CN106952828A - 一种p型金属氧化物薄膜晶体管的制备方法 - Google Patents

一种p型金属氧化物薄膜晶体管的制备方法 Download PDF

Info

Publication number
CN106952828A
CN106952828A CN201710192433.5A CN201710192433A CN106952828A CN 106952828 A CN106952828 A CN 106952828A CN 201710192433 A CN201710192433 A CN 201710192433A CN 106952828 A CN106952828 A CN 106952828A
Authority
CN
China
Prior art keywords
film transistor
metal oxide
preparation
thin film
type metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710192433.5A
Other languages
English (en)
Inventor
单福凯
刘奥
孟优
朱慧慧
刘国侠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201710192433.5A priority Critical patent/CN106952828A/zh
Publication of CN106952828A publication Critical patent/CN106952828A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • H01L21/441Deposition of conductive or insulating materials for electrodes
    • H01L21/445Deposition of conductive or insulating materials for electrodes from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于薄膜晶体管制备技术领域,涉及一种制备p型金属氧化物薄膜晶体管的方法,用于p型金属氧化物半导体薄膜及p型金属氧化物薄膜晶体管制备场合;解决传统TFT器件载流子迁移率低,能耗高,制备成本昂贵,反应条件苛刻,电容密度小和栅极漏电流大的难题,实现低温低成本制备高性能低能耗的p型金属氧化物薄膜晶体管,制得的产物为Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管;其用低阻硅作为衬底,ZrO2超薄高k介半导体薄膜作栅介电层,采用燃烧合成法极低温下制备p型Cu:NiO薄膜晶体管的沟道层,其工艺简单,原理可靠,节能低耗,成本低廉,产品性能好,能够用于工业化生产,具有良好的经济效益和广阔的市场前景。

Description

一种p型金属氧化物薄膜晶体管的制备方法
技术领域:
本发明属于薄膜晶体管制备技术领域,涉及一种金属氧化物薄膜晶体管的制备方法,尤其是一种p型金属氧化物薄膜晶体管的制备方法,用于p型金属氧化物半导体薄膜及p型金属氧化物薄膜晶体管制备场合。
背景技术:
近年来,金属氧化物薄膜晶体管(Metal-Oxide Thin-Film Transistor,简称MOTFT)在有源矩阵驱动液晶显示器件(Active Matrix Liquid Crystal Display,简称AMLCD)中发挥了重要作用。从低温非晶硅薄膜晶体管到高温多晶硅薄膜晶体管,技术越来越成熟,应用对象也从只能驱动液晶显示器件(Liquid Crystal Display,简称LCD)发展到既可以驱动LCD又可以驱动有机发光显示器(Organic Light Emitting Display,简称OLED),甚至电子纸。薄膜晶体管(简称TFT)已经成为平板显示行业的核心部件,每台显示器都集成了数百万甚至上亿个TFT器件。目前研究与应用最多的金属氧化物材料为ZnO、SnO2和In2O3体系(Nature,432488,2004;Nature Materials,10382,2011)。然而,这些氧化物材料均为n型半导体,极大的限制了互补金属氧化物半导体(Complementary Metal OxideSemiconductor,简称CMOS)器件和数字集成电路的发展。在以往的报道中,为了实现高共模输入范围和高输出电压摆幅的CMOS器件,有机TFT通常被用作其中的p型单元器件(Advanced Materials22 3598,2010)。但是有机TFT的低迁移率和环境不稳定性仍然是目前难以攻克的难关。基于上述原因,发展p型金属氧化物材料及其TFT器件对于大规模CMOS集成电路的发展具有重要的意义。
P型半导体材料主要有CuO、Cu2O、NiO、SnO等金属氧化物,目前鲜有报道涉足以p型氧化物作为TFT沟道层的研究。由于自然界中较少的本征p型半导体材料以及高质量p型氧化物薄膜生长的困难程度。此外,目前p型氧化物薄膜的制备大多基于真空沉积方法(例如磁控溅射、脉冲激光沉积、热蒸发等),这类真空制备工艺需要依托昂贵的设备且难以实现大面积成膜,制约了低成本电子器件的生产。考虑到将来电子器件发展的新方向—“印刷电子器件”,利用成本低廉的化学溶液技术制备p型氧化物薄膜将是一个更好的选择。目前文献报道中有关化学溶液法制备的p型TFT器件均需要苛刻的实验条件:超过250℃的退火温度、超过12小时的退火周期和复杂的制备过程。其较高的退火温度限制了绝大多数的柔性衬底,不利于柔性p型电子器件的发展。此外我们发现目前利用化学溶液法制备的p型TFT器件的栅介电层材料均采用传统热氧化的SiO2。随着大规模集成电路的发展,作为硅基集成电路核心器件的TFT的特征尺寸一直不断减小。当超大规模集成电路的特征尺寸小于0.1μm时,SiO2介电层的厚度必须小于1.5nm,因此很难控制SiO2薄膜的针孔密度,从而导致较大的漏电流。研究表明SiO2厚度由3.5nm减至1.5nm时栅极漏电流由10-12A/cm2增大到10A/cm2(IEEE Electron Device Letters,18 209,1997)。较大的漏电流会引起高功耗及相应的散热问题,这对于器件集成度、可靠性和寿命都造成不利的影响。目前,在集成电路工艺中广泛采用高介电常数(高k)栅介电材料来增大电容密度和减少栅极漏电流,高k材料因其较大的介电常数,在与SiO2具有相同等效栅氧化层厚度(EOT)的情况下,其实际厚度比SiO2大的多,从而解决了SiO2因接近物理厚度极限而产生的量子遂穿效应(Journal of AppliedPhysics,89 5243,2001)。因此制备新型、高性能高k材料替代SiO2作为栅介电材料成为实现大规模集成电路的首要任务。
发明内容:
本发明的目的在于克服现有技术存在的不足,寻求设计一种p型金属氧化物薄膜晶体管的制备方法,解决传统TFT器件载流子迁移率低,能耗高,制备成本昂贵,反应条件苛刻,电容密度小和栅极漏电流大的难题,实现低温低成本制备高性能低能耗的p型金属氧化物薄膜晶体管,制得的产物为Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管。
为了实现上述目的,本发明涉及的p型金属氧化物薄膜晶体管的制备方法以乙二醇甲醚作为溶剂、乙酰丙酮作为燃烧剂,采用“燃烧合成”技术在极低温下制备p型氧化铜掺杂氧化镍Cu:NiO半导体薄膜,并进一步制备成Cu:NiO薄膜晶体管的沟道层,用低阻硅作为衬底,用ZrO2超薄高k介质薄膜替代传统的SiO2栅介电层,制备成p型金属氧化物薄膜晶体管,具体工艺步骤为:
(1)清洗衬底:首先选取电阻率为0.0015Ω·cm的低阻硅作为衬底,并依次用丙酮和无水乙醇超声波清洗衬底各10min,用去离子水冲洗3-5次,再用纯度为99.99%的氮气吹干备用;
(2)溶胶-凝胶法制备栅介电层:接着将0.01-0.5mol/L的乙酰丙酮锆Zr(C5H7O2)4溶于二甲基甲酰胺中,同时加入与乙酰丙酮锆等摩尔量的乙醇胺作为稳定剂,乙醇胺与二甲基甲酰胺的体积比为1:1-10,在20-100℃下磁力搅拌1-24小时形成澄清透明的栅介电层前驱体溶液,其中,锆离子[Zr4+]的摩尔浓度为0-0.9mol/L;再将步骤(1)处理完毕的低阻硅衬底放入等离子体清洗腔内,并将清洗腔内压力抽取至0.5Pa后通入30SCCM且纯度为99.99%的氧气,控制功率为35Watt,清洗时间为10min;接着利用常规的溶胶-凝胶技术旋涂栅介电层前驱体溶液在低阻硅衬底上,旋涂1-5次后低阻硅衬底表面形成薄膜,旋涂时先在400-600转/分转速下旋涂4-8秒,然后在3000-6000转/分转速下旋涂15-25秒,每增加一次旋涂薄膜厚度增加5-20nm;然后将薄膜放到高压汞灯下进行紫外光照处理20-40分钟,实现光解和固化后得到ZrOx栅介电层薄膜半成品,其中x取值范围为1-2;再放到烤胶台上200℃退火2h,制得均匀连续的ZrO2栅介电层薄膜成品,完成栅介电层薄膜的制备;
(3)采用燃烧合成法制备沟道层:然后称量15mL的乙二醇甲醚作为溶剂,称量适量纯度均大于98%的硝酸铜Cu(NO3)2·H2O和硝酸镍Ni(NO3)2·H2O加入溶剂中,其中,金属阳离子总量为0.01-0.5mol/L,Cu和Ni离子原子比为0到1:5;Cu的掺杂浓度分别为0-10%;在20-90℃条件下磁力搅拌1-24h形成澄清的溶液;然后加入0.146g的乙酰丙酮作为燃烧剂,放置于50℃水浴中反应1小时,完成沟道层前驱体溶液的配制;将配制的沟道层前驱体溶液旋涂在步骤(2)制得的ZrO2栅介电层薄膜成品上,旋涂次数为1-5次,每增加一次旋涂薄膜厚度增加5-20nm,旋涂时先在400-600转/分转速下匀胶4-8秒,然后在3000-7000转/分转速下匀胶15-45秒,旋涂结束后将制得Cu:NiO半导体薄膜半成品放到烤胶台上,130-250℃条件下退火2-4小时,制得均匀连续的Cu:NiO半导体薄膜成品,完成沟道层薄膜的制备;
(4)热蒸发法制备源、漏电极:最后通过热蒸发的方式,在步骤(3)制得的沟道层薄膜上用宽长比为1000/100μm的不锈钢掩膜版制备厚度为80-120nm的金属Ni作为源、漏电极,制得Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管,完成p型金属氧化物薄膜晶体管的制备。
制得的Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管的载流子迁移率为1.7cm2/V s,操作电压小于3V,有效降低了器件能耗。
本发明涉及的p型金属氧化物薄膜晶体管的制备方法的工作原理为:首先利用“溶胶凝胶法”制备超薄氧化锆(ZrO2)高k介电薄膜代替传统SiO2作为p型TFT器件的栅介电层;然后采用燃烧合成法制备沟道层,前驱体溶液中硝酸盐和乙酰丙酮燃烧合成具有很大的化学能,在低温下即可触发放出大量的热能,有效避免了溶胶薄膜对外界热能需要且降低了薄膜退火温度;最后通过热蒸发法制备源、漏电极,完成基于高k介电层的低温p型Cu:NiO/ZrO2薄膜晶体管的制备,制得的产物具有低的操作电压,优异的电学性能,为低功耗、高性能CMOS器件的发展奠定良好的科学基础。
本发明与现有技术相比,一是采用“溶胶凝胶法”制备ZrO2栅介电层薄膜代替传统SiO2,能够增大电容密度和减少栅极漏电流,解决了SiO2因接近物理厚度极限而产生的量子遂穿效应的难题;同时,能够满足未来“印刷电子器件”的要求;二是采用“燃烧合成”技术,在空气环境下配制金属氧化物半导体薄膜的前驱体溶液;在150℃极低温条件下制备金属氧化物半导体薄膜,比目前文献报道的最低值温度还要低100℃,满足绝大多数柔性衬底的要求;四是制得的Cu:NiO/ZrO2TFT器件具有低的操作电压,优异的电学性能;另外,其制备工艺不依赖昂贵的真空镀膜设备,能够有效降低制备成本,因此,在低能耗电子显示、CMOS集成领域具有有广阔的应用前景,其工艺简单,原理可靠,节能环保,制备成本低廉,产品性能好,,能够用于工业化生产,具有良好的经济效益和广阔的市场前景。
附图说明:
图1为本发明涉及的p型金属氧化物薄膜晶体管的制备方法的流程框图。
图2为本发明涉及的p型金属氧化物薄膜晶体管的主体结构原理示意图。
图3为以乙酰丙酮为燃烧剂的Cu:NiO干胶的热重曲线。
图4为本发明制备的Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管的转移特性曲线图,其中,4条转移曲线分别为Cu掺杂浓度为0%,2%,5%,10%的曲线。
图5为未添加乙酰丙酮燃烧剂的Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管的转移特性曲线图,其中,3条转移曲线分别为150℃、250℃和350℃时的退火温度。
具体实施方式:
下面通过具体实施例并结合附图作进一步说明。
实施例:
本实施例涉及的p型金属氧化物薄膜晶体管的制备方法如图1所示,具体包括以下工艺步骤:
(1)清洗衬底:首先选取电阻率为0.0015Ω·cm的低阻硅作为衬底,并依次用丙酮和无水乙醇超声波清洗衬底各10min,用去离子水冲洗3-5次,再用纯度为99.99%的氮气吹干备用;
(2)溶胶-凝胶法制备栅介电层:接着将0.01-0.5mol/L的乙酰丙酮锆Zr(C5H7O2)4溶于二甲基甲酰胺中,同时加入与乙酰丙酮锆等摩尔量的乙醇胺作为稳定剂,乙醇胺与二甲基甲酰胺的体积比为1:1-10,在20-100℃下磁力搅拌1-24小时形成澄清透明的栅介电层前驱体溶液,其中,锆离子[Zr4+]的摩尔浓度为0-0.9mol/L;再将步骤(1)处理完毕的低阻硅衬底放入等离子体清洗腔内,并将清洗腔内压力抽取至0.5Pa后通入30SCCM且纯度为99.99%的氧气,控制功率为35Watt,清洗时间为10min;接着利用常规的溶胶-凝胶技术旋涂栅介电层前驱体溶液在低阻硅衬底上,旋涂1-5次后低阻硅衬底表面形成薄膜,旋涂时先在400-600转/分转速下旋涂4-8秒,然后在3000-6000转/分转速下旋涂15-25秒,每增加一次旋涂薄膜厚度增加5-20nm;然后将薄膜放到高压汞灯下进行紫外光照处理20-40分钟,实现光解和固化后得到ZrOx栅介电层薄膜半成品,其中x取值范围为1-2;再放到烤胶台上200℃退火2h,制得均匀连续的ZrO2栅介电层薄膜成品,完成ZrO2栅介电层薄膜的制备;
(3)采用燃烧合成法制备沟道层:然后称量15mL的乙二醇甲醚作为溶剂,称量适量硝酸铜Cu(NO3)2·H2O和硝酸镍Ni(NO3)2·H2O加入溶剂中,其中,Cu和Ni离子原子比为0到1:5,金属阳离子总量为0.01-0.5mol/L,硝酸铜和硝酸镍均购于Aldrich公司,硝酸铜和硝酸镍纯度均大于98%;在20-90℃条件下磁力搅拌1-24h形成澄清的溶液;然后加入0.146g的乙酰丙酮作为燃烧剂,放置于50℃水浴中反应1小时,完成沟道层前驱体溶液的配制;其中,硝酸铜和硝酸镍的称量质量分别为:0.4365g,0g;0.415g,0.007g;0.383g,0.012g;0.362g,0.019g;这4种条件下Cu的掺杂浓度分别为0%,2%,5%,10%;将配制的沟道层前驱体溶液旋涂在步骤(2)制得的ZrO2栅介电层薄膜成品上,旋涂次数为1-5次,每增加一次旋涂薄膜厚度增加5-20nm,旋涂时先在400-600转/分转速下匀胶4-8秒,然后在3000-7000转/分转速下匀胶15-45秒,旋涂结束后将制得的Cu:NiO沟道层半导体薄膜半成品放到烤胶台上130-250℃退火2-4小时,制得p型Cu:NiO沟道层半导体薄膜成品,完成p型Cu:NiO沟道层半导体薄膜的制备;制得的Cu:NiO半导体薄膜能够用作p型金属氧化物薄膜晶体管的沟道层;
(4)热蒸发法制备源、漏电极:最后通过热蒸发的方式,在Cu:NiO沟道层半导体薄膜上用宽长比为1000/100μm的不锈钢掩膜版制备80-120nm厚的金属Ni作为源、漏电极,制备得到Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管。
制得的Cu:NiO/ZrOx结构的TFT器件不仅具有较高的载流子迁移率为1.7cm2/V s,而且具有小于3V的操作电压,有效降低了器件能耗。
对制得的p型金属氧化物薄膜晶体管进行测试,图2为主体结构原理示意图;图3为以乙酰丙酮为燃烧剂的Cu:NiO干胶的热重曲线,由图3可知,该前驱体材料具有极低的热分解温度为130℃;图4为不同Cu掺杂比例的Ni/Cu:NiO/ZrO2/Si结构TFT的转移特性曲线,其中所有器件的热退火温度为150℃,由图4可知,随着Cu的掺杂量的提高,器件的开态电流逐渐提高,这表明器件的电流调制能力得到提高;图5为Cu掺杂浓度为5%的Ni/Cu:NiO/ZrO2/Si薄膜晶体管在不同退火温度的转移特性曲线,该组实验未添加乙酰丙酮燃烧剂,由图5可知,添加燃烧剂的器件的电学性质随着退火温度的提高而得到改善,其中,器件的电学性质在350℃的退火条件下最佳,与添加燃烧剂的器件如图4所示在150℃退火条件下的电学性质相当;测试结果均由吉时利2634B半导体源表测试得到。

Claims (4)

1.一种p型金属氧化物薄膜晶体管的制备方法,其特征在于具体工艺步骤为:
(1)清洗衬底:首先选取电阻率为0.0015Ω·cm的低阻硅作为衬底,并依次用丙酮和无水乙醇超声波清洗衬底各10min,用去离子水冲洗3-5次,再用纯度为99.99%的氮气吹干备用;
(2)溶胶-凝胶法制备栅介电层:接着将0.01-0.5mol/L的乙酰丙酮锆Zr(C5H7O2)4溶于二甲基甲酰胺中,同时加入与乙酰丙酮锆等摩尔量的乙醇胺作为稳定剂,乙醇胺与二甲基甲酰胺的体积比为1:1-10,在20-100℃下磁力搅拌1-24小时形成澄清透明的栅介电层前驱体溶液,其中,锆离子[Zr4+]的摩尔浓度为0-0.9mol/L;再将步骤(1)处理完毕的低阻硅衬底放入等离子体清洗腔内,并将清洗腔内压力抽取至0.5Pa后通入30SCCM且纯度为99.99%的氧气,控制功率为35Watt,清洗时间为10min;接着利用常规的溶胶-凝胶技术旋涂栅介电层前驱体溶液在低阻硅衬底上,旋涂1-5次后低阻硅衬底表面形成薄膜,旋涂时先在400-600转/分转速下旋涂4-8秒,然后在3000-6000转/分转速下旋涂15-25秒,每增加一次旋涂薄膜厚度增加5-20nm;然后将薄膜放到高压汞灯下进行紫外光照处理20-40分钟,实现光解和固化后得到ZrOx栅介电层薄膜半成品,其中x取值范围为1-2;再放到烤胶台上200℃退火2h,制得均匀连续的ZrO2栅介电层薄膜成品,完成栅介电层薄膜的制备;
(3)采用燃烧合成法制备沟道层:然后称量15mL的乙二醇甲醚作为溶剂,称量适量纯度均大于98%的硝酸铜Cu(NO3)2·H2O和硝酸镍Ni(NO3)2·H2O加入溶剂中,其中,金属阳离子总量为0.01-0.5mol/L,Cu和Ni离子原子比为0到1:5;Cu的掺杂浓度分别为0-10%;在20-90℃条件下磁力搅拌1-24h形成澄清的溶液;然后加入0.146g的乙酰丙酮作为燃烧剂,放置于50℃水浴中反应1小时,完成沟道层前驱体溶液的配制;将配制的沟道层前驱体溶液旋涂在步骤(2)制得的ZrO2栅介电层薄膜成品上,旋涂次数为1-5次,每增加一次旋涂薄膜厚度增加5-20nm,旋涂时先在400-600转/分转速下匀胶4-8秒,然后在3000-7000转/分转速下匀胶15-45秒,旋涂结束后将制得Cu:NiO半导体薄膜半成品放到烤胶台上,130-250℃条件下退火2-4小时,制得均匀连续的Cu:NiO半导体薄膜成品,完成沟道层薄膜的制备;
(4)热蒸发法制备源、漏电极:最后通过热蒸发的方式,在步骤(3)制得的沟道层薄膜上用宽长比为1000/100μm的不锈钢掩膜版制备厚度为80-120nm的金属Ni作为源、漏电极,制得Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管,完成p型金属氧化物薄膜晶体管的制备。
2.如权利要求1所述的p型金属氧化物薄膜晶体管的制备方法,其特征在于采用该方法制得的Ni/Cu:NiO/ZrO2/Si结构的薄膜晶体管,其载流子迁移率为1.7cm2/V s,操作电压小于3V。
3.如权利要求1所述的p型金属氧化物薄膜晶体管的制备方法,其特征在于采用该方法制得的p型金属氧化物半导体薄膜的具体工艺步骤为:首先称量15mL的乙二醇甲醚作为溶剂,称量适量纯度均大于98%的硝酸铜Cu(NO3)2·H2O和硝酸镍Ni(NO3)2·H2O加入溶剂中,其中,金属阳离子总量为0.01-0.5mol/L,Cu和Ni离子原子比为0-1:5,Cu的掺杂浓度分别为0-10%;;在20-90℃条件下磁力搅拌1-24h形成澄清的溶液;然后加入0.146g的乙酰丙酮作为燃烧剂,放置于50℃水浴中反应1小时,完成前驱体溶液的配制;并将配制完成的前驱体溶液旋涂在栅介电层薄膜上,旋涂次数为1-5次,每增加一次旋涂薄膜厚度增加5-20nm,旋涂时先在400-600转/分转速下匀胶4-8秒,然后在3000-7000转/分转速下匀胶15-45秒,旋涂结束后将制得的Cu:NiO半导体薄膜半成品放到烤胶台上130-250℃退火2-4小时,制得Cu:NiO半导体薄膜成品,完成p型金属氧化物半导体薄膜的制备。
4.如权利要求3所述的p型金属氧化物薄膜晶体管的制备方法,其特征在于采用该方法制得的Cu:NiO半导体薄膜能够用作p型金属氧化物薄膜晶体管的沟道层。
CN201710192433.5A 2017-03-28 2017-03-28 一种p型金属氧化物薄膜晶体管的制备方法 Pending CN106952828A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710192433.5A CN106952828A (zh) 2017-03-28 2017-03-28 一种p型金属氧化物薄膜晶体管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710192433.5A CN106952828A (zh) 2017-03-28 2017-03-28 一种p型金属氧化物薄膜晶体管的制备方法

Publications (1)

Publication Number Publication Date
CN106952828A true CN106952828A (zh) 2017-07-14

Family

ID=59473934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710192433.5A Pending CN106952828A (zh) 2017-03-28 2017-03-28 一种p型金属氧化物薄膜晶体管的制备方法

Country Status (1)

Country Link
CN (1) CN106952828A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346703A (zh) * 2018-01-26 2018-07-31 华南理工大学 一种提高溶液法氧化物绝缘层tft偏压稳定性的方法
JP2019192871A (ja) * 2018-04-27 2019-10-31 株式会社タムラ製作所 pチャンネル電界効果トランジスタ及び増幅回路用半導体素子
CN111171625A (zh) * 2020-01-06 2020-05-19 上海大学 一种墨水的快速制备方法、薄膜的制备方法和氧化物薄膜晶体管的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223231A (ja) * 2004-02-09 2005-08-18 Kojundo Chem Lab Co Ltd 金属酸化物半導体薄膜の製造方法および金属酸化物半導体薄膜
CN100376482C (zh) * 2006-03-30 2008-03-26 上海工程技术大学 制备纳米铜镍复合氧化物的方法
JP2013133263A (ja) * 2011-12-27 2013-07-08 Panasonic Corp フェライト磁性材料及びその製造方法、それを用いたフェライト焼成体並びにアンテナモジュール
CN103928350A (zh) * 2014-04-24 2014-07-16 青岛大学 一种双沟道层薄膜晶体管的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223231A (ja) * 2004-02-09 2005-08-18 Kojundo Chem Lab Co Ltd 金属酸化物半導体薄膜の製造方法および金属酸化物半導体薄膜
CN100376482C (zh) * 2006-03-30 2008-03-26 上海工程技术大学 制备纳米铜镍复合氧化物的方法
JP2013133263A (ja) * 2011-12-27 2013-07-08 Panasonic Corp フェライト磁性材料及びその製造方法、それを用いたフェライト焼成体並びにアンテナモジュール
CN103928350A (zh) * 2014-04-24 2014-07-16 青岛大学 一种双沟道层薄膜晶体管的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAE WOONG JUNG等: "《A Low-Temperature,Solution-Processable,Cu-Doped Nickel Oxide Hole-Transporting Layer via Combustion Method for High-Performance Thin-Film Perovskite Solar Cells》", 《ADVANCED MATERIALS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346703A (zh) * 2018-01-26 2018-07-31 华南理工大学 一种提高溶液法氧化物绝缘层tft偏压稳定性的方法
JP2019192871A (ja) * 2018-04-27 2019-10-31 株式会社タムラ製作所 pチャンネル電界効果トランジスタ及び増幅回路用半導体素子
JP6997990B2 (ja) 2018-04-27 2022-01-18 株式会社タムラ製作所 pチャンネル電界効果トランジスタ及び増幅回路用半導体素子
CN111171625A (zh) * 2020-01-06 2020-05-19 上海大学 一种墨水的快速制备方法、薄膜的制备方法和氧化物薄膜晶体管的制备方法

Similar Documents

Publication Publication Date Title
CN105489486B (zh) 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN104009093B (zh) 一种高k介电层水性氧化铟薄膜晶体管的制备方法
CN105428247B (zh) 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
CN108063186A (zh) 锌掺杂氧化镍空穴传输层反置钙钛矿太阳能电池及制备方法
CN106952828A (zh) 一种p型金属氧化物薄膜晶体管的制备方法
CN104465844B (zh) 一种MoS2/Si p‑n结太阳能电池器件及其制备方法
CN107946176B (zh) Ga2O3薄膜晶体管的制备方法
CN104201112A (zh) 一种基于水溶液薄膜晶体管的制备方法
CN103928350B (zh) 一种双沟道层薄膜晶体管的制备方法
CN108735821B (zh) 一种镨铟锌氧化物薄膜晶体管及其制备方法
Wang et al. Solution-driven HfLaO x-based gate dielectrics for thin film transistors and unipolar inverters
CN103117226A (zh) 一种合金氧化物薄膜晶体管的制备方法
Shao et al. Large-area (64× 64 array) inkjet-printed high-performance metal oxide bilayer heterojunction thin film transistors and n-metal-oxide-semiconductor (NMOS) inverters
CN103022077B (zh) 一种含氧化物薄膜晶体管的oled装置
CN104362186A (zh) 一种应用于高效薄膜光电池的双层结构窗口层
Kim et al. Viable strategy to minimize trap states of patterned oxide thin films for both exceptional electrical performance and uniformity in sol–gel processed transistors
Zhu et al. Water-derived all-oxide thin-film transistors with ZrAlO x gate dielectrics and exploration in digital circuits
CN108417495A (zh) 一种金属氧化物钝化的薄膜晶体管的制备
Zhang et al. Eco-friendly fully water-driven metal–oxide thin films and their applications in transistors and logic circuits
CN115161012A (zh) 一种钙钛矿材料、薄膜和太阳能电池器件及其制备方法
CN104934327A (zh) 一种基于氧化钪高k介电层薄膜晶体管的制备方法
CN108493098A (zh) 基于低温溶液法p型金属碘化物薄膜晶体管的制备方法
CN107017309A (zh) 一种溶液法制备三元p型金属氧化物薄膜晶体管的方法
CN103343335B (zh) 掺硼氧化锌薄膜的制备方法
Hu et al. Performance enhancement of solution-processed amorphous WZTO TFT with HAO gate dielectric via power ultrasound technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170714