CN106915475A - 一种具有姿控和轨控冗余设计的返回式飞行器 - Google Patents

一种具有姿控和轨控冗余设计的返回式飞行器 Download PDF

Info

Publication number
CN106915475A
CN106915475A CN201710047273.5A CN201710047273A CN106915475A CN 106915475 A CN106915475 A CN 106915475A CN 201710047273 A CN201710047273 A CN 201710047273A CN 106915475 A CN106915475 A CN 106915475A
Authority
CN
China
Prior art keywords
attitude control
control engine
engine
attitude
engines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710047273.5A
Other languages
English (en)
Inventor
石凯宇
陈勤
李海滨
付仕明
穆育强
和宇硕
刘昕
房红军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Electronic System Engineering
Original Assignee
Beijing Institute of Electronic System Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Electronic System Engineering filed Critical Beijing Institute of Electronic System Engineering
Priority to CN201710047273.5A priority Critical patent/CN106915475A/zh
Publication of CN106915475A publication Critical patent/CN106915475A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • B64G1/245Attitude control algorithms for spacecraft attitude control

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开一种具有姿控和轨控冗余设计的返回式飞行器,包括:飞行器本体以及设置在飞行器本体上的姿控发动机,所述姿控发动机的数量为12台,且以3台为一组呈T型均匀布置在飞行器本体的外周面上。采用本发明的姿控发动机布局方式的返回式飞行器,可以实现姿轨控发动机故障情况下的离轨制动。

Description

一种具有姿控和轨控冗余设计的返回式飞行器
技术领域
本发明涉及返回式飞行器。更具体地,涉及一种具有姿控和轨控冗余设计的返回式飞行器。
背景技术
姿控发动机布局设计是返回式飞行器结构设计的重要内容。在返回式飞行器设计中,一方面要考虑姿控冗余,即在一组姿控发动机失效的情况下可以利用备份姿控发动机实现姿态控制,另一方面要考虑轨控冗余,即在轨控发动机失效的情况下,可以利用部分姿控发动机,在不影响姿控效果的前提下实现轨道控制。
以往的方法中,一种是例如多用途载人飞船(MPCV)的姿控发动机布局方法,该布局方法是返回舱普遍采用的经典布局方法,其在返回舱的背风面安装了12姿控发动机,其中4台控制滚转,4台控制偏航,4台控制俯仰,具有较强的姿控冗余能力。
另外一种常见的姿控发动机布局如图1所示。在飞行器的尾部布置了六台姿控发动机,其中1#、2#、3#发动机为一组,4#、5#、6#发动机为一组,分别安装在+Y轴和-Y轴处。其中1#、3#、4#、6#发动机控制滚转和偏航,而2#、5#号发动机控制俯仰。
以上的技术方案中,阿波罗返回舱在设计时侧重于姿态控制的冗余性,并不具备轨控冗余的能力。而六姿控发动机在1#、3#、4#、6#姿控发动机有一个发生故障的情况下,可以实现一定程度的姿控冗余,然而,若2#或者5#姿控发动机发生故障,则无法实现俯仰通道的控制;当轨控发动机故障时,无法提供轨控推力。
发明内容
针对上述现有技术中存在的问题,本发明的目的在于提供一种具有姿控和轨控冗余设计的返回式飞行器,解决传统姿控发动机布局无法满足冗余备份要求的要求。
为达到上述目的,本发明采用下述技术方案:
一种具有姿控和轨控冗余设计的返回式飞行器,包括:飞行器本体以及设置在飞行器本体上的姿控发动机,所述姿控发动机的数量为12台,且以3台为一组呈T型均匀布置在飞行器本体的外周面上。
优选地,在圆周上相对的两组姿控发动机作为主份姿控系统,另一相对的两组姿控发动机作为备份姿控发动机,所述主份自控系统和备份姿控系统均通过自锁阀进行控制。
优选地,四组姿控发动机布置在飞行器本体的尾部,第一组姿控发动机包括第1、2、3姿控发动机,第一组姿控发动机布置在返回式飞行器本体坐标系的(-L,R,0)位置,第二组姿控发动机包括第4、5、6姿控发动机,第二组姿控发动机布置在返回式飞行器本体坐标系的(-L,0,R)位置,第三组姿控发动机包括第7、8、9姿控发动机,第三组姿控发动机布置在返回式飞行器本体坐标系的(-L,-R,0)位置,第四组姿控发动机包括第10、11、12姿控发动机,第四组姿控发动机布置在返回式飞行器本体坐标系的(-L,0,-R)位置,L为姿控发动机安装平面与质心的距离,R为姿控发动机喉管与返回式飞行器X轴的距离。
优选地,第2、5、8、11姿控发动机朝向-X轴方向,第1、9姿控发动机朝向-Z轴方向,第3、7姿控发动机朝向Z轴方向,第4、12姿控发动机朝向Y轴方向,第6、10姿控发动机朝向-Y轴方向。
本发明的有益效果如下:
本发明的返回式飞行器可以用在轨道坐标系下的导航姿态θo,Ψo,γo,能否稳定跟踪指令姿态来考察姿控效果,而用需要速度减量来考察轨控效果。在正常情况下,在姿控发动机的控制下,导航姿态可以跟踪指令姿态,在轨控发动机的开机下,需要速度减量一直降低。
首先考虑姿控故障条件下的控制效果。考虑这样一种情况,在离轨制动的第50s,突然有一个姿控发动机失效,现有技术中的“六姿控发动机”方案以及本姿控发动机布局方案的效果:
图2和图3中Rz1~Rz12分别表示1#姿控发动机到12#姿控发动机,Rg表示轨控发动机,Rzsf1~Rzsf3分别表示1#自锁阀到3#自锁阀。
由图2-7可知,在50s有一个姿控发动机失效的情况下,现有的六姿控发动机飞行器姿态角无法跟踪指令姿态角,姿控失败,需要速度减量无法进一步下降,轨控失败。而本发明采用的十二姿控发动机飞行器,在50s发现5#姿控发动机失效后,立刻关闭其对应的2#自锁阀,采用(1,2,3),(7,8,9)六个姿控发动机实施姿态控制,姿态角依旧可以稳定跟踪指令姿态,轨控发动机可以正常开机,需要速度减量持续下降,实现了在个别姿控发动机故障情况下的正常离轨制动。
然后考虑轨控故障条件下的控制效果。考虑这样一种情况,在离轨制动的第50s,突然轨控发动机失效,比较现有的“六姿控发动机”方案以及本姿控发动机布局方案的效果:
由图可知,在50s轨控发动机失效的情况下,现有的六姿控发动机飞行器需要速度减量无法进一步下降,轨控失败。而本发明采用的十二姿控发动机飞行器,在50s发现轨控发动机失效后,立刻关闭其对应的3#自锁阀,利用2、5、8、11四个姿控发动机同时开机产生推力进行轨道控制,而利用1、3、4、6、7、9、10、12八个姿控发动机进行姿态控制,姿态角依旧可以稳定跟踪指令姿态,需要速度减量持续下降,实现了在轨控发动机故障情况下的正常离轨制动。
以上两种情况表明,采用本发明的姿控发动机布局方式的返回式飞行器,可以实现姿轨控发动机故障情况下的离轨制动。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出一种现有技术的姿控发动机布局结构示意图。
图2示出现有技术的姿轨控开机序列图。
图3示出本发明十二姿轨控开机序列图。
图4示出现有技术的飞行器姿态角。
图5示出本发明的飞行器姿态角。
图6示出现有技术的飞行器需要速度减量。
图7示出本发明的飞行器需要速度减量。
图8示出本发明的结构示意图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
姿控发动机数量的选择要尽量满足“使用最少的发动机实现姿轨控冗余备份”的目的。理论上已经证明:四姿控发动机布局是实现大气层外飞行器三通道有效控制的最小发动机布局形式。但是4姿控发动机既不能满足姿控冗余,也无法满足轨控冗余。对于每个通道的控制,均有正向控制和反向控制,因此姿控发动机的数目一般为大于4的偶数。
姿控发动机的安装位置选择包括姿控发动机布局平面在整个返回式飞行器的位置选择以及姿控发动机在布局平面内的安装位置选择。在设计的过程中,要考虑返回式飞行器其他部件的约束。为了防止姿控发动机羽流对舱体结构以及光学设备的影响,姿控发动机布局平面一般设计在飞行器的前端或者后端,具体选择要考虑返回式飞行器的气动布局,对于充气式返回式飞行器,姿控发动机布局平面要设计在飞行器的后端,这样发动机处于飞行器的背风面,在再入过程中气动热对发动机的影响较小,同时,发动机的火焰也不会对气囊产生烧蚀;而姿控发动机在布局平面内的安装位置选择则还要考虑发动机管路设计的便利性。
姿控发动机的安装角度可以是“倾斜”安装,也可以是“横平竖直”安装。“倾斜”安装姿控发动机可以提供较多的控制档位,但是控制的耦合性较强;“横平竖直”的安装方式则三通道的耦合性较弱。另外,安装角度也要考虑姿轨控冗余的要求。
如图8所示,一种具有姿控和轨控冗余设计的返回式飞行器,包括飞行器本体100和12台姿控发动机,12台姿控发动机分成4组,每组3台,采用三机组合,呈“T”型布置在返回式飞行器100尾部外圆周面上。即有(1,2,3),(4,5,6),(7,8,9),(10,11,12)四组姿控发动机,将(1,2,3)、(7,8,9)六个姿控发动机作为主份姿控系统,用一个自锁阀统一控制,将(4,5,6)、(10,11,12)六个姿控发动机作为备份姿控系统,用另一个自锁阀统一控制。
四组姿控发动机均布局在返回式飞行器的尾部,其中(1,2,3)发动机布置在返回式飞行器本体坐标系的(-L,R,0)位置,(4,5,6)发动机布置在返回式飞行器本体坐标系的(-L,0,R)位置,(7,8,9)发动机布置在返回式飞行器本体坐标系的(-L,-R,0)位置,(10,11,12)发动机布置在返回式飞行器本体坐标系的(-L,0,-R)位置,L为姿控发动机安装平面与质心的距离,R为姿控发动机喉管与返回式飞行器X轴的距离。
2、5、8、11四个姿控发动机朝向为-X方向,1、9姿控发动机朝向为-Z方向,3、7姿控发动机朝向为Z方向,4、12姿控发动机朝向为Y方向,6、10姿控发动机朝向为-Y方向。
在返回式飞行器离轨制动过程中,姿控发动机的工作模式有以下三种情况:1)如果轨控发动机工作正常,则所有姿控发动机均用于姿态控制;2)如果轨控发动机工作异常,则可以关闭主发动机,利用2、5、8、11四个姿控发动机同时开机产生推力进行轨道控制,而利用1、3、4、6、7、9、10、12八个姿控发动机进行姿态控制;3)如果主份姿控系统发生故障,可关闭主份姿控系统的自锁阀,采用备份姿控系统进行姿态控制。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (4)

1.一种具有姿控和轨控冗余设计的返回式飞行器,包括:飞行器本体以及设置在飞行器本体上的姿控发动机,其特征在于,所述姿控发动机的数量为12台,且以3台为一组呈T型均匀布置在飞行器本体的外周面上。
2.根据权利要求1所述的返回式飞行器,其特征在于,在圆周上相对的两组姿控发动机作为主份姿控系统,另一相对的两组姿控发动机作为备份姿控发动机,所述主份自控系统和备份姿控系统均通过自锁阀进行控制。
3.根据权利要求1所述的返回式飞行器,其特征在于,四组姿控发动机布置在飞行器本体的尾部,第一组姿控发动机包括第1、2、3姿控发动机,第一组姿控发动机布置在返回式飞行器本体坐标系的(-L,R,0)位置,第二组姿控发动机包括第4、5、6姿控发动机,第二组姿控发动机布置在返回式飞行器本体坐标系的(-L,0,R)位置,第三组姿控发动机包括第7、8、9姿控发动机,第三组姿控发动机布置在返回式飞行器本体坐标系的(-L,-R,0)位置,第四组姿控发动机包括第10、11、12姿控发动机,第四组姿控发动机布置在返回式飞行器本体坐标系的(-L,0,-R)位置,L为姿控发动机安装平面与质心的距离,R为姿控发动机喉管与返回式飞行器X轴的距离。
4.根据权利要求3所述的返回式飞行器,其特征在于,第2、5、8、11姿控发动机朝向-X轴方向,第1、9姿控发动机朝向-Z轴方向,第3、7姿控发动机朝向Z轴方向,第4、12姿控发动机朝向Y轴方向,第6、10姿控发动机朝向-Y轴方向。
CN201710047273.5A 2017-01-22 2017-01-22 一种具有姿控和轨控冗余设计的返回式飞行器 Pending CN106915475A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710047273.5A CN106915475A (zh) 2017-01-22 2017-01-22 一种具有姿控和轨控冗余设计的返回式飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710047273.5A CN106915475A (zh) 2017-01-22 2017-01-22 一种具有姿控和轨控冗余设计的返回式飞行器

Publications (1)

Publication Number Publication Date
CN106915475A true CN106915475A (zh) 2017-07-04

Family

ID=59453522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710047273.5A Pending CN106915475A (zh) 2017-01-22 2017-01-22 一种具有姿控和轨控冗余设计的返回式飞行器

Country Status (1)

Country Link
CN (1) CN106915475A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108332619A (zh) * 2018-01-18 2018-07-27 北京航天长征飞行器研究所 一种空间智能姿控飞行器
CN109657256A (zh) * 2017-10-12 2019-04-19 北京电子工程总体研究所 一种高精度弹道式再入标称返回轨道仿真方法
CN111024094A (zh) * 2019-12-23 2020-04-17 北京电子工程总体研究所 飞行器自主允许离轨判断方法
CN111516909A (zh) * 2020-04-30 2020-08-11 北京星际荣耀空间科技有限公司 一种火箭姿态控制系统
CN111674572A (zh) * 2020-08-11 2020-09-18 北京控制与电子技术研究所 适于姿轨控一体的深空撞击器及协同控制方法
CN112124631A (zh) * 2020-09-11 2020-12-25 中国运载火箭技术研究院 自适应分档控制方法、控制装置及存储介质
CN116902227A (zh) * 2023-09-14 2023-10-20 北京控制工程研究所 姿控欠能力下的离轨制动控制方法、装置、设备及介质
CN117022680A (zh) * 2023-10-09 2023-11-10 北京控制工程研究所 轨控发动机故障下的自主离轨制动控制方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204400A (ja) * 1990-01-08 1991-09-05 Mitsubishi Electric Corp 姿勢/軌道制御スラスタ
WO2005044664A2 (de) * 2003-11-05 2005-05-19 Eads Space Transportation Gmbh Träger für den transport einer nutzlast und verfahren zum ändern der umlaufbahn eines trägers
CN104058104A (zh) * 2014-05-30 2014-09-24 北京控制工程研究所 无加速度计情况下一种基于关调制的高精度轨控方法
CN103818564B (zh) * 2014-03-04 2015-11-25 中国人民解放军国防科学技术大学 一种采用小推力的航天器轨道维持与对地定向姿态保持一体化控制方法
CN105883008A (zh) * 2014-12-15 2016-08-24 中国空间技术研究院 卫星推力器布局方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204400A (ja) * 1990-01-08 1991-09-05 Mitsubishi Electric Corp 姿勢/軌道制御スラスタ
WO2005044664A2 (de) * 2003-11-05 2005-05-19 Eads Space Transportation Gmbh Träger für den transport einer nutzlast und verfahren zum ändern der umlaufbahn eines trägers
CN103818564B (zh) * 2014-03-04 2015-11-25 中国人民解放军国防科学技术大学 一种采用小推力的航天器轨道维持与对地定向姿态保持一体化控制方法
CN104058104A (zh) * 2014-05-30 2014-09-24 北京控制工程研究所 无加速度计情况下一种基于关调制的高精度轨控方法
CN105883008A (zh) * 2014-12-15 2016-08-24 中国空间技术研究院 卫星推力器布局方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡军: "神舟飞船制导、导航与控制分系统研制与飞行结果评价", 《航天器工程》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109657256A (zh) * 2017-10-12 2019-04-19 北京电子工程总体研究所 一种高精度弹道式再入标称返回轨道仿真方法
CN109657256B (zh) * 2017-10-12 2023-04-18 北京电子工程总体研究所 一种高精度弹道式再入标称返回轨道仿真方法
CN108332619A (zh) * 2018-01-18 2018-07-27 北京航天长征飞行器研究所 一种空间智能姿控飞行器
CN111024094A (zh) * 2019-12-23 2020-04-17 北京电子工程总体研究所 飞行器自主允许离轨判断方法
CN111516909A (zh) * 2020-04-30 2020-08-11 北京星际荣耀空间科技有限公司 一种火箭姿态控制系统
CN111674572A (zh) * 2020-08-11 2020-09-18 北京控制与电子技术研究所 适于姿轨控一体的深空撞击器及协同控制方法
CN111674572B (zh) * 2020-08-11 2020-11-17 北京控制与电子技术研究所 适于姿轨控一体的深空撞击器
CN112124631A (zh) * 2020-09-11 2020-12-25 中国运载火箭技术研究院 自适应分档控制方法、控制装置及存储介质
CN116902227A (zh) * 2023-09-14 2023-10-20 北京控制工程研究所 姿控欠能力下的离轨制动控制方法、装置、设备及介质
CN116902227B (zh) * 2023-09-14 2023-12-08 北京控制工程研究所 姿控欠能力下的离轨制动控制方法、装置、设备及介质
CN117022680A (zh) * 2023-10-09 2023-11-10 北京控制工程研究所 轨控发动机故障下的自主离轨制动控制方法和装置
CN117022680B (zh) * 2023-10-09 2023-12-05 北京控制工程研究所 轨控发动机故障下的自主离轨制动控制方法和装置

Similar Documents

Publication Publication Date Title
CN106915475A (zh) 一种具有姿控和轨控冗余设计的返回式飞行器
CN105843239B (zh) 一种用于组合航天器姿态控制推力器布局优化方法
CN102358437B (zh) 高轨道卫星平台10n推力器布局方法
CN105700542B (zh) 一种基于矢量场制导和最小二乘法的平流层飞艇控制分配方法
US20160176545A1 (en) Thruster support mechanism for satellite propulsion
CN104898680A (zh) 一种基于固体游动发动机的固体运载火箭姿态控制方法
CN104477376B (zh) 一种高超声速飞行器气动舵/反作用控制系统复合气动控制方法
CN103963966A (zh) 用于滑行的飞行器的侧向控制的方法和装置
CN107521669A (zh) 利用推力差修整控制飞行器
CN108216621A (zh) 一种机翼翼尖连接并联式子母飞行器
US11772828B2 (en) Aerospace vehicle entry flightpath control
CN106628260A (zh) 一种航天器推力器共面双备份的布局设计方法
CN105157487A (zh) 基于解析冗余的导弹舵机故障容错控制方法
EP2862806B1 (en) Flight vehicle with a differential throttling control enhancement
CN116045744A (zh) 一种固体运载火箭分离体残骸落区的控制方法和装置
KR102033205B1 (ko) 조합된 스티어링 및 항력-저감 디바이스
CN107985631A (zh) 低轨微纳卫星及适用于脉冲微弧电推力器的在轨安装方法
CN107340715A (zh) 一种返回式飞行器离轨制动期间的轨控容错控制方法
CN103010454A (zh) 具有冗余气动布局的乘波飞行器及其操控方法
CN113341710A (zh) 一种飞行器敏捷转弯复合控制律及其建立方法和应用
CN105799949B (zh) 一种亚轨道卫星的压心设计方法、姿态控制方法和系统
CN111232208A (zh) 翼尖柔性连接固定翼组合无人机及其姿态控制方法
RU2321526C1 (ru) Многоразовый ускоритель ракеты-носителя
CN108490808A (zh) 一种基于控制分配技术的飞行器重构设计方法
US20020189232A1 (en) Outlet device for a jet engine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170704

WD01 Invention patent application deemed withdrawn after publication