CN106987789A - 提高slm成形tc4强度‑塑性匹配性能的热处理方法 - Google Patents

提高slm成形tc4强度‑塑性匹配性能的热处理方法 Download PDF

Info

Publication number
CN106987789A
CN106987789A CN201710211739.0A CN201710211739A CN106987789A CN 106987789 A CN106987789 A CN 106987789A CN 201710211739 A CN201710211739 A CN 201710211739A CN 106987789 A CN106987789 A CN 106987789A
Authority
CN
China
Prior art keywords
sample
heat
slm
cooled
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710211739.0A
Other languages
English (en)
Other versions
CN106987789B (zh
Inventor
廖文和
肖振楠
刘婷婷
张长东
杨涛
段声勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710211739.0A priority Critical patent/CN106987789B/zh
Publication of CN106987789A publication Critical patent/CN106987789A/zh
Application granted granted Critical
Publication of CN106987789B publication Critical patent/CN106987789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/008Using a protective surface layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提供一种提高SLM成形TC4强度‑塑性匹配性能的热处理方法,包括以下步骤:对SLM成形后的TC4试样表面涂覆一层高温抗氧化涂料后放入真空氛围炉中抽真空至‑0.1Mpa,充入纯度为99.99%的氩气,使真空升至0.015Mpa;对试样进行三次加热和三次降温;对最后一次降温后的试样放入热的40%的氢氧化钠溶液中,取出后并结合喷砂工艺去除试样表面的高温抗氧化涂料。本发明设计合理,热处理方案简单,热处理效果好。

Description

提高SLM成形TC4强度-塑性匹配性能的热处理方法
技术领域
本发明涉及一种激光选区熔化(Selective Laser Melting,SLM)成形工艺和钛合金热处理工艺,特别是一种提高SLM成形Ti-6Al-4V(TC4)强度-塑性匹配性能的热处理方法。
背景技术
Ti-6Al-4V(TC4)钛合金由于比强度高、耐蚀性好、耐热性高等特点而被广泛用于航天航空、船舶、化工、兵器、医疗、汽车等领域。然而传统锻铸造工艺在加工复杂钛合金零件时,存在耗时大,周期长等问题,需要寻求新的工艺和方法。
SLM激光选区熔化技术是20世纪90年代兴起的增材制造技术,其可以根据零件的三维计算机辅助模型,利用激光按照一定的扫描策略快速熔化金属粉末,然后通过刮刀逐层铺粉,粉末的逐层固化叠加,直接成形形状复杂的零件。具有制造快速、零件致密度高、制造精度高、材料利用率高等优点。但是SLM成形TC4钛合金零件过程中,由于快速熔化和凝固,温度梯度较大,极易积聚热应力,从而使零件容易产生变形或开裂的缺陷。同时SLM制造过程中,各成形层之间由于缺少外界压应力作用,层间结合力较小,使得成形件的塑性较低。因此需要对SLM成形后的TC4钛合金进行适当的热处理等后处理工艺,减少或消除零件中潜在的翘曲变形、开裂缺陷,提升零件的综合力学性能。
合适的热处理工艺可以改变TC4微观组织中α相和β相的比例、形状和尺寸,从而改变TC4的力学性能,充分发挥金属材料性能潜力。针对SLM成形TC4钛合金件,采用传统热处理工艺可以实现塑性的提高,但塑性提升较小,强度-塑性匹配性能难以达到工业工程应用要求。Bey Vrancken、Lore Thijs等人对SLM成形TC4进行850℃/2h/FC热处理,将试样的延伸率从7.36±1.32%提高至12.84±1.36%;梁晓康等人通过SLM成形TC4合金并经750±20℃/90min/AC退火处理,试样延伸率达到11.0-13.0%;但试样的塑性仍与传统锻铸件存在一定的差异。
发明内容
本发明的目的在于提供一种提高SLM成形TC4强度-塑性匹配性能的热处理方法,该方法设计合理,热处理方案简单,热处理效果好。
一种提高SLM成形TC4强度-塑性匹配性能的热处理方法,包括以下步骤:
对SLM成形后的TC4试样表面涂覆一层高温抗氧化涂料后放入真空氛围炉中抽真空至-0.1Mpa,充入纯度为99.99%的氩气,使真空升至0.015Mpa;
对试样进行三次加热和三次降温;
对最后一次降温后的试样放入热的40%的氢氧化钠溶液中,取出后并结合喷砂工艺去除试样表面的高温抗氧化涂料。
采用上述方法,三次加热和三次降温的具体过程在于,
第一次加热和降温:以3-4℃/min加热速率升温至820℃-840℃并保温2-4h,空冷至室温;
第二次加热和降温:以3-4℃/min加热速率升温至710℃—740℃并保温2-4h,然后随炉冷却至室温;
第三次加热和降温:以3-4℃/min加热速率,升温至500℃—540℃并保温2-6h,空冷至室温。
本发明创新地通过三个阶段的多重热处理:首先通过820℃-840℃,保温2-4h,空冷至室温的退火处理,消除试样内部基本应力,使TC4成形态非稳定针状马氏体受热分解为α+β混合组织,晶粒发生粗化,晶粒宽度由成形态的1.08±0.07μm增加至1.5±0.04μm,试样塑性提高;然后通过720℃-740℃,保温2-4h,随炉冷却至室温的退火处理,进一步消除TC4内部残余应力,稳定尺寸,由于退火温度较低,保温时间较长,冷却速率低,为α相的充分长大提供了条件,α相晶粒宽度为2.10±0.09μm,促进试样塑性的进一步提高;最后通过500℃-540℃,保温2-6h,空冷至室温的时效强化处理,促使TC4内部未完全转化的细针状α’马氏体相通过形核和长大过程分解为弥散的平衡态α+β相,使试样在提高塑性的同时,保证强度。经过三个阶段的热处理,可使SLM成形TC4钛合金试样获得较佳的强度-塑性匹配,其综合力学性能可达:Rm≥1000Mpa,Rp0.2≥950Mpa,A≥18%,Z≥20%。同时该工艺采用常规设备,工艺流程简单,操作简便,容易形成批量生产。
下面结合说明书附图对本发明作进一步描述。
附图说明
图1为本发明的热处理方法流程图。
图2为本发明的热处理试样尺寸示意图。
图3为SLM成形TC4钛合金的微观组织图。
图4为SLM成形TC4钛合金的断口形貌图。
图5为SLM成形TC4钛合金热处理后的微观组织图。
图6为SLM成形TC4钛合金热处理后的断口形貌图。
具体实施方式
结合图1,一种提高SLM成形TC4强度-塑性匹配性能的热处理方法,包括以下步骤:
步骤1,将SLM成形后的TC4试样表面涂覆一层高温抗氧化涂料,防止TC4在热处理过程中高温氧化;
步骤2,将试样放入真空氛围炉中,抽真空保证真空压力表示数为-0.1Mpa。充入纯度为99.99%的氩气,使真空压力表示数为0.015Mpa;
步骤3,以3-4℃/min加热速率,升温至820℃-840℃,保温2-4h,空冷至室温;
步骤4,将步骤三处理后的试样,以3-4℃/min加热速率,升温至710℃—740℃,保温2-4h,然后随炉冷却至室温;
步骤5,将步骤四处理后的试样,以3-4℃/min加热速率,升温至500℃—540℃,保温2-6h,空冷至室温;
步骤6,将热处理后的试样放入热的40%的氢氧化钠溶液中0.5h-1h,然后取出,用酒精清洗,再结合喷砂工艺去除试样表面的高温抗氧化涂料。
实施例一
以平均粒径为45μm,成分如参数附表1所示的Ti-6Al-4V粉末颗粒为SLM成形原材料,按照参数附表2所示的工艺参数成形尺寸规格为644mm,工作段直径为3mm,标距为15mm的拉伸试样,具体尺寸参数如附图2。
参数附表1
参数附表2
利用线切割工艺将拉伸试样从基板上分离,然后在拉伸试样表面均匀浸涂一层厚度为0.2-0.3mm,由氧化铝、氧化硅、碳化硼耐火物和硅酸盐粘结剂组成的高温抗氧化涂料。
将涂覆高温抗氧化涂料的试样,放入真空氛围炉中,抽真空至真空压力表示数为-0.1Mpa,然后向炉中充入纯度为99.99%的氩气,至真空压力表示数为0.015Mpa。
以3.5℃/min的加热速率,升温至840℃,保温3h,空冷至室温。
以相同的加热速率升温至740℃,保温2h,以4.25℃/min的冷却速率,将试样温度降至500℃,然后随炉冷却至室温。
以3.5℃/min的加热速率,升温至540℃,保温2h,空冷至室温。
利用热的40%的氢氧化钠溶液除去试样表面的高温抗氧化涂料,同时采用喷砂工艺进一步辅助表面抗氧化涂料的去除。
利用砂纸对加工处理后的试样表面进行打磨,保证试样表面光亮,减少缺陷对拉伸性能的影响。对试样进行拉伸性能测试,经测试,SLM成形TC4钛合金经过上述工艺处理后,抗拉强度Rm为1094.60Mpa,规定塑性延伸强度Rp0.2为992.22Mpa,断后延伸率为18.29%,断面收缩率为22.07%,获得了较佳的强度-塑性匹配。
实施例二
以平均粒径为45μm,成分如参数附表1所示的Ti-6Al-4V粉末颗粒为SLM成形原材料,按照参数附表2所示的工艺参数成形尺寸规格为644mm,工作段直径为3mm,标距为15mm的拉伸试样,具体尺寸参数如附图2。
参数附表1
参数附表2
利用线切割工艺将拉伸试样从基板上分离,然后在拉伸试样表面均匀浸涂一层厚度为0.2-0.3mm,由氧化铝、氧化硅、碳化硼耐火物和硅酸盐粘结剂组成的高温抗氧化涂料。
将涂覆高温抗氧化涂料的试样,放入真空氛围炉中,抽真空至真空压力表示数为-0.1Mpa,然后向炉中充入纯度为99.99%的氩气,至真空压力表示数为0.015Mpa。
以3.5℃/min的加热速率,升温至820℃,保温3h,空冷至室温。
以相同的加热速率升温至710℃,保温2h,以4.25℃/min的冷却速率,将试样温度降至500℃,然后随炉冷却至室温。
以3.5℃/min的加热速率,升温至500℃,保温2h,空冷至室温。
利用热的40%的氢氧化钠溶液除去试样表面的高温抗氧化涂料,同时采用喷砂工艺进一步辅助表面抗氧化涂料的去除。
利用砂纸对加工处理后的试样表面进行打磨,保证试样表面光亮,减少缺陷对拉伸性能的影响。对试样进行拉伸性能测试,经测试,SLM成形TC4钛合金经过上述工艺处理后,抗拉强度Rm为1100.92Mpa,规定塑性延伸强度Rp0.2为971.62Mpa,断后延伸率为18.14%,断面收缩率为20.85%,获得了较佳的强度-塑性匹配。
综上所述,本发明所提供的一种提高SLM成形Ti-6Al-4V强度-塑性匹配性能的热处理方法,可使其综合力学性能达到Rm≥1000Mpa,Rp0.2≥950Mpa,A≥18%,Z≥20%。
采用本发明的方法的效果如图3至图6所示。图3为SLM成形TC4钛合金微观组织形貌。从图中可以看出TC4成形态整体组织是由分布均匀的细针状马氏体α’构成,α’相晶粒宽度约为1.08±0.07μm,β相含量很少,经测定其体积分数约为1.5%,基本上不存在晶界。图4为SLM成形TC4钛合金断口形貌,从图中可以看出TC4断口呈现韧-脆性混合断裂特征,既有河流状的解理花样,又存在类似蜂窝状的韧窝。以上组织特征及断口形貌决定了SLM成形TC4钛合金具有强度高而塑性低的特点。图5为热处理后的TC4微观组织,由α+β混合组织构成,β相体积分数为21%,较未热处理时的体积分数有显著提高,同时与未经热处理的显微组织相比,α相发生了粗化,晶粒宽度为1.5±0.04m,粗化后的α相积聚形成内部具有相同取向的α集束。β相含量的提高及α相的粗化,使得试样强度下降,塑性提高。图6为热处理后试样断口形貌,其断裂机制为韧性断裂,拉伸过程中,在滑移作用下,材料内部分离形成的显微空洞不断聚集长大合并形成等轴韧窝,韧窝数量多,尺寸大,因此试样塑性好。

Claims (6)

1.一种提高SLM成形TC4强度-塑性匹配性能的热处理方法,其特征在于,包括:
对SLM成形后的TC4试样表面涂覆一层高温抗氧化涂料后放入真空氛围炉中抽真空至-0.1Mpa,充入纯度为99.99%的氩气,使真空升至0.015Mpa;
对试样进行三次加热和三次降温;
对最后一次降温后的试样放入热的40%的氢氧化钠溶液中,取出后并结合喷砂工艺去除试样表面的高温抗氧化涂料。
2.根据权利要求1所述的方法,其特征在于,三次加热和三次降温的具体过程在于,
第一次加热和降温:以3-4℃/min加热速率升温至820℃-840℃并保温2-4h,空冷至室温;
第二次加热和降温:以3-4℃/min加热速率升温至710℃—740℃并保温2-4h,然后随炉冷却至室温;
第三次加热和降温:以3-4℃/min加热速率,升温至500℃—540℃并保温2-6h,空冷至室温。
3.根据权利要求1所述的方法,其特征在于,SLM成形TC4钛合金的化学成分按质量分数为
4.根据权利要求1所述的方法,其特征在于,SLM成形TC4工艺参数为:
5.根据权利要求2所述的方法,其特征在于,在第一次降温和第三次降温时,试样在保温后的6秒以内从真空氛围炉中转移到空气中,空冷至室温;在第二次降温时,试样在保温后使用4.25℃/min的冷却速率,将试样温度降至500℃,然后随炉冷却至室温。
6.根据权利要求1所述的方法,其特征在于,试样放入热的40%的氢氧化钠溶液中0.5h-1h,然后取出,用酒精清洗,再结合喷砂工艺去除试样表面的高温抗氧化涂料。
CN201710211739.0A 2017-04-01 2017-04-01 提高slm成形tc4强度-塑性匹配性能的热处理方法 Active CN106987789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710211739.0A CN106987789B (zh) 2017-04-01 2017-04-01 提高slm成形tc4强度-塑性匹配性能的热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710211739.0A CN106987789B (zh) 2017-04-01 2017-04-01 提高slm成形tc4强度-塑性匹配性能的热处理方法

Publications (2)

Publication Number Publication Date
CN106987789A true CN106987789A (zh) 2017-07-28
CN106987789B CN106987789B (zh) 2019-02-22

Family

ID=59414858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710211739.0A Active CN106987789B (zh) 2017-04-01 2017-04-01 提高slm成形tc4强度-塑性匹配性能的热处理方法

Country Status (1)

Country Link
CN (1) CN106987789B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947960A (zh) * 2019-10-30 2020-04-03 北京航星机器制造有限公司 一种激光选区熔化增材制造钛合金部件的热处理方法
CN111136272A (zh) * 2020-02-27 2020-05-12 西安交通大学 能显著降低lam钛合金强度和塑性各向异性的热处理方法
CN111168069A (zh) * 2020-02-28 2020-05-19 西安交通大学 能有效提高lam tc4强韧性降低各向异性的热处理方法
CN112126872A (zh) * 2020-08-18 2020-12-25 洛阳双瑞精铸钛业有限公司 一种大型钛铸件的非真空退火方法
US20210078079A1 (en) * 2019-09-16 2021-03-18 Jiangnan University Method for producing an abrasion-resistant coating on surface of 3d printed titanium alloy components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034566A1 (de) * 2009-07-23 2011-02-03 Eads Deutschland Gmbh Verfahren zum Herstellen eines Tanks für Treibstoff
CN104259459A (zh) * 2014-09-29 2015-01-07 飞而康快速制造科技有限责任公司 一种采用选区激光熔化技术制备钛合金工艺品的方法
CN105014073A (zh) * 2015-08-18 2015-11-04 上海航天精密机械研究所 一种tc4钛合金激光选区熔化增材制造及热处理方法
CN105154701A (zh) * 2015-10-14 2015-12-16 华中科技大学 一种采用选择性激光熔化快速成形技术制备高温钛合金的方法
US20160175929A1 (en) * 2013-07-04 2016-06-23 Snecma Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
CN106119749A (zh) * 2016-06-28 2016-11-16 深圳市晶莱新材料科技有限公司 一种3D打印Ti‑6Al‑4V结构件热处理工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034566A1 (de) * 2009-07-23 2011-02-03 Eads Deutschland Gmbh Verfahren zum Herstellen eines Tanks für Treibstoff
US20160175929A1 (en) * 2013-07-04 2016-06-23 Snecma Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
CN104259459A (zh) * 2014-09-29 2015-01-07 飞而康快速制造科技有限责任公司 一种采用选区激光熔化技术制备钛合金工艺品的方法
CN105014073A (zh) * 2015-08-18 2015-11-04 上海航天精密机械研究所 一种tc4钛合金激光选区熔化增材制造及热处理方法
CN105154701A (zh) * 2015-10-14 2015-12-16 华中科技大学 一种采用选择性激光熔化快速成形技术制备高温钛合金的方法
CN106119749A (zh) * 2016-06-28 2016-11-16 深圳市晶莱新材料科技有限公司 一种3D打印Ti‑6Al‑4V结构件热处理工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张宝昌 等: "《有色金属及其热处理》", 31 October 1993, 西北工业大学出版社 *
王瑶琴: "《化工设备设计全书 钛制化工设备设计》", 30 November 1985, 上海科学技术出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210078079A1 (en) * 2019-09-16 2021-03-18 Jiangnan University Method for producing an abrasion-resistant coating on surface of 3d printed titanium alloy components
US11684973B2 (en) * 2019-09-16 2023-06-27 Jiangnan University Method for producing an abrasion-resistant coating on surface of 3D printed titanium alloy components
CN110947960A (zh) * 2019-10-30 2020-04-03 北京航星机器制造有限公司 一种激光选区熔化增材制造钛合金部件的热处理方法
CN111136272A (zh) * 2020-02-27 2020-05-12 西安交通大学 能显著降低lam钛合金强度和塑性各向异性的热处理方法
CN111136272B (zh) * 2020-02-27 2021-04-20 西安交通大学 能显著降低lam钛合金强度和塑性各向异性的热处理方法
CN111168069A (zh) * 2020-02-28 2020-05-19 西安交通大学 能有效提高lam tc4强韧性降低各向异性的热处理方法
CN112126872A (zh) * 2020-08-18 2020-12-25 洛阳双瑞精铸钛业有限公司 一种大型钛铸件的非真空退火方法

Also Published As

Publication number Publication date
CN106987789B (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
CN106987789B (zh) 提高slm成形tc4强度-塑性匹配性能的热处理方法
CN105154701B (zh) 一种采用选择性激光熔化快速成形技术制备高温钛合金的方法
US20120325117A1 (en) Method for hot shaping a workpiece and agent for reducing the heat emission
US4482398A (en) Method for refining microstructures of cast titanium articles
CN102260805B (zh) 一种锆钛基合金及其制备方法
CN110607464B (zh) 一种Ti2AlNb合金粉末的热等静压工艺
CN106801171A (zh) 用于ALM结构的整体构造的具有钪的Al‑Mg‑Si合金
CN104148562B (zh) Ti2AlNb基合金铸锭的开坯方法
KR20160033096A (ko) 티타늄-알루미늄 합금 부품 제조 방법
TW201504449A (zh) 鎳-鈦合金之熱機械處理
CN106834837A (zh) 一种Al‑Cu‑Mg‑Fe‑Ni系变形耐热铝合金及其制备方法
Uddin et al. Laser Powder Bed Fusion Fabricated and Characterization of Crack-Free Aluminum Alloy 6061 Using In-Process Powder Bed Induction Heating
CN109811164A (zh) 一种增材制造铝合金的制备方法
Chamorro et al. α-Case formation in Ti-6Al-4V investment casting using ZrSiO4 and Al2O3 moulds
Eylon et al. Titanium and titanium alloy castings
Zhang et al. Additive manufacturing of Ti–6Al–4V/Al–Cu–Mg multi-material structures with a Cu interlayer
Balichakra et al. Laser surface melting of γ-TiAl alloy: an experimental and numerical modeling study
CN110434264B (zh) 一种晶须增强铝基复合材料的约束多向模锻方法
CN104878227B (zh) 高强铸造铝合金的制备方法
CN110643921A (zh) 一种降低镍基高温合金涡轮盘热应力的方法
CN107234196A (zh) 一种等原子比钛镍合金大型铸锭锻造方法
CN108982538A (zh) 一种金属材料增材制造产品的缺陷与金相组织检测方法
CN115572858B (zh) 一种细小全片层变形TiAl合金及其制备方法
CN105710332A (zh) 叶片铸造方法
CN105220096B (zh) 一种改善传统铸造γ‑TiAl合金力学性能的多步循环热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant