CN106925306A - 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法 - Google Patents

二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法 Download PDF

Info

Publication number
CN106925306A
CN106925306A CN201710340475.9A CN201710340475A CN106925306A CN 106925306 A CN106925306 A CN 106925306A CN 201710340475 A CN201710340475 A CN 201710340475A CN 106925306 A CN106925306 A CN 106925306A
Authority
CN
China
Prior art keywords
biobr
zno
hydridization
preparation
dimensional ultrathin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710340475.9A
Other languages
English (en)
Other versions
CN106925306B (zh
Inventor
童艳花
郎文静
郑楚
黄瑜杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou University
Original Assignee
Huzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huzhou University filed Critical Huzhou University
Priority to CN201710340475.9A priority Critical patent/CN106925306B/zh
Publication of CN106925306A publication Critical patent/CN106925306A/zh
Application granted granted Critical
Publication of CN106925306B publication Critical patent/CN106925306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • B01J35/39

Abstract

本发明涉及光催化领域,具体的说是一种二维ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法。该催化剂由二相杂化而成并具有以下的化学组成:ZnO/BiOBr0.9I0.1;其中0.9和0.1分别为卤素Br和I的化学计量摩尔分数;ZnO质量百分数为10~50%。该光催化剂的制备方法包括以下特征步骤:(1)二维超薄Zn5(CO3)2(OH)6片层的制备;(2)二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂的制备。本发明提供的二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂在户外太阳光下不但能降解有机染料而且能降解结构较稳定的有毒有机物苯酚,制备上简易且环境友好,在太阳能光催化分解有机污染物处理技术中具有潜在的应用价值。

Description

二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法
技术领域
本发明涉及光催化领域,具体的说是一种二维ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法。
背景技术
目前,如何对环境中的污染物特别是有毒、难降解的有机污染物(如酚、农药、染料等)进行有效净化处理是人类所面临的生存与健康的重要问题之一。半导体光催化技术作为一种新型利用太阳能降解有机环境污染物的绿色环境治理技术在能源转化及环境修复应用中已经得到广泛研究。传统半导体光催化剂如TiO2和ZnO光诱导性好、矿化度高且已经被初步应用于水体中各种污染物降解。然而,它们具有较宽的带隙只能吸收太阳光中极少部分(约占4%)的紫外光,以至于其应用范围受限。因此,开发新型可见光响应的高效率光催化剂越来越受到研究人员的青睐。
卤氧化铋(BiOX,X=Cl,Br,I)是近几年被发现的一类新型光催化材料,其特有的开放式片层结构、内部电场和间接跃迁模式有利于光生空穴–电子对的有效分离和电荷转移,使得BiOX具有较高的光催化活性。其中BiOBr具有合适的禁带宽度(约2.87eV)和较高的价带顶能级电势(2.32eV),使得BiOBr在BiOX中表现出较强的可见光催化活性。但由于单种BiOBr光生电子的电势-0.55eV(近似于导带底的能级电势)低于Bi3+/Bi氧化还原电对电极电势0.308eV,其光生电子能够将BiOBr中的Bi3+还原成单质Bi,导致引起BiOBr的光腐蚀。通过掺杂形成固溶体是一种调节能带位置的有效手段。BiOBr和BiOI具有相同的晶体结构,在BiOBr中掺I极易形成BiOBrxI1-x固溶体。目前已有多篇文献报道了BiOBrxI1-x固溶体的可见光催化活性优于单一的BiOBr和BiOI[Ind.Eng.Chem.Res.,2011,50:6688–6694;Sci.Rep.,2016,6:22800,1–9;Catal.Commun.,2014,49:87–91;J.Synth.Cryst.,2015,44(9):2394–2401;一种超薄BiOBrxI1-x光催化剂及其制备方法,2016,CN 105521800 A]。这是因为I的掺杂降低了导带底的能级电势,避免了BiOBr的光腐蚀,有助于提高BiOBr光催化性能。然而,I的掺杂引起BiOBr禁带宽度变窄,促进光生空穴与电子的复合,又致使光催化效率下降。因此,单一固溶法提高光催化活性也是有限。
为了能够避免BiOBr光腐蚀同时提高光生电子与空穴的分离,科研工作者进行了在固溶的基础上进行了复合的研究,如Graphene/BiOBr0.2I0.8(J.Hazard.Mater.,2014,266:75–83);Au/BiOBr0.2I0.8(一种Au/BiOBr0.2I0.8可见光催化剂及其制备,CN 103157495A);Ag-BiOBrxI1-x(Appl.Surf.Sci.,2013,279:374–379);Bi/BiOBrxI1-x(Phys.Chem.Chem.Phys.,2015,17(20):13347–13354)。这些研究都是将BiOBrxI1-x与具有优良导电性的物质进行复合,不仅避免了BiOBr的光腐蚀而且还能促进光生电子的转移从而能有效分离光生电子与空穴,光催化活性得到了进一步的提高,但离实际应用的光催化活性还有一段距离。
二维超薄半导体纳米材料不但具有极大的表面积和极好的导电性而且光生电子与空穴极易被传送到表面,有望成为高活性光催化材料。鉴于此,同时为了充分利用太阳光谱能量,本发明以二维超薄碱式碳酸锌为前驱体,通过沉淀法与热解法相结合制备了二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂。本发明的制备方法简单并且环境友好。此结构的光催化剂在可见光和户外日光下均能响应,不但能降解染料分子还能降解结构稳定的苯酚有毒有机小分子。因此,二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂在利用太阳能光催化分解有机污染物的处理中有潜在的应用价值。
发明内容
本发明旨在提供一种二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法。
本发明所提供的ZnO/BiOBr0.9I0.1杂化光催化剂是由二相杂化而成并具有以下的化学组成:ZnO/BiOBr0.9I0.1;其中,0.9和0.1分别为Br和I元素的化学计量摩尔分数,ZnO质量百分数为10~50%,优选为20%。
该催化剂呈薄片状,厚度范围为2~8nm,其表面粗糙而且带有直径约为3~5nm圆形凹坑。
本发明首先采用水热法制备二维超薄碱式碳酸锌[Zn5(CO3)2(OH)6]前驱体,以此为模板,再利用沉淀法合成出二维Zn5(CO3)2(OH)6/BiOBr0.9I0.1复合薄膜,接着在特定的温度下热分解制得二维ZnO/BiOBr0.9I0.1杂化光催化剂。
本发明提供一种二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂的制备方法,包括以下步骤:
A二维超薄Zn5(CO3)2(OH)6片层的制备
(1)将摩尔比为1:0.1:4的二水醋酸锌、十六烷基三甲基溴化铵、尿素依次溶于去离子水中,制备得到醋酸锌浓度为10-3~10-1M的混合溶液;
(2)将上述混合溶液转入高压反应釜的内衬中,封装后置于鼓风干燥箱中80℃恒温4h,再升到120℃恒温3小时进行水热反应,得到二维超薄Zn5(CO3)2(OH)6前驱体;
(3)将该前驱体分别经过乙醇及去离子水洗涤后离心待用;
B二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂的制备
(1)将前驱体分散到去离子水中,根据最终产物中ZnO质量百分数为10%~50%,加入摩尔比为9:1的NaBr与KI的混合物,在磁力搅拌下进行溶解并与模板进行静电吸附;
(2)以乙二醇为溶剂,得到浓度为7.0g/L的硝酸铋溶液;
(3)将步骤(2)制得的硝酸铋溶液逐滴加入到步骤(1)的体系中,使铋元素和卤元素(包括Br和I)的摩尔比为1:5,之后于50~60℃水浴1~2h得到Zn5(CO3)2(OH)6/BiOBr0.9I0.1复合物;
(4)将步骤(3)得到复合物经过去离子水洗涤,离心,干燥得到初产物;接着,将初产物置于马弗炉中以3℃/min速率升温到300℃,保温2h后,自然冷却至室温,得到二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂。
相对于目前的BiOBrxI1-x固溶材料及金属/BiOBrxI1-x复合材料,二维超薄ZnO/BiOBr0.9I0.1杂化结构材料作为光催化剂具有以下优势:
(1)二维超薄杂化结构不但因表面存在结区与非结区电势差能趋势光生电子与空穴的分离,而且因表面积大且表面粗糙不仅利于入射光的吸收也有利于反应物在光催化材料表面的吸附。
(2)二维ZnO/BiOB0.9I0.1杂化结构具有很强的光催化降解能力,在户外太阳光下不但能降解有机染料而且能降解结构较稳定的有毒有机物苯酚。
(3)本发明的制备方法不但成本低廉,生产工序简易又环保,而且可以根据光催化需求调控二维杂化结构的组分与厚度尺寸大小。
由此可见,本发明提供的一种二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂表现出较好的户外太阳光催化性能,制备上简易且环境友好,在太阳能光催化分解有机污染物处理技术中具有潜在的应用价值。
附图说明
图1为本发明实施例1二维超薄Zn5(CO3)2(OH)6片层的X-射线衍射图谱,(200)面的衍射峰明显强于其它晶面的衍射峰,说明此薄层沿(200)面择优取向生长;其中插图为其透射电镜照片,显示了二维超薄Zn5(CO3)2(OH)6片层的形貌结构;
图2为本发明各种实施例下制备的光催化剂X-射线衍射图谱;
图3为本发明实施例1二维ZnO/BiOBr0.9I0.1薄片状杂化光催化剂的透射电镜和高分辨电镜照片;
图4为本发明实施例1二维ZnO/BiOBr0.9I0.1薄片状杂化光催化剂的原子力显微照片和薄片的厚度曲线;
图5为本发明各种实施例下制备样品的光催化速率常数拟合图:(a)同等条件下可见光催化降解橙黄Ⅱ,(b)同等条件下户外太阳光催化降解橙黄Ⅱ,(c)同等条件下户外太阳光催化降解苯酚,(d)实施例1制备的ZnO/BiOBr0.9I0.1杂化光催化剂可见光催化降解橙黄Ⅱ的循环图。
具体实施方式
下面结合实例对本发明做进一步说明,但不限于此。
实施例1:
ZnO质量百分比为20%的二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂的制备方法,步骤如下:
A二维超薄Zn5(CO3)2(OH)6片层的制备
(1)在室温下,称取0.2469g的二水醋酸锌、0.0474g的CTAB、0.2704g的尿素依次溶于75ml的去离子水中,磁力搅拌使其充分溶解,得到醋酸锌浓度为1.50×10-2M的混合溶液。
(2)将上述混合溶液转入100ml高压反应釜的内衬中,封装后置于鼓风干燥箱中加热至80℃恒温4h,再升到120℃恒温3小时进行水热反应,得到二维超薄Zn5(CO3)2(OH)6片层。
前驱体Zn5(CO3)2(OH)6的X-射线衍射(XRD)图谱如图1所示,显示出底心单斜相晶体结构(JCPDS No.19-1458)。衍射峰(200)的强度明显强于其它衍射峰,推测此前驱体的形貌为片层状。前驱体的透射电镜照片(TEM)[图1中插图]证实该前驱体为二维超薄片层状结构。
(3)将此前驱体分别用乙醇、去离子水先后洗涤数次后离心待用。
B二维超薄20w%ZnO/BiOBr0.9I0.1杂化光催化剂的制备
(1)室温下,将整份洗涤后的前驱体[Zn5(CO3)2(OH)6]超薄层通过超声分散到100ml的去离子水中,再分别加入0.561g的NaBr、0.082g的KI,在磁力搅拌下进行溶解并与前驱体进行静电吸附。
(2)室温下,称取0.7g的硝酸铋(Bi(NO3)3·5H2O)在磁力搅拌下溶于100ml的乙二醇液体中,得到浓度为7.0g/L的硝酸铋溶液;
(3)在磁力搅拌下,将83.2ml的硝酸铋溶液逐滴加入到步骤(1)的体系中。此后,在50℃水浴下晶化反应2h得到Zn5(CO3)2(OH)6/BiOBr0.9I0.1复合物;
(4)将步骤(3)得到复合物经过去离子水洗涤,离心,干燥得到初产物。接着,将初产物置于马弗炉中以3℃/min速率升温到300℃,保温2h后,自然冷却至室温,最后得到二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂。
XRD(图2)显示,20w%ZnO/BiOBr0.9I0.1(简写20ZB)的所有衍射峰与四方BiOBr(JCPDS No.09-0393)相对应,说明复合物形成了良好的四方型结晶。与纯相BiOBr0.9I0.1固溶体的衍射峰相比,20ZB的所有衍射峰向低角度偏移0.17度(如图2右所示),显示出ZnO相与BiOBr0.9I0.1相存在较强的耦合。复合物图谱中未显示出ZnO的衍射峰,表明ZnO是分散式地存在于BiOBr0.9I0.1固溶体中。TEM照片(图3a)显示出20ZB为片状外形结构,AFM中厚度曲线(图4右)显示片状的厚度在2~3nm。进一步放大的TEM照片(图3b)显示出片状的表面带有凹坑,说明片状的表面粗糙。HRTEM(图3c)显示样品中含有BiOBr0.9I0.1和ZnO的晶格条纹。二维超薄20ZB杂化复合光催化剂(25mg)在6min内对橙黄Ⅱ(10mg/L,50ml)的可见光降解率接近100%,其光催化速率常数k(0.496min-1)是二维超薄网孔状ZnO(0.008min-1)的62倍,BiOBr0.9I0.1(0.168min-1)的3倍(见图5a)。在同样的户外日光催化条件下,该20ZB杂化复合物降解橙黄Ⅱ的k(0.209min-1)是二维超薄网孔状ZnO(0.067min-1)的3倍,BiOBr0.9I0.1(0.152min-1)的1.4倍(见图5b)。在同样的户外日光光催化降解苯酚条件下,BiOBr0.9I0.1的k在降解进行30min后下降,而20ZB杂化复合物的k在降解进行30min后升高了,其后期的k(0.077min-1)是BiOBr0.9I0.1(0.013min-1)的6倍,二维超薄网孔状ZnO(0.026min-1)的3倍(见图5c)。图5c展示了20ZB杂化光催化剂在可见光下循环降解橙黄Ⅱ3次后,其光催化活性没有明显下降,说明二维ZnO/BiOBr0.9I0.1杂化材料的活性具有较好的稳定性。
实施例2:
ZnO质量百分比为10%的二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂的制备方法,步骤如下:
A二维超薄Zn5(CO3)2(OH)6片层的制备
操作过程同实施例1。
B二维超薄10w%ZnO/BiOBr0.9I0.1杂化光催化剂的制备
(1)室温下,将整份洗涤后的Zn5(CO3)2(OH)6超薄层通过超声分散到100ml的去离子水中,再分别加入1.263g的NaBr、0.183g的KI,在磁力搅拌下进行溶解并与其进行静电吸附。
(2)在磁力搅拌下,将187.1ml的硝酸铋乙二醇溶液(7.0g/L)逐滴加入到步骤(1)的体系中。
紧接着按照实施例1中的步骤,可制得ZnO的质量分数为10%的ZnO/BiOBr0.9I0.1杂化复合物(简写10ZB)。
样品的XRD结果见图2。样品的TEM与实施例1类似。样品的光催化性能参见图5。在同等可见光降解橙黄Ⅱ的条件下,样品10ZB的光催化k是二维超薄网孔状ZnO的27倍,BiOBr0.9I0.1的1.3倍。在同等户外日光降解橙黄Ⅱ的条件下,样品10ZB的光催化k是二维超薄网孔状ZnO的2.7倍,BiOBr0.9I0.1的1.2倍。在同等户外日光降解苯酚的条件下,后期样品10ZB的光催化k是BiOBr0.9I0.1的3倍,二维超薄网孔状ZnO的1.5倍。
实施例3:
ZnO质量百分比为40%的二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂的制备方法,步骤如下:
A二维超薄Zn5(CO3)2(OH)6片层的制备
操作过程同实施例1。
B二维超薄40w%ZnO/BiOBr0.9I0.1杂化光催化剂的制备
(1)室温下,将整份洗涤后的前驱体[Zn5(CO3)2(OH)6]超薄层通过超声分散到100ml的去离子水中,再分别加入0.210g的NaBr、0.031g的KI,在磁力搅拌下进行溶解并与前驱体进行静电吸附。
(2)在磁力搅拌下,将31.2ml的硝酸铋乙二醇溶液(7.0g/L)逐滴加入到步骤(1)的体系中。
紧接着按照实施例1中的步骤,可制得ZnO的质量分数为40%的ZnO/BiOBr0.9I0.1杂化复合物(简写40ZB)。
样品的XRD结果见图1。样品的TEM与实施例1类似。样品的光催化性能参见图5。在同等可见光降解橙黄Ⅱ的条件下,样品40ZB的光催化k比二维超薄网孔状ZnO高但比BiOBr0.9I0.1低。在同等户外日光降解橙黄Ⅱ或苯酚的条件下,样品40ZB的光催化k比二维超薄网孔状ZnO和BiOBr0.9I0.1的都低。
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解为以上所述实施例仅为本发明的所作的举例,而并非是对本发明的具体实施例方式的限定。凡是属于本发明的技术方案所引申出的显而易见的修改、补充和等同替换仍处于本发明的保护范围之内。
该专利的研发受国家青年自然科学基金项目(21607041)、浙江省科技厅公益技术应用研究计划项目(2017C33240)和湖州市自然科学基金项目(2015YZ03)的资助。

Claims (3)

1.二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂,其特征在于,该催化剂由二相杂化而成并具有以下的化学组成:ZnO/BiOBr0.9I0.1;其中,0.9和0.1分别为Br和I的化学计量摩尔分数,ZnO质量百分数为10~50%。
2.如权利要求1所述的二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂,其特征在于,所述催化剂呈厚度为2~8nm的薄片。
3.二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂的制备方法,其特征在于,包括以下步骤:
A二维超薄Zn5(CO3)2(OH)6片层的制备
(1)将摩尔比为1:0.1:4的二水醋酸锌、十六烷基三甲基溴化铵、尿素依次溶于去离子水中,制备得到醋酸锌浓度为10-3~10-1M的混合溶液;
(2)将上述混合溶液转入高压反应釜的内衬中,封装后置于鼓风干燥箱中80℃恒温4h,再升到120℃恒温3小时,得到二维超薄Zn5(CO3)2(OH)6前驱体;
(3)将该前驱体分别经过乙醇及去离子水洗涤后离心待用;
B二维超薄ZnO/BiOBr0.9I0.1杂化光催化剂的制备
(1)将前驱体分散到去离子水中,加入摩尔比为9:1的NaBr与KI的混合物,在磁力搅拌下进行溶解并与前驱体进行静电吸附;
(2)以乙二醇为溶剂,制得浓度为7.0g/L的硝酸铋溶液;
(3)将步骤(2)制得的硝酸铋溶液逐滴加入到步骤(1)的体系中,使铋元素和卤元素的摩尔比为1:5,之后于50~60℃水浴1~2h得到Zn5(CO3)2(OH)6/BiOBr0.9I0.1复合物;
(4)将步骤(3)得到复合物经过去离子水洗涤、离心、干燥得到初产物于马弗炉中以3℃/min速率升温到300℃,保温2h后,自然冷却至室温,得到二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂。
CN201710340475.9A 2017-05-15 2017-05-15 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法 Active CN106925306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710340475.9A CN106925306B (zh) 2017-05-15 2017-05-15 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710340475.9A CN106925306B (zh) 2017-05-15 2017-05-15 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106925306A true CN106925306A (zh) 2017-07-07
CN106925306B CN106925306B (zh) 2021-12-17

Family

ID=59430474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710340475.9A Active CN106925306B (zh) 2017-05-15 2017-05-15 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106925306B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058316A (zh) * 2020-09-08 2020-12-11 肇庆市华师大光电产业研究院 一种BiOBr/UMOFNs Z型光催化剂及其制备方法和应用
CN113318762A (zh) * 2021-06-22 2021-08-31 桂林理工大学 一种花球状溴氧化铋包覆氧化锌纳米棒可见光催化剂的制备方法及应用
CN115672405A (zh) * 2022-11-22 2023-02-03 河南师范大学 一种催化材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794186A (zh) * 2007-02-15 2012-11-28 中国科学院上海硅酸盐研究所 卤氧化物光催化材料及其制备方法
CN103111313A (zh) * 2013-02-22 2013-05-22 厦门大学 一种毛刺状BiOI/ZnO微球的制备方法
CN103349976A (zh) * 2013-07-20 2013-10-16 湖州师范学院 一种二维超薄网孔状ZnO纳米光催化剂的制备方法
CN103464184A (zh) * 2013-09-17 2013-12-25 太原理工大学 一种BiOBr/ZnO纳米光催化剂粉体的制备方法
CN104353472A (zh) * 2014-11-26 2015-02-18 安徽工业大学 一种BiOBr/RGO纳米复合材料的制备方法及其在降解罗丹明反应中的应用
CN105521800A (zh) * 2015-12-14 2016-04-27 江南大学 一种超薄BiOBrxI1-x光催化剂及其制备方法
CN106492849A (zh) * 2016-11-03 2017-03-15 江苏大学 一种BiOCl超薄纳米片光催化剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794186A (zh) * 2007-02-15 2012-11-28 中国科学院上海硅酸盐研究所 卤氧化物光催化材料及其制备方法
CN103111313A (zh) * 2013-02-22 2013-05-22 厦门大学 一种毛刺状BiOI/ZnO微球的制备方法
CN103349976A (zh) * 2013-07-20 2013-10-16 湖州师范学院 一种二维超薄网孔状ZnO纳米光催化剂的制备方法
CN103464184A (zh) * 2013-09-17 2013-12-25 太原理工大学 一种BiOBr/ZnO纳米光催化剂粉体的制备方法
CN104353472A (zh) * 2014-11-26 2015-02-18 安徽工业大学 一种BiOBr/RGO纳米复合材料的制备方法及其在降解罗丹明反应中的应用
CN105521800A (zh) * 2015-12-14 2016-04-27 江南大学 一种超薄BiOBrxI1-x光催化剂及其制备方法
CN106492849A (zh) * 2016-11-03 2017-03-15 江苏大学 一种BiOCl超薄纳米片光催化剂的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XING ZHANG ET AL: "Fabrication of BiOBrxI1-x photocatalysts with tunable visible light catalytic activity by modulating band structures", 《SCIENTIFIC REPORTS》 *
XU CHUN SONG ET AL: "The solvothermal synthesis and enhanced photocatalytic activity of Zn2+ doped BiOBr hierarchical nanostructures", 《NEWJ.CHEM.》 *
XUEMEI JIA ET AL: "One-pot synthesis of novel flower-like BiOBr0.9I0.1/BiOI heterojunction with largely enhanced electron-hole separation efficiency and photocatalytic performances", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *
YANHUA TONG ET AL: "ZnO-embedded BiOI hybrid nanoflakes: Synthesis, characterization, and improved photocatalytic properties", 《MATERIALS AND DESIGN》 *
YONGQIAN LEI ET AL: "The Ag-BiOBrxI1-x composite photocatalyst: Preparation,characterization and their novel pollutants removal property", 《APPLIED SURFACE SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058316A (zh) * 2020-09-08 2020-12-11 肇庆市华师大光电产业研究院 一种BiOBr/UMOFNs Z型光催化剂及其制备方法和应用
CN112058316B (zh) * 2020-09-08 2023-03-28 肇庆市华师大光电产业研究院 一种BiOBr/UMOFNs Z型光催化剂及其制备方法和应用
CN113318762A (zh) * 2021-06-22 2021-08-31 桂林理工大学 一种花球状溴氧化铋包覆氧化锌纳米棒可见光催化剂的制备方法及应用
CN115672405A (zh) * 2022-11-22 2023-02-03 河南师范大学 一种催化材料及其制备方法

Also Published As

Publication number Publication date
CN106925306B (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
Xu et al. Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: degradation pathways and mechanism
Li et al. In situ anion exchange strategy to construct flower-like BiOCl/BiOCOOH pn heterojunctions for efficiently photocatalytic removal of aqueous toxic pollutants under solar irradiation
CN105668632B (zh) 一种变价金属催化及掺杂的钨青铜纳米短棒粒子及其制备方法
CN106000431B (zh) 片状CdS/BiOCl复合纳米材料及其制备方法
CN104148047B (zh) 一种碳掺杂氧化锌基可见光催化剂的宏量制备方法
Zhao et al. Photothermal effect of nanomaterials for efficient energy applications
Xue et al. La/Ce-codoped Bi2O3 composite photocatalysts with high photocatalytic performance in removal of high concentration dye
CN106732686B (zh) 一种硫化铟掺杂溴氧化铋复合光催化剂的制备方法
CN103861621B (zh) 一种Bi7O9I3/石墨烯复合可见光催化剂及其制备方法
CN106807411B (zh) 一种铁酸镧掺杂溴化银复合光催化剂的制备方法
CN105289657B (zh) 石墨烯‑硫化锑纳米棒复合可见光催化剂的制备方法
Jin et al. Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution
Synnott et al. Novel microwave assisted synthesis of ZnS nanomaterials
CN106925306A (zh) 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法
CN104588045A (zh) 一种超薄BiOCl纳米片,制备方法及其用途
CN102965105A (zh) 一种石墨烯-CuInS2量子点复合物及其制备方法
Ouyang et al. S, N co-doped graphene quantum dots decorated CdSe for enhanced photoelectric properties
CN104607216B (zh) 磷铝共掺杂型导电氧化锌纳米催化剂的一步合成方法
Lin et al. Effects of multiple irradiations on luminescent materials and energy savings–A case study for the synthesis of BaMO4: Ln3+ (M= W, Mo; Ln= Eu, Tb) phosphors
CN106811832A (zh) 一种珠帘状BiFeO3微纳米纤维的制备方法及所得产品
Liu et al. Room-temperature controllable synthesis of Bi5O7I nanostrips for improved photocatalytic activity
Duan et al. High photocatalytic activity of 2D sheet structure ZnO/Bi2WO6 Z-scheme heterojunction under simulated sunlight
Molaei et al. Impact of rGO on photocatalytic performance of Cd-doped ZnO nanostructures synthesized via a simple aqueous co-precipitation route
CN106944120B (zh) 一种氮化碳/氧化石墨烯/(040)晶面钒酸铋异质结及其制备方法和应用
Shawky et al. Sol–gel synthesis of photoactive Ag2O/Y3Fe5O12 nanojunctions for promoted degradation of ciprofloxacin under visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant