压紧或夹紧特征时。实际上,与利用电池单元44的夹紧和压紧特征的实施例相比较,这样的实施例可以减小可用电池单元体积102的占用部分。
再次参照模块28具有H5底座的实施例,可用电池单元体积102的尺寸中的L可以在230mm与240mm之间,并且W在110mm与130mm之间,诸如分别为236mm和120mm。对于第一模块28A,可用体积102A的高度H4可以在140mm与150mm之间,诸如144mm。对于第二模块28B,可用体积102B的高度H5可以在160mm与170mm之间,诸如164mm,并且对于第三模块28C,可用体积102C的高度H6可以在180mm与190mm之间,诸如184mm。
如可以领会到的,具体锂离子电池组模块28中占用的可用电池单元体积102的量可以取决于电池单元44的数量、电池单元44的形状和尺寸、以及电池单元44放置在模块28的外壳40内的方式。因此,电池单元44的尺寸、形状和化学成分可以被设计为实现期望的形状因子、体积和输出。如以上注意到的和图6中更详细所示的,在此描述的电池单元44通常具有棱柱形形状,其通常包括矩形形状,并且还可以包括如图3所示的某些圆化侧面。图6中所示的棱柱形电池单元44的尺寸包括沿圆化侧面72、74的电池单元长度(CL)、沿顶部部分和底部部分62、70的电池单元宽度(CW)、以及在第一与第二面76、78之间延伸的电池单元厚度(CT)。作为一个实例,使用具有140mm的CL、容差为0.5mm、112mm的CW以及14mm CT的电池单元44,电池组模块28可以被设计为具有12V或48V输出的H5底座、和10Ah或20Ah容量。然而,电池单元尺寸可以根据模块28的期望的尺寸而不同。电池单元的化学成分在这类实施例中可以包括作为阴极活性材料(例如,NMC和LiCoO2(LCO)的组合)的NMC和作为阳极活性物质的LTO。实际上,因为锂离子电池组模块28可以平行于铅酸电池组模块放置,所以可能期望使用这类电极活性物质,由于每个锂离子电池单元将基本上与每个铅酸电池单元电压匹配,这可以提供多个运行益处,包括电荷平衡、过充电与过放电保护等等。
在更一般意义上,图6中所示的棱柱形电池单元44的实施例包括第一和第二端子64、66,根据阳极和阴极活性物质,所述端子可以包括相同或不同的金属。通过举例方式,正电极活性物质可以包括一种或多种锂金属氧化物(LMO)组分。如在此使用的,锂金属氧化物(LMO)可以指其化学式包括锂和氧以及一种或多种额外金属种类(例如,镍、钴、锰、铝、铁、或另一种合适的金属)的任何种类的物质。LMO的非限制性实例列表可以包括:混合金属组合物,该组合物包含锂、镍、锰、和钴离子,诸如锂镍钴锰氧化物(NMC)(例如,LiNi1/3Co1/ 3Mn1/3O2)、锂镍钴铝氧化物(NCA)(例如,LiNi0.8Co0.15Al0.05O2)、锂钴氧化物(LCO)(例如,LiCoO2)、和锂金属氧化物尖晶石(LMO尖晶石)(例如,LiMn2O4)。
一般而言,阴极端子(例如,端子66)是铝端子。然而,不同的阳极活性物质可以利用不同的端子物质。例如,在阳极活性物质包括石墨的实施例中,阳极端子(例如,端子64)通常是铜。另一方面,在阳极活性物质是钛酸锂的实施例中,阳极端子可以是铝。实际上,现在认识到,在电池单元44使用LTO作为阳极活性物质(例如,在NMC/LTO电池单元中)的实施例中,可以减小或消除电池组模块28中的双金属区域。例如,在这类实施例中,阳极与阴极电池单元端子之间的汇流条连接可以使用单一导电材料(例如,铝),而不是可能以其他方式引起不想要的电流效应的导电材料混合物(例如,铝和铜)。所图示的端子64、66也显示为扁平状的。然而,在其他实施例中,端子64、66可以是柱端子,如图3中所示。
棱柱形电池单元44还可以包括活动区120,这在图6中示意性地概括为虚线框。活动区120可以具有任何形状和尺寸,并且基于在“果冻卷(jelly roll)”(其是常用的术语,指阳极和阴极层与电解液的卷绕组件)电池单元44的内部中的对应位置来确定。也就是,活动区120对应于电池单元44的内部位置,在一些实施例中,可能发生膨胀。如可以领会到的,阳极层由于锂嵌插而膨胀可能引起果冻卷脱层,这增大了电池单元44的内部阻力并降低其性能。这种阻力的增大还可能引起额外加热,其可能引起电解液开始蒸发并且可能分解。一般而言,如果棱柱形电池单元膨胀,其将在活动区120中膨胀并且将增大电池单元厚度(CT)。如下面另外详细描述的,根据实施例,活动区120当放置在外壳40中时可以处于未压紧状态(例如,没有对活动区120上施加相反的法向力)并且在另一个实施例中在锂离子电池组模块28运行过程中可以仍然处于未压紧状态。在其他实施例中,诸如确实发生膨胀的那些实施例中(例如,如果石墨是阳极活性物质),则可以允许膨胀发生,使得列中的电池单元通过其膨胀而进入压紧状态。
为了说明,图7包括锂离子电池组模块28A-28C的组合剖面视图,其包括第一列棱柱形电池单元80和与第一列相邻设置的第二列棱柱形电池单元82。可以认为每一列中的棱柱形电池单元44处于垂直间隔布置,因为所述列中的每个棱柱形电池单元44与紧邻的电池单元44间隔开一定距离。根据实施例,所述距离可以限定使第一和第二面76、78能够接触热管理流体(例如,空气)的气隙。下面另外详细描述这类实施例。
如在说明性实例中所示,模块28中存在两列电池单元,并且电池单元的行数由模块28中利用的电池单元的总数决定。在其他实施例中,可以存在仅一列电池单元、或多于两列。使用模块28和每个电池单元44的以上阐述的尺寸,可以看到模块28中使用的电池单元44的数量及其尺寸使得电池单元44占用的体积容易配合在外壳40的尺寸内。如关于列80、82的宽度所示,电池单元宽度的两倍(2*CW)和额外空间(表示为“X”)可以配合在轮廓内,意味着电池单元可以不需要紧密接触。
参照图8可以进一步领会上述的垂直间隔布置,所述图描绘了电池组模块28的实施例,其中电池单元容置区域54包括总体上与第一和第二电池单元列130、132相对应的第一和第二电池单元区域140、142。每个电池单元区域140、142包括被构造为以水平取向放置电池单元列的特征件,在水平取向下,所述电池单元列处于竖直间隔布置下。确切地,在所图示的实施例中,区域140、142包括从外壳40的内表面向内延伸进每个区域140、142中的固定突出物144。在所图示的实施例中,所述内表面包括放置在电池单元容置区域54内的第一侧壁146(例如,内侧壁)、放置在第一侧壁146对面的第二侧壁148(例如,内侧壁)、以及电池单元列分隔物154的第一和第二侧150、152。电池单元列分隔物154总体上被构造为将电池单元列130、132分开,并且还提供内表面从而能够在电池单元区域140、142内形成不连续狭槽156(例如,部分罩壳)。在实施例中,电池单元列分隔物154在第一和第二侧壁146、148之间的大约中途。
因此,区域140、142均包括不连续狭槽列156,每个不连续狭槽156被构造为接纳棱柱形电池单元44中的单者并且在区域140、142中的一个相应区域的一定宽度上延伸。不连续狭槽156和更具体地不连续狭槽156的突出物144被构造为以浮动布置使棱柱形电池单元44悬浮在外壳40内。另外,可以认为浮动布置是电池单元44没有彼此夹紧、没有夹紧就位到外壳40或突出物144上、并且没有被压紧的浮动布置。另外,在某些实施例中,每个棱柱形电池单元44的各自的活动区120没有接触任何固位特征或其他特征,包括固定突出物144。在其他实施例中,一个或多个热管理特征,诸如热间隙垫(未示出)等等可以结合各自的棱柱形电池单元44包括在不连续狭槽156中。例如,热间隙垫可以与棱柱形电池单元44平行并且抵靠其放置。
在一些实施例中,突出物144可以通过仅接触电池单元44的外围来使电池单元44悬浮在外壳40内。例如,固定突出物144可以沿棱柱形电池单元44的圆化侧面72、74延伸基本上整个电池单元长度(CL),并且当模块28完成形成和运行时仅接触侧面72、74。也就是,在完全组装的电池组模块28中,与电池单元44的侧面72、74不同的部分(至少上下极端电池单元44之间的电池单元44)可以不被外壳接触,在突出物144接触之外。
参照图9可以进一步领会到电池单元44的浮动布置,所述图描绘了从电池单元44上移除的外壳40。如所图示的,每列80、82中的电池单元44彼此竖直间隔开(例如通过突出物144),使得第一电池单元的各自的第一面76与第二电池单元的各自的第二面78之间存在间隙160。间隙106可以是使电池单元44的活动区120能够接触热管理流体(例如,空气)的气隙。实际上,根据本公开的某些实施例,电池单元44可以是在任何方向膨胀不超过1%、5%或10%的NMC/LTO电池单元(即,以NMC作为阴极活性物质并以LTO作为阳极活性物质的电池单元)。在此方面,每个电池单元44的各自的活动区120可以不彼此接触。更进一步地,在某些实施例中,电池单元44可以在其各自的底部部分70接触热间隙垫162、164以便进行额外热管理。
在其他实施例中,可以使用其他化学成分、例如使用引起电池单元44膨胀的其他阳极活性物质(例如,石墨)构造电池单元44。在这类实施例中,电池单元44可以被构造为膨胀进入间隙160中,其中膨胀引起在电池单元44上于电池单元44与外壳40之间施加压紧力(例如,外壳40的顶部和底部内表面)。在某些实施例中,这类构造可能是令人期望的,其中期望电池单元44的带电壳体之间接触,从而例如,在紧邻的电池单元44的壳体之间形成电连接。
图10是在运行过程中展现出膨胀的第一电池单元44A(例如,NMC/石墨电池单元)与在运行过程中展现出极小到没有膨胀的第二电池单元44B(例如,NMC/LTO电池单元)之间的电池单元构造差别的实例。根据电池单元44的具体形状(例如,矩形与部分圆化棱柱形相比),电池单元44可能在一个方向或两个方向膨胀,或可能在若干个方向膨胀。对于棱柱形电池单元44,发生的任何膨胀将通常使得电池单元厚度(CT)增大。
在运行过程中,并且根据电池单元44充电和放电的程度,第一和第二电池单元44A和44B可能膨胀到某种程度。然而,在正常运行过程中,第二电池单元44B的膨胀程度可以比第一电池单元44A更小,如电池单元厚度CT所示。具体地,第一电池单元44A从在第一状态(例如,低SOC)下具有相应的第一和第二面76A、78A转变到在其活动区120A中具有膨胀的第一和第二面76A’、78A’的第二状态(例如,较高SOC)。
相比之下,第二电池单元44B没有膨胀到适当程度,或者膨胀到第一程度,使得其外围从具有相应的第一和第二面76B、78B的第一外围(例如,在左侧从相对放电后状态)变为具有相应的膨胀后的第一和第二面76B’、78B’的第二外围(例如,在右侧在充电后状态下)。第一电池单元44A(例如,NMC/石墨电池单元)从第一外围到第二外围的变化总体上大于第二电池单元44B(例如,NMC/LTO电池单元),如所示。膨胀程度可以由在电池单元44在相对放电后状态(例如,第一状态)时的构造与在相对充电后状态(例如,第二状态)下的电池单元的构造之间电池单元壳体60的外表面的位移程度来表示。厚度差可以仅仅以从一侧、两侧、或超过两侧膨胀呈现。对于NMC/LTO电池单元,在一侧、两侧或超过两侧仍然可能存在膨胀,但将小于NMC/石墨电池单元。
应注意,棱柱形电池单元44的膨胀还可能受到它们放电和充电程度的影响,这通常由图2的控制单元32控制。例如,控制单元32可以将锂离子电池组模块28的充电状态(SOC)维持在第一SOC与高于第一SOC的第二SOC之间的范围。通过非限制性实例的方式,第一SOC可以在15%与25%之间,而第二SOC可以在40%与60%之间。在一个实施例中,第一SOC可以是大约25%,而第二SOC可以是大约50%。通过以此方式控制电池单元44的SOC,在利用NMC/LTO电池单元的一些实施例中,膨胀可能是可忽略的。可能存在与这类减小、减轻、或可忽略的膨胀相关联的多个优点。
例如,棱柱形电池单元的浮动布置可以不使用夹紧或压紧特征,这可以减小电池单元及其相关联特征(例如,间隙垫、垫片)占用的外壳40的体积,并且还可以减轻锂离子电池组模块28的重量。另外,在某些实施例中,没有从电池单元44外在第一和第二面76、78上施加相反的法向力,意味着电池单元44的活动区120可以仍然处于基本上未压紧状态,这能够与周围流体(例如,空气)进行热交换,并且减少电池单元44之间的(例如,减轻、消除)热能量传递。热传递的减少可能是令人期望的,例如,以便减小棱柱形电池单元44之一的热逸散对其余的棱柱形电池单元44的影响。
其他优点可以与根据本公开的、具有减轻的、减少的或可忽略的膨胀的棱柱形电池单元44相关联。例如,如图11中所图示的,第一和第二棱柱形电池单元列80、82可以在其相应的棱柱形电池单元44的各自的第一和第二端子处耦连至集成汇流条和电压感测子组件180。集成汇流条和电压感测子组件180可以包括被构造为将电池单元端子64、66电耦连至电路184的汇流条182,其将第一和第二列80、82放入电联接分组,所述分组具有与锂离子电池组模块28的额定电压和额定容量相对应的总的电压和容量。就此而言,集成汇流条和电压感测子组件180可以包括额外汇流条186,所述额外汇流条被构造为将棱柱形电池单元44(例如,以上指出的电连接分组)电连接至锂离子电池组模块28的正和负端子47、49(例如,第一端子和第二端子)以使锂离子电池组模块28能够向外部负载(例如,xEV 10的负载)提供电输出。
集成汇流条和电压感测子组件180的这些部件可以集成到载体188上,所述载体被构造为为汇流条182、186和电路184提供结构支撑。具体地,载体188(其可以称为“电子载体”)可以包括用于保持汇流条182、186和电路184的对应连接特征以及被构造为接纳电池单元端子64、66的开口190。在一个实施例中,载体188可以仅是锂离子电池组模块28的对棱柱形电池单元44提供任何外部压紧的特征。具体地,如图11中所描绘的,所述集成汇流条和电压感测子组件180及棱柱形电池单元44可以以嵌套布置放置在外壳40内,并且载体188可以包括特征,该特征使载体188能够固定到外壳40上同时朝后方向192从前部56到后部58促动电池单元44。虽然这可能对电池单元44给予一些压紧力,但这没有在其活动区120压紧电池单元44,例如,从而将相反的法向力施加于面76、78上。就此而言,当电池化学成分发生膨胀时(例如,具有石墨阳极活性物质的电池单元),载体188不一定防止电池单元44膨胀。相反,其提供用于载体188与电池单元44之间进行电传输的接触。其还促进热传递。例如,在图12中,可以看到载体188朝向后方向192将棱柱形电池单元44从前部56压到后部58并且进入例如热间隙垫162、164。因此,载体188可以沿着棱柱形电池单元44的长度(CL)在所述棱柱形电池单元上施加(例如,维持)压紧力。
虽然本公开实施例使电池单元44能够以浮动布置放入外壳40中,电池单元的面76、78之间存在气隙(例如,如图9中所示),但应注意到锂离子电池组模块28在其他实施例中可以使用放置在面76、78之间的一个或多个层194。层194可以是例如结构支撑层(例如,用于缓冲电池单元44的填充层)、热界面层(例如,用于在电池单元44与外壳40的其他部分之间或彼此传递热能量)等等。在某些实施例中,层194可以用作垫片。作为实例,层194可以用于电池单元44之间的电隔离。作为另一个实例,层194可以用于对外壳40内的电池单元44的位置(例如,垂直位置)加垫片。例如,可以对电池单元44的垂直位置加垫片以促进电池单元端子64、66与载体188对齐。附加地或替代地,可以对电池单元44的垂直位置加垫片,使得每个狭槽(例如,不连续狭槽)被装满(例如,装满电池单元44之一和层194中的一个或多个层)。
虽然当使用在此描述的自由浮动的电池单元组件时获得某些优点,但本公开不一定局限于这类构造。实际上,除了上述不连续狭槽156以外或作为其替代方案,外壳40还可以包括完全连续的狭槽、或没有狭槽。实际上,适当时,以上阐述的描述还可以适用于外壳40中完全连续的狭槽或没有狭槽的应用。在这类实施例中,当使用不会膨胀超过具体量的棱柱形电池单元44时,仍然可以实现各种实践结果。
例如,本公开的某些实施例还涉及可以自动化或可以不自动化生产电池组模块28(例如,将棱柱形电池单元44放入外壳40中)的制造方法和系统。虽然图13中所示的实施例被描绘为形成自由浮动组件,但意在表示不一定包括自由浮动电池单元布置的其他类型的构造。根据在此描述的基本上不膨胀的NMC/LTO电池单元(例如,在任何方向膨胀不超过20%、诸如小于20%、小于15%、小于10%、小于5%、或者在任何方向在大约10%与0.1%之间的电池单元)的使用,当选择或以其他方式挑选具体棱柱形电池单元44来放置在电池组模块28的外壳40内时,自动化制造系统可以不需要考虑尺寸差异的差异(例如电池单元厚度的差异)。
在传统制作系统中,一组棱柱形电池单元44在依照相同制造规格时可能跨一个或多个容差范围在那些规格内不同。例如,电池单元厚度(CT)、电池单元长度(CT)、电池单元宽度(W)、或其任意组合可能在棱柱形电池单元44之间不同。在传统电池单元中,这种变化可能是由于例如有差别的充电状态,其中第一相对放电后(相对低的SOC)的电池单元可能具有第一尺寸(例如,在尺寸容差范围中相对小)并且由于锂嵌插进阳极,第二相对充电后的电池单元(相对高的SOC)可以具有与第一尺寸不同第二尺寸。在传统电池组模块中,模块外壳可能不能够配合一组膨胀的(例如,高SOC)电池单元,因为它们全都在制造尺寸容差的较大端上。另一方面,一组相对低的SOC电池单元可能没有将外壳填充到足够的程度,这可能引起模块不稳定。实际上,一组电池单元可以包括低SOC电池单元与高SOC电池单元的混合物,意味着对于传统电池单元,电池单元在制造容差内有不同程度的变化。为了确保正确配合,传统制造系统可以针对每个电池组单元确定尺寸、变化程度、SOC、或以上的任意组合,以确定电池单元是否适当配合在具体外壳内。这类方法可以概括地称为“电池单元分级”方法。
现在认识到,根据本公开的某些方面可以减少或消除这类分级方法,因为NMC/LTO棱柱形电池单元44没有膨胀,或者仅膨胀不超过相对于小的百分比(例如,不超过5%)。例如,棱柱形电池单元44可以具有限定的尺寸(例如,电池单元厚度CT)、和限定的CT容差范围以允许某种程度(例如,由于膨胀引起)的制造可变性。例如,具体标准可以允许5%的CT变化,意味着这组棱柱形电池单元44可以具有范围从比限定的CT低5%到比限定的CT高5%的厚度。另外,5%的使用是一个实例。
现在认识到,没有考虑由于制作可变性引起的电池单元尺寸变化差(例如,由于膨胀)可能提高制造方法的速度,并且还可以降低与实施制造系统相关联的资本成本。图13示意性示出了这类制造系统200的一个实例(例如,拾放系统)。具体地,在制造系统200的所图示实施例中,具有控制逻辑204的控制系统202(例如,包括一个或多个处理器和一个或多个存储器单元、一个或多个ASIC、一个或多个FPGA、一个或多个通用处理器、或以上的任意组合)可以编程有指令,所述指令被配置为引起机器人放置系统206(例如,电池单元定位系统)拾取(例如,使用捕获机构接合)棱柱形电池单元并将它们放在外壳40内而无需进行电池单元分级过程(例如,无需确定NMC/LTO棱柱形电池单元的标准化尺寸的制造容差内的尺寸可变性)。在这样做时,捕获机构可以接合棱柱形电池单元44并且将其从一组组装的电池单元44移除,并且这可以在无需电池单元分级过程下进行。换言之,控制系统202可以具有控制逻辑204,所述控制逻辑不决定当与(例如,机器人放置系统206的)夹紧机构接合时棱柱形电池单元44的尺寸。可以避免这类电池单元分级过程,因为可以假设基本上不可膨胀电池单元44全都具有基本上相同的尺寸。
制造系统200可以包括组装路线208,所述组装路线被构造为输送模块外壳40、并将外壳40定位在系统200的、机器人放置系统206将棱柱形电池单元44插入其相应的电池单元容置区54中的位置上。组装路线208可以包括各种特征,所述特征被构造为沿着操作外壳40以并入额外的部件所在的路线移动多个电池组模块外壳40中所有或一部分外壳。例如,组装路线208可以包括各种电机、输送机、传感器等等。所述传感器可以例如由控制系统202用于确定外壳40何时相对于机器人放置系统206适当定位成使得控制系统202可以指导机器人放置系统206开始拾取棱柱形电池单元44并将其放置到外壳40中。
制造系统200还包括电池单元进给路线210,所述电池单元进给路线将棱柱形电池单元44从电池单元源212输送到邻近机器人放置系统206的位置。电池单元源212可以表示例如一批(一组)全都符合一组制造规格的棱柱形电池单元。也就是,每个棱柱形电池单元44可以具有在棱柱形电池单元尺寸的制造容差内的尺寸。根据本公开,所述电池单元通过具有相同的电池单元化学成分(例如,相同的阳极和阴极化学成分、尺寸、形状等等、相同的电解液和添加剂)、和相同的限定的制造尺寸(即,一组相同的标准化尺寸)而全都符合这组制造规格,其中合规的电池单元的实际尺寸在限定的尺寸的制造容差内。
作为说明性实例,参照图6中所图示的棱柱形电池单元44,考虑到制造可变性(例如,由于不同的SOC和相关联膨胀),电池单元44可以具有例如电池单元厚度CT为14mm的限定值,并且厚度容差可以是例如0.50mm。因此,电池单元源212可以具有使用与图6的棱柱形电池单元相同的规格制造的一批棱柱形电池单元44,并且具有从13.5mm到14.5mm变化的厚度。电池单元宽度CW和电池单元长度CL也可以具有限定的制造值、和与限定的制造值相关联的限定容差。就此而言,CL、CW和CT全都具有限定的制造值和相关联的容差。相关联的容差范围可以例如从限定的制造值的0.5%到5%,意味着制造的电池单元44的值范围可以从比限定的制造值低0.5%与5%之间到比限定的制造值高0.5%与5%之间。通过实例方式,容差可以是制造值的大约0.5%、1%、2%、3%、4%或5%。容差范围可以取决于NMC/LTO电池单元的小量膨胀引起的尺寸变化的预期程度。就此而言,可以认为电池单元44的这类实施例具有比传统组电池单元具有严格得多的容差,并且因此可以认为具有基本上匹配的尺寸(例如,CT、CW和CL全都可以在设计值的5%内)。
现在返回到图13的制造系统200,示出了机器人放置系统206将第一棱柱形电池单元214放入电池单元容置区域54中。第一棱柱形电池单元214可以具有的实际尺寸(CL、CW、CT)具有第一SOC和在标准化尺寸内的相关联可变性程度。
机器人放置系统206还可以根据控制系统202的指令拾取第二棱柱形电池单元216并将其放在外壳40内而控制系统202不进行关于第二棱柱形电池单元216在标准化尺寸内的可变性程度的确定。类似地,控制系统202可以引起机器人放置系统206拾取第三棱柱形电池单元218并将其放在外壳40内而控制系统202不进行关于第三棱柱形电池单元218在标准化尺寸内的可变性程度的确定。尽管第二棱柱形电池单元216可以具有第二SOC和在标准化尺寸内的相关联可变性程度,并且第三棱柱形电池单元218可以具有第三SOC和在标准化尺寸内的相关联可变性程度,因为棱柱形电池单元是NMC/LTO电池单元,它们在运行过程中可能没有膨胀到显著的程度并且因此假设尺寸被确定为适于模块40。
使用系统200生产锂离子电池组模块的方法220的实施例被描绘为图14的流程图。如所图示的,方法220可以包括获得(框222)电池组模块外壳40。例如,获得电池组模块外壳40可以包括将电池组模块外壳40形成(例如,模制)为一件式结构或多件式结构。外壳40可以具有任何构造,如以上指出的,诸如通常中空的或包括用于棱柱形电池单元的多个狭槽或部分狭槽的“鞋盒”结构。作为一个实例,形成电池组模块外壳可以包括将电池组模块外壳模制成具有第一列和第二列不连续狭槽156,如图13中概括所示。
可以在模制过程中通过例如将固定突出物模制到外壳40的内部来形成所述不连续狭槽。在其他实施例中,获得电池组模块外壳可以简单地对应于购买所述外壳。在更进一步实施例中,可以通过不同于模制的方法(诸如机加工)形成所述电池组模块外壳。更进一步地,可以通过模制与机加工相组合来生产所述外壳。
方法220还可以包括将电池组模块外壳40定位(框224)为接纳模块部件(例如,在定位系统将部件插入外壳40中的取向和位置上),包括棱柱形电化学电池单元44。例如,如图13中所示,组装路线208可以将外壳40邻近机器人定位系统206定位。
方法220还包括获得(框226)全都符合一组制造规格(包括一组标准化尺寸)的一组电池单元。另外,根据本公开,电池单元可以是在任何方向膨胀不超过5%的NMC/LTQ电池单元。如以上指出的,现在认识到,NMC/LTQ电池单元的基本上不可膨胀性质意味着不管其相应的充电状态如何,电池单元均适合于放置在外壳40中。因此,方法220包括将电池单元放入(框228)外壳40(例如,在狭槽、部分狭槽、不连续狭槽中),而不确定电池单元的尺寸变化。另外,消除这个制造步骤可以加速制造和降低成本。因此,可以简单地从例如电池单元进给路径210拾取NMC/LTQ棱柱形电池单元并将其放入外壳40中。
图15描绘了制造系统200的另一个实施例,所述制造系统可以与图13的系统200的元件(例如,被配置为引起拾取并放置电池单元放置的控制逻辑)结合、或代替这类元件使用。具体地,制造系统200包括与图13中所示的相同的系统部件,并且还包括标引系统230。标引系统230可以包括(除其他事物以外)使标引系统230能够单独或与控制系统202相组合地对电池组模块外壳40进行标引的传感器、计算设备(例如,存储电路和处理电路)等等。在标引电池组模块外壳40时,标引系统230可以例如标引外壳40的多个电池单元位置232,所述位置对应于电池单元44在外壳40内放置的位置。在一些实施例中,标引系统230还可以标引可以位于电池单元44之间的垫片236的垫片位置234(例如,层194)。垫片236可以例如用于电绝缘和热传导,并且可以包括填充层、热间隙垫等等。垫片236此外或可替代地可以用于将电池单元44在外壳44内压紧。可以相组合地或单独地标引电池单元位置232和垫片位置234。另外,应注意,每个图示的用于电池单元位置232和垫片位置234的盒可以对应于外壳40中的被构造为将电池单元44彼此分开的狭槽,或在其他实施例中,可以简单地对应于一个位置,而不是外壳40的物理特征。
作为一个实例,标引系统230可以对垫片位置234标引以确定与每个垫片位置234相对应的距离238,并且还可以对电池组位置232标引以确定与每个电池组位置232相对应的距离240。标引系统230可以进行这类标引以确定在组装模块28的过程中将电池组模块外壳40移位的程度。这些标引距离可以例如由控制系统202存储(例如,在非瞬态机器可读存储器中),并且用于引起标引系统230的外壳致动系统242将外壳40移动所述标引距离。通过实例方式,外壳致动系统242可以包括致动器,诸如一个或多个伺服机构,用于将外壳40(和外壳40内安装的部件)移动与垫片位置234相对应的标引距离、与电池单元位置232相对应的标引距离、或两个标引距离的组合、或标引距离的任意组合。例如,外壳致动系统242可以朝方向244致动模块外壳40与标引距离相对应的量,并且电池单元位置232之一和/或垫片位置234之一可以定位在标引系统的插入位置246上。插入位置246可以是机器人放置系统206反复地将电池单元44之一和垫片236之一、或以上的组合插入外壳40中的位置。
根据本公开,与外壳40的标引相关的实施例可以作为与电池单元44的拾放和插入到外壳40中相关的实施例的替代方案或与其组合使用。就此而言,本公开还提供了一种用于根据上述标引方法制造锂离子电池组模块的方法250,图16中描绘了其实施例。为了帮助说明方法250的方面,将结合图17的图示描述方法250,所述图描绘了标引过程中的各个步骤。
如图16中所图示的,方法250可以包括对外壳40进行标引(框252),例如以确定外壳40中与有待插入电池单元44之处相对应的位置的空间、距离、或另一个适当测量项。根据框252的标引可以包括例如进行自动化测量(例如,使用标引系统242)。在其他实施例中,可以将测量结果提供给标引系统242和/或控制系统202,并且标引系统242和/或控制系统202可以使输入的测量结果与外壳40的适当特征相关联(例如,距离238、240)。
为了准备将电池单元44插入外壳40,方法250还包括将电池组模块外壳40定位(框224)成接纳某些部件,如以上关于图14所描述的。在某些实施例中,定位外壳40时(例如,使用外壳致动系统)可能涉及到所述标引系统。
一旦适当定位了外壳40,一组电池单元44中的第一电池单元(例如,来自图14的电池单元源212)可以放置(框254)在外壳40的电池单元位置上,例如在机器人放置系统206的具体电池单元插入位置。第一电池单元的对应位置可以称为外壳内的第一位置。方法250还可以单独或与插入第一电池单元相组合地包括将垫片插入外壳40的对应垫片位置上(例如,第一垫片的第一垫片位置)。例如,如图17中所示,模块外壳40可以具有第一电池单元44A的第一电池单元位置232A、第一垫片236A的第一垫片位置234A等。方法250根据框254可以引起放置系统(例如,图14的机器人放置系统206)或输送系统255(例如,包括输送带等等)、或两者将第一电池单元44A引导到外壳40的第一电池单元位置232A。在某些实施例中,同时或在将第一电池单元44A放到第一电池单元位置232A上之后还可以将第一垫片236A引导到第一垫片位置234A,之后沿着与第一电池单元位置232A和/或第一垫片位置234A的空间大小相对应的固定距离进行致动。
就此而言,返回到图16,一旦第一电池单元(和任何相关联垫片)放置在外壳40中,方法250包括将外壳40移动(框256)固定距离以将外壳40定位成使得可以将额外的部件(例如,电池单元、垫片)插入其中。例如,外壳40移动的距离可以对应于根据框252确定的标引距离中的任一者或组合。另外,可以例如通过外壳致动系统(例如,一个或多个伺服机构)进行所述移动。另外,应注意本公开还包含更复杂的移动。例如,框256可以可替代地包括沿着固定距离结合一次或多次旋转来移动外壳40,接着是额外移动。在这类实施例中,移动、旋转和移位全都可以根据标引距离和空间关系。例如,如在从图17的顶部到底部转变时所示,可以看到将外壳40(例如,沿着方向244和/或沿着旋转轨迹257)移动到第二电池组位置232B大致与输送系统255相一致放置的地方。
参照图16,一旦通过沿着固定距离移动(或固定移动的组合)来适当定位外壳40,方法250就包括将第二电池单元放入(框258)外壳40中(例如,邻近第一电池单元)。可以以与以上针对框254阐述的相同方式进行所述放置,如图17所示。在图17中,可以看到第二电池单元44B放置到外壳40中的与第二电池单元44B的指定位置相对应的第二电池组位置232B上。另外,这可以单独或与垫片放置到外壳中(例如,第二垫片放置到第二垫片位置上)相结合地进行。另外,应注意,在自动化系统中,机器人放置系统206可以进行高度精确和反复的移动,这可以比具有与部件放置相关联的多个变量更可靠。因此,在这类实施例中,机器人放置系统206可以将第二电池单元放置到与其定位第一电池单元(即,其使用相同的移动)相同的位置上。然而,因为已经根据框256移动了外壳40,所以将第二电池单元放置到外壳40内的适当位置上。
如以上指出的,现在认识到以不显著程度膨胀(例如,在任何方向小于5%)的某些类型的电池单元可以提供关于锂离子电池组模块的夹紧、固位和制造的某些益处。实际上,拾放制造方法和标引制造方法可以从这类电池单元中受益,并且现在认识到某些中间体,诸如根据本公开技术的部分组装的电池组模块,与传统中间体相比可能不同。图18中描绘了一个实例,所述图是部分组装的锂离子电池组模块270的正视图。
具体地,图17的部分组装的锂离子电池组模块270包括设置在外壳40内在各自的不连续狭槽156中的多个棱柱形电池单元44。在其他实施例中,棱柱形电池单元44可以设置在连续狭槽中,或可以简单地处于层叠布置下而不使用内置到外壳40中的固位或悬浮特征。例如,电池单元44可以彼此上下层叠,其间放置一个或多个垫片。根据本公开,电池单元44可以是基本上不可膨胀的,或者可能不展现出可感知的膨胀量。也就是,棱柱形电池单元44可以在任何方向并且尤其是在厚度方向(即沿着CT)膨胀不超过5%、不超过4%、不超过3%、不超过2%、不超过1%、不超过0.5%。在一个实施例中,棱柱形电池单元44全都包括作为阴极活性物质的NMC、和作为阳极活性物质的LTQ。因此,它们全都是NMC/LTO棱柱形电池单元。
与传统中间体不同,图18中的电池单元44具有不同的充电状态(SOC),所述充电状态以其他方式阻止所述电池单元合并到部分组装的电池组模块中。作为实例,有待放置到电池单元容置区域54中的所有部件全部存在,包括任何潜在的夹紧特征、任何潜在垫片和任何潜在电池单元。换言之,装满电池单元容置区域54。与包括多个件并且用螺栓连接在一起的外壳或具有内置式曲柄机构的外壳不同,根据本公开的一方面并且如所图示的,外壳40完全形成并且是一件式结构,但不包括对电池单元44、尤其是对电池单元44的活动区域120(例如,对其面76、78)施加夹紧力的任何内置式夹紧特征。实际上,电池单元44全都处于未压紧状态,并且还可以在浮动布置下不受限制。
更具体地,图18中的棱柱形电池单元44的充电状态全都可以是相对高的,全都可以是相对低的,或者可以是以其他方式引起传统电池单元膨胀或由于各种原因不以具体组合使用的不同充电状态的混合。通过实例方式,所述多个电池单元44可以包括第一棱柱形NMC/LTO电池单元44A、第二棱柱形NMC/LTO电池单元44B、第三棱柱形NMC/LTO电池单元44C、第四棱柱形NMC/LTO电池单元44D、第五棱柱形NMC/LTO电池单元44E、和第六棱柱形NMC/LTO电池单元44F,每一者具有相应的电池单元厚度CT1–CT6,并且每一者具有相应的充电状态。在传统构造下,如果电池单元44的充电状态在多个电池单元上变化超过例如30%,则CT1–CT6将变化对应的量,例如与由于膨胀引起的充电状态成比例的量。然而,根据本公开,CT1–CT6可以变化不超过5%,因为充电状态对其相应的厚度具有极小或没有影响。实际上,所述多个电池单元44A-44F的充电状态可以变化在25%与60%之间,但CT1–CT6变化不超过5%、不超过4%、不超过3%、不超过2%、不超过1%、或不超过0.5%。换言之,NMC/LTO电池单元可以具有广泛不同的充电状态,但通常不会具有不同的电池单元厚度。
应领会到,在其他实例中可能存在不同数量的这类电池组,诸如在图3所示的其他实施例中。另外,应注意,部分组装的电池组模块270可以不包括特征,该特征将以其他方式用于平衡多个电池单元的充电状态。例如,部分组装的电池组模块270可以不包括将电池单元44彼此电连接的电气部件、或将以其他方式用于平衡多个电池单元44的电荷的电池组控制模块和相似的调节与控制电路。
本公开实施例中的一个或多个实施例可以单独或相组合地提供一个或多个技术效果,包括在未夹紧、未压紧的布置下使用基本上不可膨胀的电池单元。使用这类布置可以产生不需要使用夹紧机构、电池单元压紧机构等等的电池组模块,并且因此具有减轻的重量和相关联的成本。另外,这种类型的电池单元的使用方便了制造并且通过使一组具体电池单元能够具有总体上相同的尺寸并且由于制造引起极小或没有变化而能够实现更快速制造和电池组模块之间更大的相容性来降低相关联的成本。本说明书中的技术效果和技术问题是示例性的而非限制性的。应注意,本说明书中描述的实施例可以具有其他技术效果并且可以解决其他技术问题。
虽然仅图示和描述了根据本公开的某些特征和实施例,但在不实质性脱离权利要求书中所述的主题的新颖教导与优点的情况下,本领域的技术人员可以想到许多修改和改变(例如,各种元件的大小、尺寸、结构、形状和比例、参数(例如,温度、压力等)值、安装布置、材料使用、颜色、取向等的变化)。任何过程或方法的顺序或次序可以根据替代实施例而不同或重新排序。因此应理解,所附权利要求书旨在涵盖属于本公开的实际精神的所有这样的修改和改变。另外,为了提供对示例性实施例的简洁描述,可能没有描述实际实施方式的所有特征。应理解,在任何这类实际实施方式的开发中,与在任何工程或设计项目中一样,可以做出许多实施方式特定的决策。此类开发工作可能是复杂的并且耗时的,然而对于受益于本公开的普通技术人员而言将为设计、制作和制造的例行任务,而无需过度实验。

Claims (28)

1.一种锂离子电池组模块,包括:
棱柱形锂离子电池单元阵列,所述棱柱形锂离子电池单元放置在所述锂离子电池组模块的外壳的电池单元容置区内,其中,所述阵列中的相邻的棱柱形锂离子电池单元通过固定突出物和所述固定突出物之间的间隙彼此间隔开,所述固定突出物相对于所述棱柱形电池单元的宽度方向从所述外壳的形成所述电池单元容置区的内表面向内延伸,所述宽度方向从所述棱柱形电池单元的各自的第一侧延伸至所述棱柱形电池单元的各自的第二侧,其中,所述固定突出物仅在所述棱柱形电池单元的各自的第一侧和各自的第二侧与所述棱柱形电池单元的外围接触,其中所述固定突出物沿着所述棱柱形电池单元的长度方向定向,所述长度方向从所述电池单元的各自的底部延伸到所述电池单元的各自的端部。
2.如权利要求1所述的锂离子电池组模块,其中,所述棱柱形电池单元通过所述固定突出物水平悬浮起来以形成垂直间隔布置。
3.如权利要求1所述的锂离子电池组模块,其中,所述外壳的所述内表面包括所述外壳的内侧壁和电池单元列分隔物的与所述内侧壁间隔开的表面。
4.如权利要求3所述的锂离子电池组模块,包括放置在所述外壳的额外电池单元容置区内的额外棱柱形电池单元的额外阵列,所述额外电池单元容置区与所述电池单元容置区相邻,其中,所述额外阵列中的所述额外棱柱形电池单元通过额外固定突出物和所述额外固定突出物之间的额外间隙彼此间隔开,所述额外固定突出物相对于所述棱柱形电池单元的宽度方向从所述外壳的额外内表面向内延伸。
5.如权利要求4所述的锂离子电池组模块,其中,所述额外内表面包括在所述内侧壁对面的额外内侧壁和所述电池单元列分隔物的额外表面,其中,所述电池单元列分隔物放置在所述内侧壁与所述额外内侧壁之间的中途。
6.如权利要求4所述的锂离子电池组模块,其中,所述固定突出物和所述额外固定突出物仅分别与所述棱柱形电池单元和所述额外棱柱形电池单元的各自侧外围接触。
7.如权利要求4所述的锂离子电池组模块,其中,所述棱柱形电池单元和所述额外棱柱形电池单元通过集成汇流条和电压感测组件在它们的相应端子处电连接成为一组,以产生所述锂离子电池组模块的电压输出,其中,所述棱柱形电池单元和所述额外棱柱形电池单元的各自的端子在同一方向分别从所述电池单元容置区域和所述额外电池单元容置区域向外延伸。
8.如权利要求1所述的锂离子电池组模块,其中,所述棱柱形电池单元在所述电池单元容置区域内保持在未压紧状态下。
9.如权利要求8所述的锂离子电池组模块,其中,所述未压紧状态是由未在所述棱柱形电池单元的相应活动区上施加相反法向力而限定的。
10.如权利要求1所述的锂离子电池组模块,其中,所述棱柱形电池单元没有紧固到所述固定突出物上。
11.如权利要求1所述的锂离子电池组模块,其中,在所述电池单元容置区内的棱柱形电池单元包括自由接触热管理流体的各自的活动区。
12.如权利要求1所述的锂离子电池组模块,其中,所述棱柱形电池单元均包括仅与所述固定突出物接触的壳体。
13.如权利要求11所述的锂离子电池组模块,其中,所述棱柱形电池单元均包括与所述外壳交叉定向的底部部分,所述底部部分与所述锂离子电池组模块的热管理特征相接触。
14.如权利要求1所述的锂离子电池组模块,其中,所述棱柱形电池单元包括作为阳极活性物质的Li4Ti5O12
15.如权利要求1所述的锂离子电池组模块,其中,所述棱柱形电池单元包括作为阴极活性物质的LiNi1/3Co1/3Mn1/3O2
16.如权利要求1所述的锂离子电池组模块,包括被配置为将所述棱柱形电池单元的充电状态保持在第一充电状态与第二充电状态之间的控制电路,并且所述棱柱形电池单元被构造为当所述充电状态保持在所述第一充电状态与第二充电状态之间时在任何方向膨胀不超过5%,使得所述棱柱形电池单元的各自的活动区在运行过程中不触碰。
17.如权利要求16所述的锂离子电池组模块,其中,所述第一充电状态是25%,而所述第二充电状态是50%。
18.一种锂离子电池组模块系统,包括:外壳,所述外壳包括:
底座;
与所述底座相对的顶部部分;
相对的第一侧壁和第二侧壁,所述第一侧壁和所述第二侧壁均被构造成将所述底座与所述顶部部分连接;
列分隔物,所述列分隔物设置在所述第一侧壁和所述第二侧壁之间,其中,所述列分隔物平行于所述第一侧壁和所述第二侧壁设置;
第一电池单元容置区,所述第一电池单元容置区包括第一列不连续狭槽,所述第一列不连续狭槽在从所述底座到所述顶部部分的方向延伸;
第二电池单元容置区,所述第二电池单元容置区平行于所述第一电池单元容置区定向并且包括第二列不连续狭槽,其中,所述第一列不连续狭槽和第二列不连续狭槽均被构造为接纳棱柱形电池单元,其中,所述第一列和第二列的相邻的不连续狭槽通过固定突出物和所述固定突出物之间的间隙沿棱柱形电池单元的宽度方向彼此间隔开,其中,所述第一电池单元容置区的所述固定突出物从所述第一侧壁的内表面和所述列分隔物向内延伸,并且其中,所述第二电池单元容置区的所述固定突出物被构造成从所述第二侧壁的内表面和所述列分隔物向内延伸。
19.如权利要求18所述的锂离子电池组模块,其中,所述外壳的所述内表面包括第一侧壁和第二侧壁以及设置在所述第一侧壁和第二侧壁之间的所述列分隔物的第一侧壁和第二侧壁。
20.如权利要求18所述的锂离子电池组模块,其中,所述不连续狭槽被构造为将所述棱柱形电池单元水平放置成使得所述棱柱形电池单元的各自的面相对于所述底座平行定向。
21.如权利要求20所述的锂离子电池组模块,其中,所述固定突出物被构造为仅接触所述棱柱形电池单元的圆化外围。
22.如权利要求18所述的锂离子电池组模块,其中,所述固定突出物不包括被构造为紧固到所述棱柱形电池单元上的紧固件。
23.一种锂离子电池组模块,包括:
外壳,所述外壳包括底座和与所述底座相对的顶部部分并且具有被构造为能够与所述锂离子电池组模块电连接的端子;
被放置成彼此相邻并且平行并且在所述外壳内的第一棱柱形锂离子电池单元阵列和第二棱柱形锂离子电池单元阵列,其中,所述第一棱柱形锂离子电池单元阵列和第二棱柱形锂离子电池单元阵列均包括对齐的棱柱形锂离子电池单元组,所述棱柱形锂离子电池单元具有放置在所述外壳的单侧面上的它们各自的正端子和负端子,并且其中,每个棱柱形锂离子电池单元通过固定突出物和所述固定突出物之间的气隙沿所述电池单元的宽度方向与紧邻的棱柱形锂离子电池单元间隔开,其中所述固定突出物相对于所述电池单元的所述宽度方向从所述外壳的内表面向内延伸。
24.如权利要求23所述的锂离子电池组模块,其中,所述棱柱形锂离子电池单元均包括作为阳极活性物质的Li4Ti5O12
25.如权利要求24所述的锂离子电池组模块,其中,所述棱柱形锂离子电池单元包括作为阴极活性物质的LiNi1/3Co1/3Mn1/3O2
26.如权利要求25所述的锂离子电池组模块,其中,所述外壳包括多个部分罩壳,每个罩壳支撑相应的棱柱形锂离子电池单元,并且其中,每个部分罩壳仅接触所述相应的棱柱形锂离子电池单元的圆化外围。
27.如权利要求26所述的锂离子电池组模块,其中,所述棱柱形锂离子电池单元没有彼此夹紧或者夹紧到所述外壳上,并且所述棱柱形锂离子电池单元没有紧固到所述外壳上。
28.如权利要求27所述的锂离子电池组模块,其中,所述棱柱形锂离子电池单元被构造为在运行过程中保持所述气隙。
CN201580057145.8A 2014-09-26 2015-08-27 具有自由浮动棱柱形电池单元的锂离子电池组模块 Active CN107004782B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462056376P 2014-09-26 2014-09-26
US62/056,376 2014-09-26
US14/818,234 US10103367B2 (en) 2014-09-26 2015-08-04 Lithium ion battery module with free floating prismatic battery cells
US14/818,234 2015-08-04
PCT/US2015/047107 WO2016048569A1 (en) 2014-09-26 2015-08-27 Lithium ion battery module with free floating prismatic battery cells

Publications (2)

Publication Number Publication Date
CN107004782A CN107004782A (zh) 2017-08-01
CN107004782B true CN107004782B (zh) 2020-09-15

Family

ID=54186267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580057145.8A Active CN107004782B (zh) 2014-09-26 2015-08-27 具有自由浮动棱柱形电池单元的锂离子电池组模块

Country Status (4)

Country Link
US (1) US10103367B2 (zh)
EP (1) EP3198661B1 (zh)
CN (1) CN107004782B (zh)
WO (1) WO2016048569A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD810683S1 (en) * 2016-09-15 2018-02-20 Johnson Controls Technology Company Bus bar carrier for lithium ion battery module
KR102540916B1 (ko) * 2016-12-05 2023-06-07 현대자동차주식회사 과충전 안전장치
CN107093767A (zh) * 2017-04-21 2017-08-25 隆鑫通用动力股份有限公司 发动机
JP6470804B1 (ja) * 2017-08-31 2019-02-13 株式会社ソフトエナジーコントロールズ コンタクト機能付きマルチチャンネル充放電電源
US11121426B2 (en) 2017-11-30 2021-09-14 William Koetting Battery module including nodal cell compression and heat rejection
US11024915B2 (en) * 2018-07-05 2021-06-01 Miklos Bende Battery module adapter
US11431052B2 (en) 2018-07-05 2022-08-30 Miklos Bende Starter module adapter
US10784488B2 (en) 2018-07-05 2020-09-22 Miklos Bende Battery assembly
US10811648B2 (en) 2018-07-05 2020-10-20 Miklos Bende Housing assembly for battery module
CN113097667A (zh) * 2021-04-09 2021-07-09 芜湖天弋能源科技有限公司 一种改善锂离子电池化成界面的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608309A1 (de) * 2011-12-21 2013-06-26 Fortu Intellectual Property AG Batteriemodul mit Batteriemodulgehäuse und Batteriezellen

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256502A (en) 1991-09-17 1993-10-26 Gnb Incorporated Modular, multicell lead-acid batteries
JP3451142B2 (ja) 1994-11-18 2003-09-29 本田技研工業株式会社 温度制御機構を備えたバッテリ組立体
US5895728A (en) 1995-09-27 1999-04-20 Bolder Technologies Corp. Battery case
US5731103A (en) 1995-10-13 1998-03-24 Globe-Union, Inc. Method and apparatus for positioning a battery terminal strap
US6189635B1 (en) 1998-03-09 2001-02-20 Navistar International Transportation Corp. Polyurethane/polyurea elastomer coated steel battery box for hybrid electric vehicle applications
JP4196521B2 (ja) 2000-05-19 2008-12-17 新神戸電機株式会社 電気自動車用バッテリ構造及び電池モジュール
US20030003350A1 (en) 2001-07-02 2003-01-02 C&D Charter Holdings, Inc. Horizontal tray insert and tray assembly for motive-power applications
JP3624903B2 (ja) 2002-07-04 2005-03-02 日産自動車株式会社 モジュール電池
JP3972884B2 (ja) 2003-10-10 2007-09-05 日産自動車株式会社 組電池
JP4554911B2 (ja) 2003-11-07 2010-09-29 パナソニック株式会社 非水電解質二次電池
JP3882818B2 (ja) 2004-01-15 2007-02-21 ソニー株式会社 電池パック
JP3897029B2 (ja) 2004-03-30 2007-03-22 日産自動車株式会社 組電池用フレームおよび組電池
US7862958B2 (en) 2004-05-06 2011-01-04 Bathium Canada Inc. Retaining apparatus for electrochemical generator
FR2873497B1 (fr) 2004-07-23 2014-03-28 Accumulateurs Fixes Accumulateur electrochimique au lithium fonctionnant a haute temperature
JP4314223B2 (ja) 2004-09-24 2009-08-12 株式会社東芝 回生用蓄電システム、蓄電池システムならびに自動車
US7989104B2 (en) 2004-10-28 2011-08-02 Samsung Sdi Co., Ltd. Battery module
CN101622735A (zh) 2007-01-05 2010-01-06 江森自控帅福得先进能源动力系统有限责任公司 电池模块
JP2008204810A (ja) 2007-02-20 2008-09-04 Toshiba Corp 非水電解質二次電池の充電方法および充電装置
US20100047682A1 (en) 2007-03-01 2010-02-25 Johnson Controls - SAFT Advanced Power Solutions, LLC Battery system and thermal management system therefor
JP4650700B2 (ja) 2008-05-08 2011-03-16 トヨタ自動車株式会社 電池保持装置、組電池および車両
US20110086248A1 (en) * 2008-06-04 2011-04-14 Kensuke Nakura Assembled battery
JP5261043B2 (ja) 2008-06-27 2013-08-14 三洋電機株式会社 車両用の組電池
DE102009013346A1 (de) 2009-03-16 2010-09-30 Li-Tec Battery Gmbh Elektroenergie-Speichervorrichtung mit Flachzellen und Abstandselementen
US20100273055A1 (en) * 2009-04-28 2010-10-28 3M Innovative Properties Company Lithium-ion electrochemical cell
EP2432044B1 (en) 2009-05-14 2015-07-01 GS Yuasa International Ltd. Battery assembly
JP2011049012A (ja) 2009-08-26 2011-03-10 Sanyo Electric Co Ltd バッテリパック
KR101000550B1 (ko) 2009-11-30 2010-12-14 정윤이 배터리 팩과 이를 포함한 능동형 셀 발란싱 배터리 관리장치
WO2011108106A1 (ja) 2010-03-04 2011-09-09 株式会社 東芝 非水電解質電池、電池パック及び自動車
KR101230954B1 (ko) 2010-04-08 2013-02-07 주식회사 엘지화학 신규한 구조의 센싱부재를 포함하는 전지모듈
CN201936935U (zh) * 2010-05-31 2011-08-17 比亚迪股份有限公司 一种电池隔圈、电芯保护结构及动力电池
JP5565465B2 (ja) 2010-08-20 2014-08-06 株式会社村田製作所 非水電解質二次電池
JP5243507B2 (ja) 2010-09-14 2013-07-24 本田技研工業株式会社 電池モジュール
JP5712303B2 (ja) 2010-12-28 2015-05-07 エルジー・ケム・リミテッド バッテリーモジュール収納装置、バッテリーモジュール温度調節装置、及びそれらを含む電力貯蔵システム
WO2012096844A1 (en) 2011-01-10 2012-07-19 Cobasys, Llc Adaptable battery module for prismatic cells
WO2012125115A1 (en) 2011-03-15 2012-09-20 Effpower Ab Battery module, vehicle, electric device and method
JP2013004234A (ja) 2011-06-14 2013-01-07 Murata Mfg Co Ltd 非水電解質二次電池の製造方法
WO2013011779A1 (ja) 2011-07-15 2013-01-24 日本電気株式会社 蓄電装置
WO2013018331A1 (ja) 2011-07-29 2013-02-07 パナソニック株式会社 電池収納ブロック及び電池モジュール
US8968906B2 (en) 2011-09-20 2015-03-03 GM Global Technology Operations LLC Compact battery cooling design
CN103178216A (zh) * 2011-12-26 2013-06-26 浙江南都电源动力股份有限公司 外壳系统、电池和具有改进的叠层的电池支架
JP6107114B2 (ja) 2012-01-16 2017-04-05 株式会社Gsユアサ 電源装置
JP5945435B2 (ja) * 2012-03-16 2016-07-05 本田技研工業株式会社 バッテリモジュール
US20140014418A1 (en) 2012-07-16 2014-01-16 Tsuyoshi Komaki Power supply device, power-supply-device separator, and power-supply-device-equipped vehicle
JP6036095B2 (ja) 2012-09-26 2016-11-30 株式会社Gsユアサ 組電池
JP5672294B2 (ja) 2012-11-30 2015-02-18 トヨタ自動車株式会社 組電池及び車両
KR20140094898A (ko) 2013-01-23 2014-07-31 삼성에스디아이 주식회사 배터리 포장 케이스

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608309A1 (de) * 2011-12-21 2013-06-26 Fortu Intellectual Property AG Batteriemodul mit Batteriemodulgehäuse und Batteriezellen

Also Published As

Publication number Publication date
CN107004782A (zh) 2017-08-01
WO2016048569A1 (en) 2016-03-31
US20160093852A1 (en) 2016-03-31
EP3198661A1 (en) 2017-08-02
US10103367B2 (en) 2018-10-16
EP3198661B1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
CN107004784B (zh) 包含自由浮动电池单元的锂离子电池组模块及其生产方法
US20220285768A1 (en) Prismatic battery cell energy density for a lithium ion battery module
CN107004782B (zh) 具有自由浮动棱柱形电池单元的锂离子电池组模块
US20220320650A1 (en) Thermal epoxy and positioning of electrochemical cells
US11909061B2 (en) Modular approach for advanced battery modules having different electrical characteristics
EP3201035B1 (en) Bus bar assembly carrier
CN112103426B (zh) 电池组模块压缩电池组件
EP3183763B1 (en) Lead frame for a battery module having sacrificial interconnects
CN108112244B (zh) 用于电池组模块的连接器筒
US20160093851A1 (en) Battery module with individually restrained battery cells
CN107004791B (zh) 模块体中的凹式端子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20191231

Address after: New York State, USA

Applicant after: JOHNSON CONTROLS TECHNOLOGY Co.

Address before: michigan

Applicant before: JOHNSON CONTROLS TECHNOLOGY Co.

GR01 Patent grant
GR01 Patent grant