CN106971771A - 一种碳包覆金属纳米线导电薄膜的制备方法 - Google Patents

一种碳包覆金属纳米线导电薄膜的制备方法 Download PDF

Info

Publication number
CN106971771A
CN106971771A CN201710325863.XA CN201710325863A CN106971771A CN 106971771 A CN106971771 A CN 106971771A CN 201710325863 A CN201710325863 A CN 201710325863A CN 106971771 A CN106971771 A CN 106971771A
Authority
CN
China
Prior art keywords
wire
conductive film
preparation
nanometer line
metal nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710325863.XA
Other languages
English (en)
Inventor
台启东
金俊君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jianghan University
Original Assignee
Jianghan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jianghan University filed Critical Jianghan University
Priority to CN201710325863.XA priority Critical patent/CN106971771A/zh
Publication of CN106971771A publication Critical patent/CN106971771A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种碳包覆金属纳米线导电薄膜的制备方法。将一定量的金属纳米线分散于葡萄糖溶液中,在160‑200℃条件下水热反应1‑5小时即可。所述金属纳米线为金、银、铜等金属纳米线或其合金及混合物。所述金属纳米线透明导电薄膜可以通过喷涂或者薄膜转移法制得。所述方法简单易行,可以显著提高金属纳米线导电薄膜的稳定性。本方法有望促进金属纳米线透明导电薄膜在太阳能电池等光电子器件领域的应用。

Description

一种碳包覆金属纳米线导电薄膜的制备方法
技术领域
本发明属于太阳能电池技术领域,尤其涉及一种碳包覆金属纳米线导电薄膜的制备方法。
背景技术
透明导电电极是太阳能电池等新型光电子器件的重要部件。以氧化铟锡(ITO)及氟掺杂氧化锡(FTO)为代表的透明导电氧化物 (TCO) 材料是目前最常用的透明导电电极材料。TCO材料具有成本高,柔韧性差等缺点。为此,有必要寻求更为廉价且兼具柔性的高性能透明导电电极材料。
近年来,基于银、铜等金属纳米线的透明导电薄膜引起了广泛的研究,它们具有良好的导电性、透光性和柔性,且制备简单、成本低廉。然而银、铜等金属纳米线的化学性质较为活泼,易被空气氧化或者化学物质腐蚀,进而严重损害薄膜的导电性,这是金属纳米线透明导电薄膜实际应用的主要障碍。在金属纳米线透明导电薄膜表面覆以惰性的保护层(如聚合物或金属氧化物薄膜)可以增强其抗氧化及抗腐蚀性能,然而这类方法并不能从根本上改善金属纳米线的稳定性,且其局限性也显而易见:若保护层太薄则不能起到有效的保护作用;若保护层太厚则会损害薄膜的导电性和透光性。我们知道,碳材料具有极好的稳定性和相当的导电性能,倘若利用碳材料对金属纳米线进行原位包覆,则有望在不损害薄膜导电性及透光性的情况下,从根本上改善金属纳米线导电薄膜的稳定性。
发明内容
本发明所要解决的技术问题在于提供一种碳包覆金属纳米线导电薄膜的制备方法,该方法可以增强金属纳米线抗氧化、抗腐蚀性能,使其可以用于制备高性能透明导电薄膜,应用于太阳能电池等光电子器件。
本发明的一种碳包覆金属纳米线导电薄膜的制备方法,包含以下步骤:
(1)配制异丙醇和水的混合溶液,其中异丙醇和水的体积比为1-2,再往溶液中加入0.03-0.2g/ml量的葡萄糖;
(2)往(1)溶液中加入一定量的金属纳米线,金属纳米线和葡萄糖的摩尔比为0.01-0.1;
(3)将(2)溶液按50%的体积比填充度置于反应釜中,在160-200℃下反应1-5小时;
(4)离心,清洗,再分散;
(5)利用(4)制备的碳包覆金属纳米线通过喷涂或膜转移方法制备透明导电薄膜。
所述的金属纳米线为金纳米线、银纳米线、铜纳米线中的一种或几种,或为金、银、铜合金的纳米线。所述金属纳米线均可根据本领域公知技术得到。
本发明选择低成本且易于制备的铜纳米线(CuNWs)作为实施例,铜纳米线的制备方法如下:
将50mg 二水氯化亚铜,300 十六胺,150mg 葡萄糖溶于20ml 的去离子水中,100摄氏度加热反应6小时生成铜纳米线,提纯后分散于异丙醇中得到铜纳米线分散液。
本发明的的优点在于:操作简单,能有效的在金属纳米线薄膜包覆均匀的碳膜且碳膜厚度可控、不影响金属纳米线的导电性,可以显著提高金属纳米线透明导电薄膜的稳定性。
附图说明
图1为本发明中制备的铜纳米线SEM图。
图2a-f分别为实施例1-6所制备的碳包覆铜纳米线 (CuNWs@C)的TEM图。
图3为实施例3所制备碳包覆纳米线导电薄膜和铜纳米线导电薄膜在空气中导电性变化的对比图。
图4为基于实施例3所制备碳包覆纳米线导电薄膜导电薄膜和FTO所制备的对电极在染料敏化太阳电池应用中的性能图。
具体实施方式
以下通过一些具体实施例来更详细的说明本发明,但本发明并不限定于这些实施例。
下列实施例中使用的铜纳米线的制备方法如下:
将50mg 二水氯化亚铜,300 十六胺,150mg 葡萄糖溶于20ml 的去离子水中,100摄氏度加热反应6小时生成铜纳米线,提纯后分散于异丙醇中得到铜纳米线分散液。
实施例1
(1)配制15ml异丙醇和水的混合溶液,其中异丙醇和水的体积比为2,再往溶液中加入0.5g的葡萄糖。
(2)往(1)溶液中加入18.75 mg的铜纳米线。
(3)将(2)溶液置于30ml的水热反应釜中,在170℃下反应3小时。
(4)离心,清洗。
实施例2
(1)配制15ml异丙醇和水的混合溶液,其中异丙醇和水的体积比为1,再往溶液中加入1.5g的葡萄糖。
(2)往(1)溶液中加入18.75mg的铜纳米线。
(3)将(2)溶液置于30ml的水热反应釜中,在170℃下反应3小时。
(4)离心,清洗。
实施例3
(1)配制15ml异丙醇和水的混合溶液,其中异丙醇和水的体积比为2,再往溶液中加入1.5g的葡萄糖。
(2)往(1)溶液中加入18.75 mg的铜纳米线。
(3)将(2)溶液置于30ml的水热反应釜中,在170℃下反应3小时。
(4)离心,清洗。
实施例4
(1)配制15ml异丙醇和水的混合溶液,其中异丙醇和水的体积比为2,再往溶液中加入3g的葡萄糖。
(2)往(1)溶液中加入18.75 mg的铜纳米线。
(3)将(2)溶液置于30ml的水热反应釜中,在170℃下反应3小时。
(4)离心,清洗。
实施例5
(1)配制15ml异丙醇和水的混合溶液,其中异丙醇和水的体积比为2,再往溶液中加入1.5g的葡萄糖。
(2)往(1)溶液中加入18.75 mg的铜纳米线。
(3)将(2)溶液置于30ml的水热反应釜中,在170℃下反应1小时。
(4)离心,清洗。
实施例6
(1)配制15ml异丙醇和水的混合溶液,其中异丙醇和水的体积比为2,再往溶液中加入1.5g的葡萄糖。
(2)往(1)溶液中加入18.75 mg的铜纳米线。
(3)将(2)溶液置于30ml的水热反应釜中,在200℃下反应3小时。
(4)离心,清洗。
实施例7
用未包覆的铜纳米线和实施例3中碳包覆铜纳米线制备透明导电薄膜,导电薄膜的制备方法如下:先利用过滤法在硝酸纤维素滤膜沉积一层铜纳米线或碳包覆铜纳米线,然后将滤膜含有纳米线面朝向衬底压紧,最后用丙酮除去纤维素滤膜。薄膜导电性和透光性对比见表1。
表1 CuNWs和CuNWs@C透明导电薄膜透光性和导电性对比, T550为薄膜在光波长为550nm处的透过率。
实施例8
用未包覆的铜纳米线和实施例3中碳包覆铜纳米线制备透明导电薄膜。导电薄膜的制备方法如下:先利用过滤法在硝酸纤维素滤膜沉积一层铜纳米线或碳包覆铜纳米线,然后将滤膜含有纳米线面朝向衬底压紧,最后用丙酮除去纤维素滤膜。导电薄膜置于空气中(RH=20%, T=20℃)保存,观察其导电性的变化,结果如图3所示。可见经过500小时后未包覆的铜纳米线薄膜电阻增加了超过150倍,而碳包覆的铜纳米导电薄膜电阻则没有明显变化。
实施例9
以未包覆的铜纳米线和实施例3中碳包覆铜纳米线制备透明导电薄膜。导电薄膜的制备方法如下:先利用过滤法在硝酸纤维素滤膜沉积一层铜纳米线或碳包覆铜纳米线,然后将滤膜含有纳米线面朝向衬底压紧,最后用丙酮除去纤维素滤膜。导电薄膜作为导电基底,在其上旋涂聚苯胺薄膜(PANI)薄膜作为对电极应用于染料敏化太阳能电池(DSC)。所述的染料敏化太阳能电池光阳极为约10um厚的多孔TiO2薄膜,染料为N719,电解质的组分是:0.1M LiI, 0.05M I2, 0.6M PMII (1-甲基-3-丙基咪唑碘),0.5M TBP (四叔丁基吡啶),溶剂:碳酸丙烯酯和乙腈(1/1, vol/vol)。测试条件是AM1.5G 模拟光源,强度为100mW/cm2,电池有效面积是0.25cm2
由于碘电解质强烈的腐蚀性,未包覆的铜纳米线薄膜很快便会被腐蚀,因而无法应用于DSC。而碳包覆的铜纳米线薄膜则可以很好地抵抗电解质的腐蚀,所得电池的效率甚至优于同等条件下使用FTO时所获得的效率(如图4)。

Claims (3)

1.一种碳包覆金属纳米线导电薄膜的制备方法,其特征在于,包含以下步骤:
(1)配制异丙醇和水的混合溶液,其中异丙醇和水的体积比为1-2,再往溶液中加入0.03-0.2g/ml量的葡萄糖;
(2)往(1)溶液中加入一定量的金属纳米线,金属纳米线和葡萄糖的摩尔比为0.01-0.1;
(3)将(2)溶液按50%的体积比填充度置于反应釜中,在160-200℃下反应1-5小时;
(4)离心,清洗,再分散;
(5)利用(4)制备的碳包覆金属纳米线通过喷涂或膜转移方法制备透明导电薄膜。
2.根据权利要求1所述的制备方法,其特征在于,所述的金属纳米线为金纳米线、银纳米线、铜纳米线中的一种或几种,或为金、银、铜合金的纳米线。
3.根据权利要求1所述的制备方法,其特征在于,铜纳米线的制备方法如下:
将50mg 二水氯化亚铜,300 十六胺,150mg 葡萄糖溶于20ml 的去离子水中,100摄氏度加热反应6小时生成铜纳米线,提纯后分散于异丙醇中得到铜纳米线分散液。
CN201710325863.XA 2017-05-10 2017-05-10 一种碳包覆金属纳米线导电薄膜的制备方法 Pending CN106971771A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710325863.XA CN106971771A (zh) 2017-05-10 2017-05-10 一种碳包覆金属纳米线导电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710325863.XA CN106971771A (zh) 2017-05-10 2017-05-10 一种碳包覆金属纳米线导电薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN106971771A true CN106971771A (zh) 2017-07-21

Family

ID=59332144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710325863.XA Pending CN106971771A (zh) 2017-05-10 2017-05-10 一种碳包覆金属纳米线导电薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106971771A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108057881A (zh) * 2017-12-20 2018-05-22 西安近代化学研究所 一种水热法制备碳包覆微纳米锆粉的方法
CN108411283A (zh) * 2018-02-09 2018-08-17 中南大学 一种金属基体/非金属基体碳复合涂层或碳复合导电涂层的制备方法
CN108530675A (zh) * 2018-04-15 2018-09-14 王子韩 一种高强度循环利用的复合光热薄膜的制备方法
CN108831749A (zh) * 2018-04-16 2018-11-16 江汉大学 一种电化学储能复合材料及其制备方法
CN109187482A (zh) * 2018-08-16 2019-01-11 江汉大学 一种具有核壳结构的纳米复合材料的制备方法和应用
WO2020093622A1 (zh) * 2018-11-07 2020-05-14 深圳市华星光电半导体显示技术有限公司 减反阵列基板的制备方法及其制备的减反阵列基板
CN111540535A (zh) * 2020-03-10 2020-08-14 河南大学 一种碳包覆铜纳米线的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456554A (zh) * 2009-01-06 2009-06-17 黑龙江大学 石墨化纳米碳的制备方法
CN102179182A (zh) * 2011-03-29 2011-09-14 中国科学技术大学 碳纳米纤维膜的制备方法
US20130230717A1 (en) * 2011-09-02 2013-09-05 Washington University In St. Louis Copper nanostructures and methods for their preparation
CN103447546A (zh) * 2012-05-28 2013-12-18 南京大学 同轴电缆结构Ag/C纳米互连线的制备方法
CN103594195A (zh) * 2013-10-28 2014-02-19 中国科学院长春光学精密机械与物理研究所 一种金属纳米线柔性透明导电薄膜的制备方法
US20140371052A1 (en) * 2012-03-13 2014-12-18 Nanyang Technological University Method of synthesizing tungsten carbide nanorods and catalysts formed therewith
CN104942455A (zh) * 2015-05-14 2015-09-30 西安交通大学 一种碳包覆铜纳米线的低温自焊接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456554A (zh) * 2009-01-06 2009-06-17 黑龙江大学 石墨化纳米碳的制备方法
CN102179182A (zh) * 2011-03-29 2011-09-14 中国科学技术大学 碳纳米纤维膜的制备方法
US20130230717A1 (en) * 2011-09-02 2013-09-05 Washington University In St. Louis Copper nanostructures and methods for their preparation
US20140371052A1 (en) * 2012-03-13 2014-12-18 Nanyang Technological University Method of synthesizing tungsten carbide nanorods and catalysts formed therewith
CN103447546A (zh) * 2012-05-28 2013-12-18 南京大学 同轴电缆结构Ag/C纳米互连线的制备方法
CN103594195A (zh) * 2013-10-28 2014-02-19 中国科学院长春光学精密机械与物理研究所 一种金属纳米线柔性透明导电薄膜的制备方法
CN104942455A (zh) * 2015-05-14 2015-09-30 西安交通大学 一种碳包覆铜纳米线的低温自焊接方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108057881A (zh) * 2017-12-20 2018-05-22 西安近代化学研究所 一种水热法制备碳包覆微纳米锆粉的方法
CN108411283A (zh) * 2018-02-09 2018-08-17 中南大学 一种金属基体/非金属基体碳复合涂层或碳复合导电涂层的制备方法
CN108530675A (zh) * 2018-04-15 2018-09-14 王子韩 一种高强度循环利用的复合光热薄膜的制备方法
CN108831749A (zh) * 2018-04-16 2018-11-16 江汉大学 一种电化学储能复合材料及其制备方法
CN109187482A (zh) * 2018-08-16 2019-01-11 江汉大学 一种具有核壳结构的纳米复合材料的制备方法和应用
WO2020093622A1 (zh) * 2018-11-07 2020-05-14 深圳市华星光电半导体显示技术有限公司 减反阵列基板的制备方法及其制备的减反阵列基板
CN111540535A (zh) * 2020-03-10 2020-08-14 河南大学 一种碳包覆铜纳米线的制备方法

Similar Documents

Publication Publication Date Title
CN106971771A (zh) 一种碳包覆金属纳米线导电薄膜的制备方法
Hou et al. Transparent conductive oxide-less, flexible, and highly efficient dye-sensitized solar cells with commercialized carbon fiber as the counter electrode
Yue et al. Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells
JP5300735B2 (ja) 色素増感太陽電池モジュール
Li et al. A composite film of TiS 2/PEDOT: PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells
Hou et al. Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells
TWI330409B (en) Method for forming an electrode comprising an electrocatalyst layer thereon and electrochemical device comprising the same
Zhang et al. Graphene enabled all-weather solar cells for electricity harvest from sun and rain
Singh et al. Electrical, optical and electrophotochemical studies on agarose based biopolymer electrolyte towards dye sensitized solar cell application
Wu et al. Electrophoresis of randomly and vertically embedded graphene nanosheets in activated carbon film as a counter electrode for dye-sensitized solar cells
Wijeratne et al. Aspect-ratio dependent electron transport and recombination in dye-sensitized solar cells fabricated with one-dimensional ZnO nanostructures
Sarker et al. Transparent conducting oxides and their performance as substrates for counter electrodes of dye-sensitized solar cells
Lin et al. Multi-wall carbon nanotube counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition
Lan et al. Durability test of PVP‐capped Pt nanoclusters counter electrode for highly efficiency dye‐sensitized solar cell
JP2012253004A5 (zh)
CN105551834B (zh) 一种柔性染料敏化太阳电池的低温低压制备方法
Lan et al. Improvement of Photovoltaic Performance of Dye-Sensitized Solar Cell by Post Heat Treatment of Polymer-Capped Nano-Platinum Counterelectrode
Siwach et al. Effect of carbonaceous counter electrodes on the performance of ZnO-graphene nanocomposites based dye sensitized solar cells
Kulesza et al. Development of solid-state photo-supercapacitor by coupling dye-sensitized solar cell utilizing conducting polymer charge relay with proton-conducting membrane based electrochemical capacitor
Wu et al. Platinum/carbon black composites as counter electrodes for high-performance dye-sensitized solar cells
De Freitas et al. Dye-sensitized solar cells and solar module using polymer electrolytes: stability and performance investigations
Mubarak et al. A comparison of the utilization of carbon nanopowder and activated carbon as counter electrode for monolithic dye-sensitized solar cells (DSSC)
Molla et al. Enhancing the performance of transparent conductive oxide-less back contact dye-sensitized solar cells by facile diffusion of cobalt species through TiO 2 nanopores
Di et al. Hybrid films of PEDOT containing transition metal phosphates as high effective Pt-free counter electrodes for dye sensitized solar cells
Thuy et al. Surfactant effect in polypyrrole and polypyrrole with multi wall carbon nanotube counter electrodes: improved power conversion efficiency of dye-sensitized solar cell

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170721

WD01 Invention patent application deemed withdrawn after publication