CN106948169A - 一种石墨烯掺杂热解碳的制备方法 - Google Patents
一种石墨烯掺杂热解碳的制备方法 Download PDFInfo
- Publication number
- CN106948169A CN106948169A CN201710155476.6A CN201710155476A CN106948169A CN 106948169 A CN106948169 A CN 106948169A CN 201710155476 A CN201710155476 A CN 201710155476A CN 106948169 A CN106948169 A CN 106948169A
- Authority
- CN
- China
- Prior art keywords
- graphene
- preparation
- nitrogen
- carbon
- pyrolytic carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/73—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
- D06M11/74—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/40—Fibres of carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Textile Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种石墨烯掺杂热解碳的制备方法,以甲醇、乙醇和水按特定比例组成的混合物为前驱体,借助等温CVD工艺,在基底材料内部同时制备互相依附沉积的石墨烯和PyC,即石墨烯掺杂PyC材料。本发明的有益效果是:(1)可实现了石墨烯与PyC的均匀掺杂;(2)可实现石墨烯掺杂PyC在复杂结构体内部的制备;(3)该方法无需对石墨烯进行化学处理,有效保护了石墨烯的优异力学性能。
Description
技术领域
本发明涉及一种石墨烯掺杂热解碳的制备方法,特别是涉及一种借助无金属催化的化学气相沉积同时生长石墨烯和热解碳,一步制备石墨烯掺杂热解碳的方法。
背景技术
热解碳(PyC)是碳原子以sp2杂化轨道相互成键生成的碳材料,一般由含碳的烃类气体或有机物于700-1150℃高温热解而制得(即化学气相沉积,CVD),具有比重轻、模量高、热膨胀系数低、耐高温、耐烧蚀、摩擦性好等优良性质,是构成碳/碳(C/C)复合材料的主体组元,在航天航空领域有着举足轻重的应用地位。近年来,我国航空航天及国防科技的快速发展,如新一代航空发动机、空天飞行器等,对高强韧薄壁、锐形C/C构件的需求日益迫切。然而,纯PyC呈现“强度低、脆性大”的力学特性,如PyC的断裂强度仅有310-450MPa,断裂伸长率仅有0.7-1.7%(张伟刚,化学气相沉积-从烃类气体到固体碳,科学出版社,pp191-244,2008),若将其直接用作C/C复合材料的基体,则将严重影响复合材料的力学性能。例如,在薄壁、锐形构件的制备中,加工成型导致的碳纤维(长径比急剧降低)强韧效果的严重衰退以及复合材料内耗、微米级孔隙(如叠层间隔、纤维束间隙、编织盲区等)中PyC的对外暴露,使得PyC成为构件的受力主体,其在高速气流冲压下极易于产生粉碎性破坏,导致薄壁或锐形构件前缘易产生“崩块”破坏。
研究表明:在亚微米尺寸上,对PyC实施补强增韧是解决上述问题的关键(LiHejun,Carbon nanotube-based multiscale carbon/carbon composites,THERMEC2013December 2nd-6th,Las Vegas,USA,Invited Report)。为此,科研工作者发展了利用纳米增强体改性PyC以提高其力学性能的工艺方法,所用纳米增强材料主要包括碳纳米管(CNT)、SiC纳米线(SiCnanowire)和石墨烯等。石墨烯相比于CNT和SiCnanowire具有更大比表面积和更高的力学强度更适合用于强韧PyC。例如,朱东波等利用浸泡石墨烯溶液的方法在碳纤维预制体中引入了石墨烯,借助CVD制备了石墨烯掺杂的PyC及其复合材料(朱东波等,添加石墨烯对碳/碳复合材料制备及力学性能的影响,金属材料与冶金工程,2015,43(5):3-6);Mochen Li等借助官能化处理将石墨烯引入到树脂中,借助碳化工艺制备了石墨烯掺杂的PyC纤维(即树脂基碳纤维)(Mochen Li,et al.Ultrastrong Graphene-Based Fiberswith Increased Elongation,Nano Letters,2016,16(10),6511-6515)。
如上述两篇文献中所述工作,现有石墨烯掺杂PyC的研究均采用“先合成、后掺杂”的方法,即先利用化学剥离方法合成石墨烯,然后再将石墨烯引入掺杂到PyC内部。该方法存在石墨烯引入均匀性差、不适合于石墨烯在复杂结构空间(如二维穿刺碳毡,即2D碳毡)中PyC内部的引入、石墨烯自身微观结构和力学强度破坏严重(化学剥离法制备石墨烯的通病)等缺点,不利于石墨烯对PyC强韧效果的充分发挥。
如何开发新技术,在不破坏石墨烯结构的前提下,实现石墨烯在热解碳中的均匀掺杂,对提高石墨烯掺杂热解碳的力学性能具有重要意义。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种石墨烯掺杂热解碳的制备方法,工艺简单、制备条件宽泛、可实现石墨烯掺杂PyC在2D碳毡内部的制备。
技术方案
一种石墨烯掺杂热解碳的制备方法,其特征在于步骤如下:
步骤1:按1:1-10:0.01-0.1的体积比例,混合甲醇、乙醇和水;将混合液超声混合1-10h;
步骤2:将碳纤维布或者2D碳毡的基底放置在卧式氧化铝管式炉中的保温区域,在氮气气氛保护下升温至900~1400℃,升温中氮气向管式炉中的通入流量为50sccm;
步骤3:温度升至设定值后,将氮气流量调整为100-500sccm,将步骤1中制备的混合液体以1-50ml/min的注射速率注射到卧式氧化铝管式炉中,待注射泵内液体注射完后,断电降温,降温过程由氮气保护,氮气流量为50sccm;
注射中注射器终端温度为60~250℃;
步骤4:温度降至150℃以下后,关闭氮气,开炉得到的基底中所沉积产物为石墨烯掺杂PyC。
所述步骤1的超声功率为100W。
所述步骤3的注射采用精密注射泵。
本工作所用甲醇、乙醇为分析纯,水为去离子水;所用超声清洗仪为昆山KQ系列产品;所用碳纤维布为1K-T300平纹编织布,碳纤维毡为T300穿刺整体毡(密度为0.4g/cm3);所用氮气纯度为99.999%;所用精密注射泵为浙江史密斯品牌。
有益效果
本发明提出的一种石墨烯掺杂热解碳的制备方法,以甲醇、乙醇和水按特定比例组成的混合物为前驱体,借助等温CVD工艺,在基底材料内部同时制备互相依附沉积的石墨烯和PyC,即石墨烯掺杂PyC材料。本发明的有益效果是:(1)可实现了石墨烯与PyC的均匀掺杂;(2)可实现石墨烯掺杂PyC在复杂结构体内部的制备;(3)该方法无需对石墨烯进行化学处理,有效保护了石墨烯的优异力学性能。
附图说明
图1:实例1所制备石墨烯掺杂热解碳的透射电子显微照片
图2:实例2所制备石墨烯掺杂热解碳的扫描电子显微照片
图3:实例3所制备石墨烯掺杂热解碳的透射电子显微照片
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实例1:
(1)按1:(1-10):(0.01-0.1)的体积比例,混合甲醇、乙醇和水。混合后,将混合液倒入烧杯中超声1h,所用超声功率为100W。
(2)以碳纤维布为基底,将其放到卧式氧化铝管式炉中的保温区域,氮气气氛保护下升温至1000℃,升温中氮气向管式炉中的通入流量为50sccm。
(3)温度升至1000℃后,将氮气流量调整为100sccm,并利用精密注射泵,将步骤(1)中制备的混合液体以10ml/min的注射速率注射到卧式氧化铝管式炉中,其中注射器终端温度要求为100℃。注射2h后,停止注射并断电降温,降温过程由氮气保护,氮气流量为50sccm。
(4)温度降至150℃以下后,关闭氮气,开炉取样,在碳纤维布上获得石墨烯掺杂的PyC。
实例2:
(1)按1:(1-10):(0.01-0.1)的体积比例,混合甲醇、乙醇和水。混合后,将混合液倒入烧杯中超声2h,所用超声功率为100W。
(2)以碳纤维布为基底,将其放到卧式氧化铝管式炉中的保温区域,氮气气氛保护下升温至1100℃,升温中氮气向管式炉中的通入流量为50sccm。
(3)温度升至1100℃后,将氮气流量调整为350sccm,并利用精密注射泵,将步骤(1)中制备的混合液体以6ml/min的注射速率注射到卧式氧化铝管式炉中,其中注射器终端温度要求为60℃。注射3h后,停止注射并断电降温,降温过程由氮气保护,氮气流量为50sccm。
(4)温度降至150℃以下后,关闭氮气,开炉取样,在碳纤维布上获得石墨烯掺杂的PyC。
实例3:
(1)按1:(1-10):(0.01-0.1)的体积比例,混合甲醇、乙醇和水。混合后,将混合液倒入烧杯中超声2h,所用超声功率为100W。
(2)以碳纤维毡为基底,将其放到卧式氧化铝管式炉中的保温区域,氮气气氛保护下升温至1200℃,升温中氮气向管式炉中的通入流量为50sccm。
(3)温度升至1100℃后,将氮气流量调整为500sccm,并利用精密注射泵,将步骤(1)中制备的混合液体以2ml/min的注射速率注射到卧式氧化铝管式炉中,其中注射器终端温度要求为200℃。注射10h后,停止注射并断电降温,降温过程由氮气保护,氮气流量为50sccm。
(4)温度降至150℃以下后,关闭氮气,开炉取样,在碳纤维毡内获得了石墨烯掺杂的PyC。
Claims (6)
1.一种石墨烯掺杂热解碳的制备方法,其特征在于步骤如下:
步骤1:按1:1-10:0.01-0.1的体积比例,混合甲醇、乙醇和水;将混合液超声混合1-10h;
步骤2:将碳纤维布或者2D碳毡的基底放置在卧式氧化铝管式炉中的保温区域,在氮气气氛保护下升温至900~1400℃,升温中氮气向管式炉中的通入流量为50sccm;
步骤3:温度升至设定值后,将氮气流量调整为100-500sccm,将步骤1中制备的混合液体以1-50ml/min的注射速率注射到卧式氧化铝管式炉中,待注射泵内液体注射完后,断电降温,降温过程由氮气保护,氮气流量为50sccm;
注射中注射器终端温度为60~250℃;
步骤4:温度降至150℃以下后,关闭氮气,开炉得到的基底中所沉积产物为石墨烯掺杂PyC。
2.根据权利要求1所述石墨烯掺杂热解碳的制备方法,其特征在于:所述甲醇、乙醇为分析纯。
3.根据权利要求1所述石墨烯掺杂热解碳的制备方法,其特征在于:所述碳纤维布为1K-T300平纹编织布。
4.根据权利要求1所述石墨烯掺杂热解碳的制备方法,其特征在于:所述碳纤维毡为T300穿刺整体毡,密度为0.4g/cm3。
5.根据权利要求1所述石墨烯掺杂热解碳的制备方法,其特征在于:所述步骤1的超声功率为100W。
6.根据权利要求1所述石墨烯掺杂热解碳的制备方法,其特征在于:所述步骤3的注射采用精密注射泵。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710155476.6A CN106948169B (zh) | 2017-03-16 | 2017-03-16 | 一种石墨烯掺杂热解碳的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710155476.6A CN106948169B (zh) | 2017-03-16 | 2017-03-16 | 一种石墨烯掺杂热解碳的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106948169A true CN106948169A (zh) | 2017-07-14 |
CN106948169B CN106948169B (zh) | 2019-03-26 |
Family
ID=59472565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710155476.6A Active CN106948169B (zh) | 2017-03-16 | 2017-03-16 | 一种石墨烯掺杂热解碳的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106948169B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109292756A (zh) * | 2018-09-27 | 2019-02-01 | 台州学院 | 一种高质量石墨烯泡沫的乙醇钠热解制备方法 |
CN115677366A (zh) * | 2022-11-03 | 2023-02-03 | 中国航发沈阳黎明航空发动机有限责任公司 | 一种碳纳米片增韧PyC/SiC复合界面及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05125660A (ja) * | 1991-10-29 | 1993-05-21 | Shin Etsu Chem Co Ltd | 熱分解炭素複合材および高温炉用断熱材 |
CN102903616A (zh) * | 2012-10-22 | 2013-01-30 | 西安电子科技大学 | 基于ZnO衬底的石墨烯CVD直接外延生长方法及制造的器件 |
CN103288071A (zh) * | 2013-05-30 | 2013-09-11 | 西北工业大学 | 一种各向同性热解碳的制备方法 |
CN104788960A (zh) * | 2015-04-27 | 2015-07-22 | 中国科学院重庆绿色智能技术研究院 | 一种增强碳纤维-高分子复合材料性能的方法及产物 |
CN106232521A (zh) * | 2014-05-05 | 2016-12-14 | 巴斯夫欧洲公司 | 预处理基材以通过化学沉积一致生长石墨烯 |
-
2017
- 2017-03-16 CN CN201710155476.6A patent/CN106948169B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05125660A (ja) * | 1991-10-29 | 1993-05-21 | Shin Etsu Chem Co Ltd | 熱分解炭素複合材および高温炉用断熱材 |
CN102903616A (zh) * | 2012-10-22 | 2013-01-30 | 西安电子科技大学 | 基于ZnO衬底的石墨烯CVD直接外延生长方法及制造的器件 |
CN103288071A (zh) * | 2013-05-30 | 2013-09-11 | 西北工业大学 | 一种各向同性热解碳的制备方法 |
CN106232521A (zh) * | 2014-05-05 | 2016-12-14 | 巴斯夫欧洲公司 | 预处理基材以通过化学沉积一致生长石墨烯 |
CN104788960A (zh) * | 2015-04-27 | 2015-07-22 | 中国科学院重庆绿色智能技术研究院 | 一种增强碳纤维-高分子复合材料性能的方法及产物 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109292756A (zh) * | 2018-09-27 | 2019-02-01 | 台州学院 | 一种高质量石墨烯泡沫的乙醇钠热解制备方法 |
CN115677366A (zh) * | 2022-11-03 | 2023-02-03 | 中国航发沈阳黎明航空发动机有限责任公司 | 一种碳纳米片增韧PyC/SiC复合界面及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106948169B (zh) | 2019-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiao et al. | Effect of in situ grown carbon nanotubes on the structure and mechanical properties of unidirectional carbon/carbon composites | |
Chand | Review carbon fibers for composites | |
CN104150939B (zh) | 一种电泳沉积CNTs增强陶瓷基复合材料的制备方法 | |
CN103467126B (zh) | 一种SiC纳米线改性C/C复合材料的制备方法 | |
CN107177892B (zh) | 一种基于碳纳米材料的核壳结构纤维及其制备方法 | |
CN106948169B (zh) | 一种石墨烯掺杂热解碳的制备方法 | |
He et al. | Microstructure, mechanical and anti-ablation properties of SiCnw/PyC core-shell networks reinforced C/C–ZrC–SiC composites fabricated by a multistep method of chemical liquid-vapor deposition | |
CN111101371A (zh) | 一种高性能碳纳米管/碳复合纤维及其快速制备方法 | |
Fu et al. | Mechanical properties and ablation resistance of HfC nanowire modified carbon/carbon composites | |
Lu et al. | Microstructure and mechanical properties of TiAl-based composites prepared by Stereolithography and gelcasting technologies | |
CN106915961A (zh) | 一种石墨烯‑氧化锆复合材料及其制备方法 | |
Cui et al. | Effect of SiC nanowires on the mechanical properties and thermal conductivity of 3D-SiCf/SiC composites prepared via precursor infiltration pyrolysis | |
Gao et al. | Fabrication and mechanical/conductive properties of multi-walled carbon nanotube (MWNT) reinforced carbon matrix composites | |
Li et al. | In-situ synthesis and growth mechanism of silicon nitride nanowires on carbon fiber fabrics | |
Dong et al. | Effect of reinforcement shape on the stress–strain behavior of aluminum reinforced with SiC nanowire | |
CN105421036A (zh) | 高温复合材料石墨烯改性方法、高温复合材料及制备方法 | |
Huo et al. | Effect of co-deposited SiC nanowires and carbon nanotubes on oxidation resistance for SiC-coated C/C composites | |
CN102010218A (zh) | 一种氧化石墨烯掺杂单向c/c复合材料的制备方法 | |
Fang et al. | Influence of hydrothermal carbon coating on the properties of CF/ZrB2/SiBCN prepared by slurry injection | |
CN104478461B (zh) | 一种晶须改性碳/碳复合材料的制备方法 | |
Wang et al. | Effects of SiC nanowire decorated with carbon nanosheet on mechanical, heat-dissipation and anti-ablation properties of carbon/carbon composites | |
Gao et al. | The effect of zirconium addition on the microstructure and properties of chopped carbon fiber/carbon composites | |
CN108383536A (zh) | 一种新型碳基复合材料的制备方法 | |
Chen et al. | Enhancing the tensile properties of SiC composites by a two-dimensional CNT film | |
Zeng et al. | Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221116 Address after: No. 25, Yangbei Road, Luoshe Town, Huishan District, Wuxi City, Jiangsu Province, 214154 Patentee after: Wuxi Bozhi Composite Materials Co.,Ltd. Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an Patentee before: Northwestern Polytechnical University |