CN107017309A - 一种溶液法制备三元p型金属氧化物薄膜晶体管的方法 - Google Patents

一种溶液法制备三元p型金属氧化物薄膜晶体管的方法 Download PDF

Info

Publication number
CN107017309A
CN107017309A CN201710234816.4A CN201710234816A CN107017309A CN 107017309 A CN107017309 A CN 107017309A CN 201710234816 A CN201710234816 A CN 201710234816A CN 107017309 A CN107017309 A CN 107017309A
Authority
CN
China
Prior art keywords
ternary
metal oxide
film transistor
type metal
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710234816.4A
Other languages
English (en)
Inventor
单福凯
聂生斌
刘奥
朱慧慧
刘国侠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201710234816.4A priority Critical patent/CN107017309A/zh
Publication of CN107017309A publication Critical patent/CN107017309A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本发明属于薄膜晶体管制备技术领域,涉及一种溶液法制备三元p型金属氧化物薄膜晶体管的方法,用于三元p型金属氧化物半导体薄膜及薄膜晶体管制备场合;解决传统TFT器件载流子迁移率低,制备成本昂贵,反应条件苛刻的难题,实现低成本制备高性能低能耗的三元p型金属氧化物薄膜晶体管,制得的产物为Ni/CuCrO2/SiO2/Si结构的薄膜晶体管;用低阻硅作为衬底,用致密的SiO2作为栅介电层,采用“两步退火”技术和溶胶凝胶技术制备三元p型CuCrO2半导体薄膜作为沟道层;其工艺简单,原理可靠,节能环保,制备成本低廉,产品性能好,能够用于工业化生产,具有良好的经济效益和广阔的市场前景。

Description

一种溶液法制备三元p型金属氧化物薄膜晶体管的方法
技术领域:
本发明属于薄膜晶体管制备技术领域,涉及一种金属氧化物薄膜晶体管的制备方法,尤其是一种溶液法制备三元p型金属氧化物薄膜晶体管的方法,用于三元p型金属氧化物半导体薄膜及薄膜晶体管制备场合。
背景技术:
近年来,金属氧化物薄膜晶体管(Metal-Oxide Thin-Film Transistor,简称MOTFT)在有源矩阵驱动液晶显示器件(Active Matrix Liquid Crystal Display,简称AMLCD)中发挥了重要作用。从低温非晶硅薄膜晶体管到高温多晶硅薄膜晶体管,技术越来越成熟,应用对象也从只能驱动液晶显示器件(Liquid Crystal Display,简称LCD)发展到既可以驱动LCD又可以驱动有机发光显示器(Organic Light Emitting Display,简称OLED),甚至电子纸。薄膜晶体管(简称TFT)已经成为平板显示行业的核心部件,每台显示器都集成了数百万甚至上亿个TFT器件。目前研究与应用最多的金属氧化物材料为ZnO、SnO2和In2O3体系(Nature,432488,2004;Nature Materials,10382,2011)。然而,这些氧化物材料均为n型半导体,极大的限制了互补金属氧化物半导体(Complementary Metal OxideSemiconductor,简称CMOS)器件和数字集成电路的发展。为了实现高共模输入范围和高输出电压摆幅的CMOS器件,有机TFT通常被用作其中的p型单元器件(Advanced Materials223598,2010)。但是有机TFT的低迁移率和环境不稳定性仍然是目前难以攻克的难关。基于上述原因,发展p型金属氧化物材料及其TFT器件对于大规模CMOS集成电路的发展具有重要的意义。
目前,用作TFT器件沟道层的p型金属氧化物主要以二元为主,一般为CuO、Cu2O、NiO、SnO等金属氧化物,但由于二元p型金属氧化物非常有限,对p型材料的探索已逐步拓展到三元。二元p型金属氧化物是指包括两种元素,一种为氧元素,另一种为金属元素,以空穴作为载流子传导电荷的一类金属氧化物;三元p型金属氧化物则包含三种元素,如CuCrO2、CuAlO2、CuGaO2等。三元p型金属氧化物主要应用于太阳能电池的窗口层、平板显示器、低辐射窗、触摸屏、飞机和冰箱的除霜窗口、气体传感器、抗静电涂料的制备,鲜有研究记载将三元p型金属氧化物用作TFT沟道层;此外,三元p型金属氧化物的制备大多基于真空沉积方法,如磁控溅射、脉冲激光沉积、热蒸发等,这类真空制备工艺需要依托昂贵的设备且难以实现大面积成膜,制约了低成本电子器件的生产;考虑到将来电子器件发展的新方向─“印刷电子器件”,因此,研究低成本大规模制备三元p型金属氧化物作为TFT沟道层的方法是推动透明电子学发展应用的关键,目前,尚无关于溶液法制备三元p型金属氧化物薄膜晶体管的方法的研究记载。
发明内容:
本发明的目的在于克服现有技术存在的不足,寻求设计一种溶液法制备三元p型金属氧化物薄膜晶体管的方法,解决传统TFT器件载流子迁移率低,制备成本昂贵,反应条件苛刻的难题,实现低成本制备高性能低能耗的三元p型金属氧化物薄膜晶体管,制得的产物为Ni/CuCrO2/SiO2/Si结构的薄膜晶体管。
为了实现上述目的,本发明涉及的溶液法制备三元p型金属氧化物薄膜晶体管的方法,采用“两步退火”技术和溶胶凝胶技术制备三元p型CuCrO2半导体薄膜作为沟道层,用低阻硅作为衬底,用致密的SiO2作为栅介电层,制备成三元p型金属氧化物薄膜晶体管,具体工艺步骤为:
(1)清洗衬底:首先选取电阻率为0.0015Ω·cm的低阻硅作为衬底,并依次用丙酮和无水乙醇超声波清洗衬底各5-15分钟,用去离子水冲洗3-5次,再用纯度为99.99%的氮气吹干备用;
(2)热氧化法制备SiO2栅介电层的制备:接着将切好的厚度为200-800微米的硅片放入管式炉内,800-1200℃条件下退火20-200分钟,制得均匀致密的SiO2栅介电层薄膜成品,完成栅介电层薄膜的制备;
(3)采用两步退火法制备沟道层:然后以乙二醇甲醚作为溶剂,称量适量纯度均大于98%的醋酸铜Cu(COOCH3)2和九水硝酸铬Cr(NO3)2.9H2O加入溶剂中,其中,混合液中金属阳离子总量为0.01-0.5mol/L,Cu和Cr离子原子比为0到1:5;在20-90℃条件下磁力搅拌1-24小时形成澄清的溶液,完成沟道层前驱体溶液的配制;将配制的沟道层前驱体溶液旋涂在步骤(2)制得的SiO2栅介电层薄膜成品上,旋涂次数为1-5次,每增加一次旋涂薄膜厚度增加5-20nm,5000-8000转/分转速下匀胶10-35秒,旋涂结束后先将制得的p型金属氧化物半导体薄膜半成品放到烤胶台上,300-450℃空气条件下退火15-35分钟,然后再放到管式炉内,500-900℃氮气氛围下退火2-4小时,氮气纯度大于99%,制得CuCrO2半导体薄膜成品,完成沟道层半导体薄膜的制备;
(4)热蒸发法制备源、漏电极:最后通过热蒸发的方式,在步骤(3)制得的沟道层半导体薄膜上用宽长比为1000/100μm的不锈钢掩膜版制备厚度为80-120nm的金属Ni作为源、漏电极,制得Ni/CuCrO2/SiO2/Si结构的薄膜晶体管,完成三元p型金属氧化物薄膜晶体管的制备。
制得的Ni/CuCrO2/SiO2/Si结构的薄膜晶体管的载流子迁移率为2.03cm2/V s,开关比达到103以上。
本发明涉及的溶液法制备三元p型金属氧化物薄膜晶体管的方法的工作原理为:首先利用致密的SiO2作为三元p型TFT器件的栅介电层;然后采用两步退火法制备沟道层,前期在空气中退火,其目的为蒸发溶剂并分解前躯体溶液中的有机物,后期在氮气氛围中退火使Cu2+被还原为Cu+,促进CuCrO2晶向的生成;最后通过热蒸发法制备源、漏电极,完成基于SiO2介电层的三元p型CuCrO2/SiO2薄膜晶体管的制备,制得的产物具有优异的电学性能,为高性能CMOS器件的发展奠定良好的科学基础。
本发明与现有技术相比,一是采用“溶胶凝胶法”制备,其制备工艺不依赖昂贵的真空镀膜设备,解决了传统真空技术制备三元p型金属氧化物高昂制备成本的难题;同时,能够满足未来“印刷电子器件”的要求,也是本领域首次采用溶液技术制备三元p型金属氧化物TFT器件;二是采用“两步退火”技术,首先在空气中退火分解前躯体溶液中的有机物,然后氮气氛围中退火使Cu2+被还原为Cu+从而实现制备CuCrO2半导体薄膜的可能;三是制得的CuCrO2/SiO2TFT器件展现出优异的电学性能,其迁移率远大于传统SiO2基的二元p型金属氧化物TFT器件的迁移率,其报道的最大值仅为0.32cm2/V s;四是制得的三元CuCrO2相对于二元的p型CuO具有禁带宽度大的优势。因此,在低能耗电子显示、CMOS集成领域具有有广阔的应用前景,其工艺简单,原理可靠,节能环保,制备成本低廉,产品性能好,能够用于工业化生产,具有良好的经济效益和广阔的市场前景。
附图说明:
图1为本发明涉及的溶液法制备三元p型金属氧化物薄膜晶体管的方法的流程框图。
图2为本发明涉及的三元p型金属氧化物薄膜晶体管的主体结构原理示意图。
图3为氮气氛围下退火过程中晶向转变的原子结构示意图。
图4为本发明制备的Ni/CuCrO2/SiO2/Si结构的薄膜晶体管的转移特性曲线图,其中,5条曲线分别为500℃,600℃,700℃,800℃,900℃下的氮气氛围中的退火的转移曲线。
具体实施方式:
下面通过具体实施例并结合附图作进一步说明。
实施例1:
本实施例涉及的溶液法制备三元p型金属氧化物薄膜晶体管的方法如图1所示,具体包括以下工艺步骤:
(1)清洗衬底:首先选取电阻率为0.0015Ω·cm的低阻硅作为衬底,并依次用丙酮和无水乙醇超声波清洗衬底各10分钟,用去离子水冲洗3-5次,再用纯度为99.99%的氮气吹干备用;
(2)热氧化法制备栅介电层:将切好的厚度为200-800微米硅片放入管式炉内1000℃退火,升温速率为7℃/min,保温时间为100分钟,制得均匀连续的SiO2栅介电层薄膜成品,完成栅介电层薄膜的制备;
(3)采用两步退火法制备沟道层:称量10mL的乙二醇甲醚作为溶剂,称量适量的醋酸铜Cu(COOCH3)2和九水硝酸铬Cr(NO3)2.9H2O加入溶剂中,其中,金属阳离子总量0.01-0.5mol/L,Cu和Cr离子原子比为0到1:5;醋酸铜和九水硝酸铬均购于Aldrich公司,醋酸铜和九水硝酸铬的纯度均大于99%,在20-90℃条件下磁力搅拌1-24小时形成澄清的溶液,完成沟道层前驱体溶液的配制;将配制的沟道层前驱体溶液旋涂在步骤(2)制得的SiO2栅介电层薄膜成品上,旋涂次数为1-5次,每增加一次旋涂薄膜厚度增加5-20nm,旋涂时在5000-8000转/分转速下匀胶10-35秒,旋涂结束后先将制得的p型金属氧化物半导体薄膜半成品放到烤胶台上300-450℃空气退火15-35分钟,然后再放到管式炉内退火,采用纯度大于99%的氮气作为保护气体,退火温度分别为500,600,700,800,900℃,退火时间为2-4小时,制得CuCrO2半导体薄膜成品,完成三元p型金属氧化物半导体薄膜的制备,其能够用作三元p型金属氧化物薄膜晶体管的沟道层;
(4)热蒸发法制备源、漏电极:最后通过热蒸发的方式,在步骤(3)制得的沟道层半导体薄膜上用宽长比为1000/100μm的不锈钢掩膜版制备厚度为80-120nm的金属Ni作为源、漏电极,制备得到Ni/CuCrO2/SiO2/Si结构的薄膜晶体管。
制得的Ni/CuCrO2/SiO2/Si结构的薄膜晶体管的载流子迁移率为2.03cm2/V s,开关比达到103以上。
对制得的三元p型金属氧化物薄膜晶体管进行测试,图2为主体结构原理示意图;图3为氮气氛围下退火过程中晶向转变的原子结构示意图,由图3可知,氮气氛围下Cu2+被还原为Cu+,实现了CuCr2O4到CuCrO2的晶向转变;图4为不同退火温度下的器件的转移曲线,由图4可知,随着栅压的减小,源漏电流逐渐增大,表现出典型的P型半导体性质,同时随着退火温度从500度升高至800度,器件的开态电流逐渐提高,表明器件的电流调制能力得到提高,测试结果均由吉时利2634B半导体源表测试得到。

Claims (4)

1.一种溶液法制备三元p型金属氧化物薄膜晶体管的方法,其特征在于具体工艺步骤为:
(1)清洗衬底:首先选取电阻率为0.0015Ω·cm的低阻硅作为衬底,并依次用丙酮和无水乙醇超声波清洗衬底各5-15分钟,用去离子水冲洗3-5次,再用纯度为99.99%的氮气吹干备用;
(2)热氧化法制备SiO2栅介电层的制备:接着将厚度为200-800微米的硅片放入管式炉内,800-1200℃条件下退火20-200分钟,制得均匀致密的SiO2栅介电层薄膜成品,完成栅介电层薄膜的制备;
(3)采用两步退火法制备沟道层:然后以乙二醇甲醚作为溶剂,称量适量纯度均大于98%的醋酸铜Cu(COOCH3)2和九水硝酸铬Cr(NO3)2·9H2O加入溶剂中,其中,混合液中金属阳离子总量为0.01-0.5mol/L,Cu和Cr离子原子比为0到1:5;在20-90℃条件下磁力搅拌1-24小时形成澄清的溶液,完成沟道层前驱体溶液的配制;将配制的沟道层前驱体溶液旋涂在步骤(2)制得的SiO2栅介电层薄膜成品上,旋涂次数为1-5次,每增加一次旋涂薄膜厚度增加5-20nm,在5000-8000转/分转速下匀胶10-35秒,旋涂结束后先将制得的三元p型金属氧化物半导体薄膜半成品放到烤胶台上,300-450℃空气条件下退火15-35分钟,然后再放到管式炉内,500-900℃氮气氛围下退火2-4小时,氮气纯度大于99%,制得CuCrO2半导体薄膜成品,完成沟道层半导体薄膜的制备;
(4)热蒸发法制备源、漏电极:最后通过热蒸发的方式,在步骤(3)制得的沟道层半导体薄膜上用宽长比为1000/100μm的不锈钢掩膜版制备厚度为80-120nm的金属Ni作为源、漏电极,制得Ni/CuCrO2/SiO2/Si结构的薄膜晶体管,完成三元p型金属氧化物薄膜晶体管的制备。
2.如权利要求1所述的溶液法制备三元p型金属氧化物薄膜晶体管的方法,其特征在于采用该方法制得的Ni/CuCrO2/SiO2/Si结构的薄膜晶体管,其载流子迁移率为2.03cm2/V s,开关比达到103以上。
3.如权利要求1所述的溶液法制备三元p型金属氧化物薄膜晶体管的方法,其特征在于采用该方法制得的三元p型金属氧化物半导体薄膜的具体工艺步骤为:首先以乙二醇甲醚作为溶剂,称量适量纯度均大于98%的醋酸铜Cu(COOCH3)2和九水硝酸铬Cr(NO3)2.9H2O加入溶剂中,其中,混合液中金属阳离子总量为0.01-0.5mol/L,Cu和Cr离子原子比为0到1:5;在20-90℃条件下磁力搅拌1-24小时形成澄清的溶液,完成沟道层前驱体溶液的配制;将配制的沟道层前驱体溶液旋涂在SiO2栅介电层薄膜成品上,旋涂次数为1-5次,每增加一次旋涂薄膜厚度增加5-20nm,在5000-8000转/分转速下匀胶10-35秒,旋涂结束后先将制得的三元p型金属氧化物半导体薄膜半成品放到烤胶台上,300-450℃空气条件下退火15-35分钟,然后再放到管式炉内,500-900℃氮气氛围下退火2-4小时,氮气纯度大于99%,制得CuCrO2半导体薄膜成品,完成三元p型金属氧化物半导体薄膜的制备。
4.如权利要求3所述的溶液法制备三元p型金属氧化物薄膜晶体管的方法,其特征在于采用该方法制得的CuCrO2半导体薄膜能够用作三元p型金属氧化物薄膜晶体管的沟道层。
CN201710234816.4A 2017-04-12 2017-04-12 一种溶液法制备三元p型金属氧化物薄膜晶体管的方法 Pending CN107017309A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710234816.4A CN107017309A (zh) 2017-04-12 2017-04-12 一种溶液法制备三元p型金属氧化物薄膜晶体管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710234816.4A CN107017309A (zh) 2017-04-12 2017-04-12 一种溶液法制备三元p型金属氧化物薄膜晶体管的方法

Publications (1)

Publication Number Publication Date
CN107017309A true CN107017309A (zh) 2017-08-04

Family

ID=59446326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710234816.4A Pending CN107017309A (zh) 2017-04-12 2017-04-12 一种溶液法制备三元p型金属氧化物薄膜晶体管的方法

Country Status (1)

Country Link
CN (1) CN107017309A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980107A (zh) * 2017-12-28 2019-07-05 Tcl集团股份有限公司 CuMO2及其制备方法、发光器件
CN110690107A (zh) * 2019-12-09 2020-01-14 广州新视界光电科技有限公司 一种半导体氧化物薄膜、其制备方法及包含其的薄膜晶体管

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977165A (zh) * 2016-05-20 2016-09-28 河南大学 p型氧化铜薄膜晶体管的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105977165A (zh) * 2016-05-20 2016-09-28 河南大学 p型氧化铜薄膜晶体管的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINMEI WANG,ETAL: "Investigation of structural,morphological,optical and electrical properties of CuCrO2 films prepared by sol-gel method", 《J SOL-GEL SCI TECHNOL》 *
余建敏: "P型氧化物薄膜及晶体管的制备与性能研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980107A (zh) * 2017-12-28 2019-07-05 Tcl集团股份有限公司 CuMO2及其制备方法、发光器件
CN109980107B (zh) * 2017-12-28 2020-12-01 Tcl科技集团股份有限公司 CuMO2及其制备方法、发光器件
CN110690107A (zh) * 2019-12-09 2020-01-14 广州新视界光电科技有限公司 一种半导体氧化物薄膜、其制备方法及包含其的薄膜晶体管
CN110690107B (zh) * 2019-12-09 2020-05-12 广州新视界光电科技有限公司 一种半导体氧化物薄膜、其制备方法及包含其的薄膜晶体管

Similar Documents

Publication Publication Date Title
Yao et al. Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors
Pattanasattayavong et al. p-channel thin-film transistors based on spray-coated Cu2O films
CN105428247B (zh) 一种基于水性超薄ZrO2高k介电层的薄膜晶体管制备方法
Zhu et al. Eco-Friendly, Water-Induced In 2 O 3 Thin Films for High-Performance Thin-Film Transistors and Inverters
CN104445047B (zh) 一种氧化钨/氧化钒异质结纳米线阵列及其制备方法
CN105489486A (zh) 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN108376712B (zh) 一种基于碘化亚铜的透明薄膜晶体管及制备方法
CN104201112A (zh) 一种基于水溶液薄膜晶体管的制备方法
CN110416087A (zh) 具有钝化增强层的金属氧化物薄膜晶体管及其制作方法
CN108735821B (zh) 一种镨铟锌氧化物薄膜晶体管及其制备方法
JP2012114367A (ja) 錫を含む非晶質酸化物薄膜、及び薄膜トランジスタ
Wang et al. Solution-driven HfLaO x-based gate dielectrics for thin film transistors and unipolar inverters
CN107017309A (zh) 一种溶液法制备三元p型金属氧化物薄膜晶体管的方法
Shao et al. Large-area (64× 64 array) inkjet-printed high-performance metal oxide bilayer heterojunction thin film transistors and n-metal-oxide-semiconductor (NMOS) inverters
Zhu et al. Water-derived all-oxide thin-film transistors with ZrAlO x gate dielectrics and exploration in digital circuits
CN104022159B (zh) 用作薄膜晶体管沟道层的非晶氧化物薄膜及其制备方法
Zhang et al. Eco-friendly fully water-driven metal–oxide thin films and their applications in transistors and logic circuits
CN107527956A (zh) 薄膜晶体管和制备薄膜晶体管的方法
CN106952828A (zh) 一种p型金属氧化物薄膜晶体管的制备方法
CN104911567A (zh) 一种溶胶凝胶法制备p型氧化亚铜薄膜材料的方法
CN109410888A (zh) 一种基于薄膜晶体管的透明差分运算放大器
CN108417495A (zh) 一种金属氧化物钝化的薄膜晶体管的制备
CN104934327A (zh) 一种基于氧化钪高k介电层薄膜晶体管的制备方法
CN105977165B (zh) p型氧化铜薄膜晶体管的制备方法
CN111490161A (zh) 一种有机薄场效应晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170804