CN106963745A - 一种新型负载大黄素用纳米粒子的制备方法 - Google Patents

一种新型负载大黄素用纳米粒子的制备方法 Download PDF

Info

Publication number
CN106963745A
CN106963745A CN201710133054.9A CN201710133054A CN106963745A CN 106963745 A CN106963745 A CN 106963745A CN 201710133054 A CN201710133054 A CN 201710133054A CN 106963745 A CN106963745 A CN 106963745A
Authority
CN
China
Prior art keywords
intermediate product
nano
pla
mpeg
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710133054.9A
Other languages
English (en)
Inventor
邹川
卢钊宇
吴禹池
刘旭生
林启展
卢富华
吴秀清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Hospital of Traditional Chinese Medicine
Original Assignee
Guangdong Hospital of Traditional Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Hospital of Traditional Chinese Medicine filed Critical Guangdong Hospital of Traditional Chinese Medicine
Priority to CN201710133054.9A priority Critical patent/CN106963745A/zh
Publication of CN106963745A publication Critical patent/CN106963745A/zh
Priority to JP2017182242A priority patent/JP6360243B1/ja
Priority to US15/815,501 priority patent/US10421852B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/40Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds, other than from esters thereof
    • C08G63/42Cyclic ethers; Cyclic carbonates; Cyclic sulfites; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy

Abstract

本发明涉及一种新型负载大黄素用纳米粒子的制备方法,该方法为:一、采用L.A、mPEG和异辛酸亚锡合成第一中间产物;二、第一中间产物、丁二酸酐和4‑二甲氨基吡啶合成第二中间产物;三、第二中间产物、1‑乙基‑(3‑二甲基氨基丙基)碳二亚胺盐酸盐、N‑羟基琥珀酰亚胺和壳聚糖合成第三中间产物;四、第三中间产物和高碘酸钠合成第四中间产物;五、第四中间产物和5‑氨基‑2‑巯基苯并咪唑合成新型巯基纳米粒子。本发明的新型巯基纳米粒子负载大黄素用于肠道给药,可赋予纳米粒子更强的黏附性能,达到延长药物在黏膜上的滞留时间,有利于药物分子的缓释。克服了药物在肠道停留时间短的缺点,载药后包封率≥83.6%,载药量≥3.89%,具有良好的水溶性和生物降解性。

Description

一种新型负载大黄素用纳米粒子的制备方法
技术领域
本发明属于生物黏附性药物载体的技术领域,具体涉及一种新型负载大黄素用纳米粒子的制备方法。
背景技术
壳聚糖(Chitosan,CS)又名2-氨基-2-脱氧-β-D-葡糖,是甲壳素(2-乙酸氨基-2-脱氧-β-D-葡糖)脱乙酰化的产物。甲壳素又名蟹壳素、甲壳质、几丁质和壳多糖等,是一种天然的线性多糖,是甲壳纲动物外壳的重要成分,也存在于低等植物如菌、藻类的细胞壁中。由于壳聚糖无毒,且具有优良的生物相容性,在生物体内易降解等特点,被广泛应用于医用辅料领域,壳聚糖能与黏膜蛋白形成氢键和静电作用,具有良好的生物黏附性能,但这种基于非共价键的黏附作用不保证药物在指定部位的持续释放,限制了壳聚糖的应用,而壳聚糖经巯基化后,黏附性能显著提高,这是因为硫化聚合物(thiomers)能够与黏膜层形成二硫键,与黏蛋白中半胱氨酸丰富的亚区发生特异性结合。
然而巯基化聚合物到目前为止作为疏水性药物载体应用并不理想,这是由于巯基化聚合物与疏水药物分子作用很弱,常常导致药物释放、快、不持续释放、包封率较差现象。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种新型负载大黄素用纳米粒子的制备方法,该新型巯基化纳米粒子通过分步合成的方法合成巯基化mPEG-PLA-CS-MBI纳米粒子,合成过程中最后亲水性聚乙二醇单甲醚(mPEG)与聚乳酸(PLA)和壳聚糖(CS)形成mPEG-PLA-CS聚合物,并在此基础上通过5-氨基-2-巯基苯并咪唑(MBI)使聚合物巯基化,最终形成巯基聚合物(mPEG-PLA-CS-MBI)。该巯基聚合物(mPEG-PLA-CS-MBI)可负载疏水性药物如大黄素等用作缓释药物。巯基聚合物通过巯基氧化形成二硫键粘附于黏膜表面,赋予纳米粒子更强的黏附性能,达到延长药物在黏膜上的滞留时间,有利于药物分子的缓释。同时,改性后壳聚糖与药物结合形成纳米复合物后,mPEG可在复合物表面形成核-壳结构胶束,保护纳米复合物不被网状内皮系统(RES系统)识别和清除,使得所制得的粒子具有表面稳定作用,能促进复合物粒子在体内的长循环目的。
为解决上述技术问题,本发明采用的技术方案是:一种新型负载大黄素用纳米粒子的制备方法,其特征在于,该方法包括以下步骤:
步骤一:将5g~20g左旋丙交酯、2g~10g聚乙二醇单甲醚和0.2g~1g异辛酸亚锡溶解于20mL二氯甲烷中,在130℃的条件反应18h后置于冰乙醚中沉淀3次,再在40℃的真空条件下干燥3天,得到第一中间产物mPEG-PLA-OH;
步骤二:将10g步骤一中制备的第一中间产物mPEG-PLA-OH、2g丁二酸酐和1.2g 4-二甲氨基吡啶溶于100mL氯仿中,搅拌均匀后加入2mL三乙胺,在室温条件下反应3天,然后置于乙醚中沉淀3次,经过滤得到滤渣,再将所述滤渣在40℃的真空条件下干燥3天,最后得到第二中间产物mPEG-PLA-COOH;
步骤三:将2.5g步骤二中制备的第二中间产物mPEG-PLA-COOH溶于40mL的二氯甲烷中,再加入0.7g 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和0.7g N-羟基琥珀酰亚胺,在室温条件下反应24h,旋蒸后溶于二甲基亚砜溶液中,再加入到添加有壳聚糖的60mL二甲基亚砜中反应24h,透析3天,冷冻干燥,得到第三中间产物mPEG-PLA-CS;所述壳聚糖的添加量为0.1g~1g,脱乙酰度为85%;
步骤四:将0.5g步骤三中制备的第三中间产物mPEG-PLA-CS溶于140mL水中,再加入0.3g高碘酸钠溶液,室温孵化2h后,加入300μL的乙二醇,在室温条件下反应2h,透析3天,冷冻干燥,得到第四中间产物mPEG-PLA-CS-CHO,并在4℃下保存;所述高碘酸钠溶液的浓度是2.14g/L;
步骤五:将0.2g~1g 5-氨基-2-巯基苯并咪唑和0.2g步骤四中制备的第四中间产物mPEG-PLA-CS-CHO溶于在40mL二甲基亚砜溶液中,并在室温条件下孵化2h,然后加入0.2g~2g的氰基硼氢化钠,再在室温条件下反应24h~72h,透析3天,冷冻干燥,得到用于负载大黄素的巯基化mPEG-PLA-CS-MBI纳米粒子,并在4℃下保存;
步骤三中所述二甲基亚砜溶液和步骤五中所述二甲基亚砜溶液均由二甲基亚砜和水按照1:1的体积比混合而成。
上述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤一中所述聚乙二醇单甲醚的平均分子量为1000~4000。
上述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤一中所述左旋丙交酯的质量为14.4g,聚乙二醇单甲醚的质量为7.6g,异辛酸亚锡的质量为0.2g。
上述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤三中所述壳聚糖的添加量为0.5g。
上述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤五中所述5-氨基-2-巯基苯并咪唑质量为0.5g。
上述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤五中所述氰基硼氢化钠的加入质量为0.2g。
上述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤五中所述反应的时间为48h。
本发明与现有技术相比具有以下优点:
1、本发明通过分步骤合成的方法合成巯基化mPEG-PLA-CS-MBI纳米粒子,合成过程中最后亲水性聚乙二醇单甲醚(mPEG)与聚乳酸(PLA)和壳聚糖(CS)形成mPEG-PLA-CS聚合物,并在此基础上通过5-氨基-2-巯基苯并咪唑(MBI)使聚合物巯基化,最终形成巯基聚合物(mPEG-PLA-CS-MBI)。巯基聚合物通过巯基氧化形成二硫键粘附于黏膜表面,赋予新型巯基化纳米粒子更强的黏附性能,达到延长药物在黏膜上的滞留时间,有利于药物分子的缓释。同时,改性后壳聚糖与药物结合形成纳米复合物后,聚乙二醇单甲醚可在复合物表面形成核-壳结构胶束,保护纳米复合物不被网状内皮系统(RES系统)识别和清除,使得所制得的新型巯基化纳米粒子具有表面稳定作用,能促进复合物粒子在生物体内长循环目的。
2、采用本发明制备的巯基化纳米粒子负载大黄素后的药物包封率不小于83.6%,载药量不小于3.89%,并且具有良好的水溶性和生物降解性。
3、本发明制备的巯基化mPEG-PLA-CS-MBI纳米粒子不仅限于用于负载大黄素,还可应用于负载类似于大黄素的疏水性药物,用作缓释药物的载体。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例1中制备的巯基化mPEG-PLA-CS-MBI纳米粒子的HNMR谱图。
图2为本发明实施例1中制备的巯基化mPEG-PLA-CS-MBI纳米粒子的共轭红外谱图。
图3为本发明实施例1中制备的巯基化mPEG-PLA-CS-MBI纳米粒子在负载大黄素前后的红外谱图。
具体实施方式
实施例1
步骤一、将14.4g左旋丙交酯(L.A)、7.6g聚乙二醇单甲醚(mPEG)和0.2g异辛酸亚锡溶解于20mL二氯甲烷,在130℃反应18h后于冰乙醚中沉淀3次,40℃真空干燥3天,获得第一中间产物mPEG-PLA-OH;
步骤二、将10g步骤一中制备的第一中间产物mPEG-PLA-OH、2g丁二酸酐和1.2g 4-二甲氨基吡啶溶于100mL氯仿中,均匀后加入2mL三乙胺,室温反应3天,乙醚沉淀3次,过滤,40℃真空干燥3天,获得第二中间产物mPEG-PLA-COOH;
步骤三、将2.5g步骤二中制备的第二中间产物mPEG-PLA-COOH40mL的二氯甲烷溶液与0.7g 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和0.7g N-羟基琥珀酰亚胺,室温反应24h,旋蒸后溶于二甲基亚砜溶液,在加入到含0.5g壳聚糖60mL二甲基亚砜溶剂中,反应24h,透析3天,冷冻干燥获得第三中间产物mPEG-PLA-CS;所述二甲基亚砜溶液均由二甲基亚砜和水按照1:1的体积比混合而成;
步骤四、将0.5g步骤三中制备的第三中间产物mPEG-PLA-CS溶于140mL水中,加入0.3g的高碘酸钠(NaIO4)溶液,室温孵化2h,加入300μL的乙二醇,室温反应2h,透析3天,冷冻干燥,获得第四中间产物mPEG-PLA-CS-CHO,在4℃下保存;所述高碘酸钠溶液的浓度是2.14g/L;
步骤五、将0.5g 5-氨基-2-巯基苯并咪唑(MBI)与0.2g步骤四中制备的第四中间产物mPEG-PLA-CS-CHO在40mL二甲基亚砜溶液中混合均匀,所述二甲基亚砜溶液均由二甲基亚砜和水按照1:1的体积比混合而成,2h室温孵化后,加入0.2g的NaCNBH3,室温反应48h。透析3天,冷冻干燥得到巯基化mPEG-PLA-CS-MBI纳米粒子,在4℃下保存。
将本实施例制备的mPEG-PLA-CS-MBI纳米粒子分散于去离子水中,能够完全分散,加入溶有质量含量为40%的大黄素药物的乙醇溶液,超声处理,然后进行磁力搅拌处理,将搅拌后的混合液在8000rpm离心处理,最后对负载了药物的巯基化瓜尔胶纳米粒子进行冷冻,得到最终负载药物的纳米靶向缓控释系统。图3为本实施例制备的巯基化mPEG-PLA-CS-MBI纳米粒子在负载大黄素前后的红外谱图,从图中可以看出,在图3中负载大黄素后其在436nm处有吸收,说明成功地将大黄素负载在巯基化mPEG-PLA-CS-MBI纳米粒子上。最后经检测,本实施例制备的巯基化mPEG-PLA-CS-MBI纳米粒子载药后的包封率为91%,载药量5.01%。
图1为本实施例制备的巯基化mPEG-PLA-CS-MBI纳米粒子的HNMR谱图,图2为本实施例制备的巯基化mPEG-PLA-CS-MBI纳米粒子的共轭红外谱图,从图2可以看出,分别在1757cm-1,1190cm-1,1134cm-1,1097cm-1,在1629cm-1为酰胺特征吸收峰,692cm-1,784cm-1存在证明苯环的存在,与图1的HNMR图谱中化学位移在7.08ppm,7.5ppm对应;1458cm-1,1361cm-1属于为-CH3变形震动吸收峰,2883cm-1,2949cm-1为-CH2-反伸缩振动吸收峰,在3444cm-1处存在一个较强的吸收峰,为NH的特征伸缩振动吸收峰,且只有一个为仲胺,吸收峰较强,在1045cm-1处为伯醇的特征吸收峰。化学位移在3.65ppm,5.2ppm分别对应聚乙二醇和聚乳酸上氢的位置,进一步证明改性成功。
本实施例的制备过程中亲水性聚乙二醇单甲醚(mPEG)与聚乳酸(PLA)形成mPEG-PLA-CS聚合物,在此基础上通过5-氨基-2-巯基苯并咪唑(MBI)使聚合物巯基化,最终形成巯基聚合物(mPEG-PLA-CS-MBI)。巯基聚合物通过巯基氧化形成二硫键粘附于黏膜表面,达到延长药物在黏膜上的滞留时间,有利于药物分子的吸收,赋予制备的巯基化mPEG-PLA-CS-MBI纳米粒子更强的黏附性能。同时,改性后壳聚糖与药物结合形成纳米复合物后,聚乙二醇单甲醚可在复合物表面形成核-壳结构胶束,保护纳米复合物不被网状内皮系统(RES系统)识别和清除,使得所制得的制备的巯基化mPEG-PLA-CS-MBI纳米粒子具有表面稳定作用,能促进复合物粒子在生物体内长循环目的。
实施例2
步骤一、将5g左旋丙交酯(L.A)、2g聚乙二醇单甲醚(mPEG)和0.6g异辛酸亚锡溶解于20mL二氯甲烷,在130℃反应18h后于冰乙醚中沉淀3次,40℃真空干燥3天,得到第一中间产物mPEG-PLA-OH;
步骤二:将10g步骤一中制备的第一中间产物mPEG-PLA-OH、2g丁二酸酐和1.2g 4-二甲氨基吡啶溶于100mL氯仿中,均匀后加入2mL三乙胺,室温反应3天,乙醚沉淀3次,过滤,40℃真空干燥3天,获得第二中间产物mPEG-PLA-COOH;
步骤三、将2.5g步骤二中制备的第二中间产物mPEG-PLA-COOH40mL的二氯甲烷溶液与0.7g 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和0.7g N-羟基琥珀酰亚胺,室温反应24h,旋蒸后溶于二甲基亚砜溶液,在加入到含0.5g壳聚糖60mL二甲基亚砜溶剂中,反应24h,透析3天,冷冻干燥获得第三中间产物mPEG-PLA-CS;所述二甲基亚砜溶液均由二甲基亚砜和水按照1:1的体积比混合而成;
步骤四、将0.5g步骤三中制备的第三中间产物mPEG-PLA-CS溶于140mL水中,加入0.3g的高碘酸钠(NaIO4)溶液,室温孵化2h,加入300μL的乙二醇,室温反应2h,透析3天,冷冻干燥,获得第四中间产物mPEG-PLA-CS-CHO,在4℃下保存;所述高碘酸钠溶液的浓度是2.14g/L;
步骤五、将0.2g 5-氨基-2-巯基苯并咪唑(MBI)与0.2g步骤四中制备的第四中间产物mPEG-PLA-CS-CHO在40mL二甲基亚砜溶液中混合均匀,2h室温孵化后,加入0.5g的NaCNBH3,室温反应24h。透析3天,冷冻干燥得到巯基化mPEG-PLA-CS-MBI纳米粒子,在4℃下保存,所述二甲基亚砜溶液均由二甲基亚砜和水按照1:1的体积比混合而成。
将本实施例制备的mPEG-PLA-CS-MBI纳米粒子分散于去离子水中,能够完全分散,加入溶有大黄素药物的40%乙醇溶液,超声处理,然后进行磁力搅拌处理,将搅拌后的混合液在8000rpm离心处理,最后对负载了药物的巯基化瓜尔胶纳米粒子进行冷冻,得到最终负载药物的纳米靶向缓控释系统。经检测,本实施例制备的巯基化mPEG-PLA-CS-MBI纳米粒子载药后的包封率为86.3%,载药量4.11%。
实施例3
步骤一、将20g左旋丙交酯(L.A)、10g聚乙二醇单甲醚(mPEG)和1g异辛酸亚锡溶解于20mL二氯甲烷,在130℃反应18h后于冰乙醚中沉淀3次,40℃真空干燥3天,获得第一中间产物mPEG-PLA-OH;
步骤二、将10g步骤一中制备的第一中间产物mPEG-PLA-OH、2g丁二酸酐和1.2g 4-二甲氨基吡啶溶于100mL氯仿中,均匀后加入2mL三乙胺,室温反应3天,乙醚沉淀3次,过滤,40℃真空干燥3天,获得第二中间产物mPEG-PLA-COOH;
步骤三、将2.5g步骤二中制备的第二中间产物mPEG-PLA-COOH40mL的二氯甲烷溶液与0.7g 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和0.7g N-羟基琥珀酰亚胺,室温反应24h,旋蒸后溶于二甲基亚砜溶液,在加入到含0.5g壳聚糖60mL二甲基亚砜溶剂中,反应24h,透析3天,冷冻干燥获得第三中间产物mPEG-PLA-CS;所述二甲基亚砜溶液均由二甲基亚砜和水按照1:1的体积比混合而成;
步骤四、将1g步骤三中制备的第三中间产物mPEG-PLA-CS溶于140mL水中,加入0.3g的高碘酸钠(NaIO4)溶液,室温孵化2h,加入300μL的乙二醇,室温反应2h,透析3天,冷冻干燥,获得第四中间产物mPEG-PLA-CS-CHO,在4℃下保存;所述高碘酸钠溶液的浓度是2.14g/L;
步骤五、将1g 5-氨基-2-巯基苯并咪唑(MBI)与0.2g步骤四中制备的第四中间产物mPEG-PLA-CS-CHO在40mL二甲基亚砜溶液混合均匀,所述二甲基亚砜溶液均由二甲基亚砜和水按照1:1的体积比混合而成,2h室温孵化后,加入2g的NaCNBH3,室温反应72h,透析3天,冷冻干燥得到巯基化mPEG-PLA-CS-MBI纳米粒子,在4℃下保存。
将本实施例制备的mPEG-PLA-CS-MBI纳米粒子分散于去离子水中,能够完全分散,加入溶有大黄素药物的40%乙醇溶液,超声处理,然后进行磁力搅拌处理,将搅拌后的混合液在8000rpm离心处理,最后对负载了药物的巯基化瓜尔胶纳米粒子进行冷冻,得到最终负载药物的纳米靶向缓控释系统。经检测本实施例制备的巯基化mPEG-PLA-CS-MBI纳米粒子载药后的包封率为83.6%,载药量3.89%。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单的修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (7)

1.一种新型负载大黄素用纳米粒子的制备方法,其特征在于,该方法包括以下步骤:
步骤一:将5g~20g左旋丙交酯、2g~10g聚乙二醇单甲醚和0.2g~1g异辛酸亚锡溶解于20mL二氯甲烷中,在130℃的条件反应18h后置于冰乙醚中沉淀3次,再在40℃的真空条件下干燥3天,得到第一中间产物mPEG-PLA-OH;
步骤二:将10g步骤一中制备的第一中间产物mPEG-PLA-OH、2g丁二酸酐和1.2g 4-二甲氨基吡啶溶于100mL氯仿中,搅拌均匀后加入2mL三乙胺,在室温条件下反应3天,然后置于乙醚中沉淀3次,经过滤得到滤渣,再将所述滤渣在40℃的真空条件下干燥3天,最后得到第二中间产物mPEG-PLA-COOH;
步骤三:将2.5g步骤二中制备的第二中间产物mPEG-PLA-COOH溶于40mL的二氯甲烷中,再加入0.7g 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐和0.7g N-羟基琥珀酰亚胺,在室温条件下反应24h,旋蒸后溶于二甲基亚砜溶液中,再加入到添加有壳聚糖的60mL二甲基亚砜中反应24h,透析3天,冷冻干燥,得到第三中间产物mPEG-PLA-CS;所述壳聚糖的添加量为0.1g~1g,脱乙酰度为85%;
步骤四:将0.5g步骤三中制备的第三中间产物mPEG-PLA-CS溶于140mL水中,再加入0.3g高碘酸钠溶液,室温孵化2h后,加入300μL的乙二醇,在室温条件下反应2h,透析3天,冷冻干燥,得到第四中间产物mPEG-PLA-CS-CHO,并在4℃下保存;所述高碘酸钠溶液的浓度是2.14g/L;
步骤五:将0.2g~1g 5-氨基-2-巯基苯并咪唑和0.2g步骤四中制备的第四中间产物mPEG-PLA-CS-CHO溶于在40mL二甲基亚砜溶液中,并在室温条件下孵化2h,然后加入0.2g~2g的氰基硼氢化钠,再在室温条件下反应24h~72h,透析3天,冷冻干燥,得到用于负载大黄素的巯基化mPEG-PLA-CS-MBI纳米粒子,并在4℃下保存;
步骤三中所述二甲基亚砜溶液和步骤五中所述二甲基亚砜溶液均由二甲基亚砜和水按照1:1的体积比混合而成。
2.根据权利要求1所述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤一中所述聚乙二醇单甲醚的平均分子量为1000~4000。
3.根据权利要求1所述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤一中所述左旋丙交酯的质量为14.4g,聚乙二醇单甲醚的质量为7.6g,异辛酸亚锡的质量为0.2g。
4.根据权利要求1所述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤三中所述壳聚糖的添加量为0.5g。
5.根据权利要求1所述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤五中所述5-氨基-2-巯基苯并咪唑质量为0.5g。
6.根据权利要求1所述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤五中所述氰基硼氢化钠的加入质量为0.2g。
7.根据权利要求1所述一种新型负载大黄素用纳米粒子的制备方法,其特征在于,步骤五中所述反应的时间为48h。
CN201710133054.9A 2017-03-08 2017-03-08 一种新型负载大黄素用纳米粒子的制备方法 Pending CN106963745A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710133054.9A CN106963745A (zh) 2017-03-08 2017-03-08 一种新型负载大黄素用纳米粒子的制备方法
JP2017182242A JP6360243B1 (ja) 2017-03-08 2017-09-22 エモジンを担持するためのナノ粒子の新規な調製方法
US15/815,501 US10421852B2 (en) 2017-03-08 2017-11-16 Preparation method of new-type nanoparticles for loading emodin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710133054.9A CN106963745A (zh) 2017-03-08 2017-03-08 一种新型负载大黄素用纳米粒子的制备方法

Publications (1)

Publication Number Publication Date
CN106963745A true CN106963745A (zh) 2017-07-21

Family

ID=59329268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710133054.9A Pending CN106963745A (zh) 2017-03-08 2017-03-08 一种新型负载大黄素用纳米粒子的制备方法

Country Status (3)

Country Link
US (1) US10421852B2 (zh)
JP (1) JP6360243B1 (zh)
CN (1) CN106963745A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113069552A (zh) * 2021-03-03 2021-07-06 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) 一种纳米粒子及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762170B (zh) * 2019-01-23 2020-03-31 华中科技大学 一种聚磷酸酯聚合物及其制备方法、改性多孔硅纳米粒及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103479573A (zh) * 2013-07-26 2014-01-01 中国科学院长春应用化学研究所 聚乙二醇单甲醚-聚酯两嵌段共聚物胶束及载药胶束的制备方法
CN104892909A (zh) * 2015-06-03 2015-09-09 深圳万乐药业有限公司 一种聚乙二醇单甲醚-聚乳酸嵌段共聚物的制备方法
CN105748417A (zh) * 2016-04-15 2016-07-13 广州创赛生物医用材料有限公司 一种基于瓜尔胶/半胱氨酸偶合物的新型巯基纳米粒子的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936883B (zh) * 2014-03-25 2015-12-30 中国医学科学院生物医学工程研究所 含巯基壳聚糖衍生物及复合物纳米粒子及制备方法
CA2962540A1 (en) * 2014-09-25 2016-03-31 Manu Chaudhary Stealth, targeted nanoparticles (stn) for oral drug delivery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103479573A (zh) * 2013-07-26 2014-01-01 中国科学院长春应用化学研究所 聚乙二醇单甲醚-聚酯两嵌段共聚物胶束及载药胶束的制备方法
CN104892909A (zh) * 2015-06-03 2015-09-09 深圳万乐药业有限公司 一种聚乙二醇单甲醚-聚乳酸嵌段共聚物的制备方法
CN105748417A (zh) * 2016-04-15 2016-07-13 广州创赛生物医用材料有限公司 一种基于瓜尔胶/半胱氨酸偶合物的新型巯基纳米粒子的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LU ET AL.: "Novel Amphiphilic Ternary Polysaccharide Derivates Chitosan-g-PCL-b-MPEG: Synthesis, Characterization, and Aggregation in Aqueous Solution", 《BIOPOLYMERS》 *
MULLIKA ET AL.: "《Design, synthesis, fabrication and in vitro evalution of mucoadhesive 5-amino-2-mercaptobenzimidazole chitosan as low water soluble drug carriers》", 《EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS》 *
陆轶业: "壳聚糖衍生物Chintosan-g-(PCL-b-MPEG)和壳聚糖/海藻酸钠复合物(CS/SA)的研究", 《中国优秀博硕士学位论文全文数据库(硕士)医药卫生科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113069552A (zh) * 2021-03-03 2021-07-06 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) 一种纳米粒子及其应用

Also Published As

Publication number Publication date
US10421852B2 (en) 2019-09-24
JP2018145170A (ja) 2018-09-20
JP6360243B1 (ja) 2018-07-18
US20180258257A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
Bakshi et al. Chitosan as an environment friendly biomaterial–a review on recent modifications and applications
Hu et al. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C
Khan et al. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review
Silva et al. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications
Barikani et al. Preparation and application of chitin and its derivatives: a review
Jia et al. pH-responsive polysaccharide microcapsules through covalent bonding assembly
Li et al. Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application
Jayakumar et al. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications
Sarmento et al. Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics
Dutta et al. Chitin and chitosan: Chemistry, properties and applications
Yao et al. Chitosan-based hydrogels
CN105251013B (zh) 一种具有氧化还原响应性可降解水溶性抗肿瘤聚合物前药及其制备方法
CN103524750B (zh) 聚乙二醇壳聚糖自组装纳米粒的制备方法
JP5521250B2 (ja) グリコールキトサン誘導体、その製造方法、及びこれを含む薬物伝達体
WO2019052321A1 (zh) 一种水溶性壳聚糖抗菌衍生物及其制备方法
CN109796606A (zh) 一种基于多重动态化学键的自愈合水凝胶及其制备方法
CN105001425A (zh) 一种基于壳聚糖-聚乳酸接枝共聚物的制备方法
CN106963745A (zh) 一种新型负载大黄素用纳米粒子的制备方法
Guo et al. Biofunctional chitosan–biopolymer composites for biomedical applications
Elsabee et al. Chemical modifications of chitin and chitosan
Kumar et al. Role of Chitosan and Chitosan-Based Nanomaterials in Plant Sciences
CN104434792A (zh) 聚合物胶束及其制备方法和抗肿瘤药物组合物、制剂及其制备方法
CN104873467B (zh) 一种生物降解型互穿网络聚合物微球的制备方法
JP2008174510A (ja) 多糖質微粒子及び多糖質微粒子の製造方法
Blanco-Fernandez et al. Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170721

WD01 Invention patent application deemed withdrawn after publication