CN106914261B - 一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用 - Google Patents

一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用 Download PDF

Info

Publication number
CN106914261B
CN106914261B CN201710103091.5A CN201710103091A CN106914261B CN 106914261 B CN106914261 B CN 106914261B CN 201710103091 A CN201710103091 A CN 201710103091A CN 106914261 B CN106914261 B CN 106914261B
Authority
CN
China
Prior art keywords
graphene oxide
silver
composite material
carbonic acid
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710103091.5A
Other languages
English (en)
Other versions
CN106914261A (zh
Inventor
白雪
梁禄
禹露
张琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201710103091.5A priority Critical patent/CN106914261B/zh
Publication of CN106914261A publication Critical patent/CN106914261A/zh
Application granted granted Critical
Publication of CN106914261B publication Critical patent/CN106914261B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用,属于光催化纳米材料技术领域。棒状纳米碳酸银修饰到氧化石墨烯表面后转变为纳米球,粒径为50~100nm,制备方法为:避光条件下,将表面活性剂加入硝酸银溶液中,再逐滴加入碳酸钠溶液,磁力搅拌混匀后进行水热反应、洗涤、烘干后得到棒状纳米碳酸银,将氧化石墨烯和得到的棒状纳米碳酸银混合反应、产物离心洗涤、烘干后得到最终产物。该复合材料解决了单独的纳米碳酸银作为光催化材料在可见光条件下会表现出不稳定性,可重复利用性差,催化活性低的问题,可以在可见光下高效光催化降解苯酚,从而提供一种可应用于废水处理系统中有机污染物降解的光催化材料。

Description

一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法 及应用
技术领域
本发明属于光催化纳米材料技术领域,具体为一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用。
背景技术
光催化降解是近年来发展起来的水污染控制领域的一项重要技术,指有机物在光照和光催化剂的双重作用下,经过一系列反应产生具有强氧化能力的羟基自由基和超级氧离子,来降解分解有机污染物,有机物逐步氧化成低分子中间产物,并最终生成二氧化碳、水及其它离子如硝酸根、磷酸根、氯离子等,从而实现有机污染物的降解去除。光催化剂在有机物光降解中的作用不容小觑,半导体光催化剂具有很多优异的光学性能,近几十年来在能源和环境中的诸多应用使其受到光降解污染物研究领域的广泛关注。
作为一种半导体光催化材料,碳酸银在可见光下具有高效的光催化降解有机物的性能。然而,用单独的纳米碳酸银作为光催化材料在光照下会表现出不稳定性,主要由于金属银元素易于促进光生电子和空穴的复合,导致材料产生光学腐蚀,从而使得光催化降解性能有所降低。为解决上述问题,在碳酸银中引入一种新型纳米材料氧化石墨烯,氧化石墨烯是石墨烯氧化的产物,表面含有大量羟基和羧基官能团,通过共价作用可以与光催化材料结合形成复合材料。更重要的是,氧化石墨烯有利于拓宽纳米碳酸银对太阳光谱的吸收范围,从而促进更多电子空穴对的产生;同时,氧化石墨烯能加速电子传递,通过对光生电子的转移有效抑制碳酸银的光生电子和空穴的复合。
随着纳米技术的发展,纳米结构半导体材料的制备已经不是难题。鉴于光催化剂的反应活性点位越多越有利于增强其光催化性能,将碳酸银制备成纳米级能增加材料比表面积,从而提高其对污染物的光催化降解效率。本申请实现纳米级碳酸银的一步制备,并将其修饰到氧化石墨烯表面,碳酸银的纳米形态进一步优化,得到一种碳酸银纳米球修饰的氧化石墨烯复合材料,这种复合光催化材料在光催化活性和材料稳定性方面都将有显著提高。
发明内容
解决的技术问题:针对单独的纳米碳酸银作为光催化材料在光照条件下会表现出不稳定性,催化活性低的问题,本发明提供一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用,可以在可见光下高效光催化降解苯酚,从而提供一种可应用于废水处理系统中有机污染物降解的光催化材料。
技术方案:一种碳酸银纳米球修饰的氧化石墨烯复合材料,棒状纳米碳酸银通过静电自组装修饰到氧化石墨烯表面后转变为纳米球,粒径为50~100nm。
一种上述碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,包括以下步骤:
步骤一、避光条件下,将表面活性剂十六烷基三甲基溴化铵溶液加入硝酸银溶液,再逐滴加入碳酸钠溶液,经磁力搅拌充分混匀后转移至高压反应釜中进行水热反应,待产物自然冷却至室温后用乙醇离心洗涤,烘干得到表面带正电性的棒状纳米碳酸银;
步骤二、避光条件下,将呈现负电性的氧化石墨烯超声分散在乙二醇中,再将步骤一所得的纳米碳酸银超声分散在蒸馏水中,混合并磁力搅拌,发生静电作用促进材料间的自组装反应,产物用蒸馏水离心洗涤,烘干得到碳酸银纳米球修饰的氧化石墨烯复合材料。
作为优选,所述步骤一中硝酸银溶液、十六烷基三甲基溴化铵溶液与碳酸钠溶液的浓度分别为0.1mol/L、3.5mmol/L、0.1mol/L,其溶液体积比例为1:1:0.5,体积范围为20~40mL:20~40mL:10~20mL,磁力搅拌充分混匀时间为0.5-1.5小时。
作为优选,所述步骤一中硝酸银溶液、十六烷基三甲基溴化铵溶液与碳酸钠溶液的比例优选为30mL:30mL:15mL,磁力搅拌充分混匀时间为1小时。
作为优选,所述步骤一中水热反应的温度为60~80℃,反应1~3小时。
作为优选,所述步骤一中水热反应的温度优选为70℃,反应2小时。
作为优选,所述步骤二中碳酸银与氧化石墨烯的质量比为50~150:1,磁力搅拌充分混匀时间为1~3小时。
作为优选,所述步骤二中碳酸银与氧化石墨烯的质量比优选为100:1,磁力搅拌充分混匀时间为2小时。
一种碳酸银纳米球修饰的氧化石墨烯复合材料在光催化降解废水中有机污染物上的应用。
作为优选,所述有机污染物为酚类。
有益效果:1、纳米碳酸银的水热合成过程中,添加表面活性剂十六烷基三甲基溴化铵溶液以控制碳酸银纳米形态的生长,残留的表面活性剂用乙醇离心洗涤去除;
2、碳酸银纳米球修饰的氧化石墨烯复合材料的制备中,发生静电自组装反应,所述静电自组装反应能够使棒状纳米碳酸银的正电荷银离子部分与带负电的氧化石墨烯通过静电吸附作用而均匀稳固地结合;
3、碳酸银修饰到氧化石墨烯表面后,由原来的纳米棒状转变为粒径50~100nm的纳米球,纳米碳酸银尺寸的优化使复合材料的比表面积显著增大,有利于光催化性能的提高。
附图说明
图1为实施例3中纳米碳酸银和碳酸银纳米球修饰的氧化石墨烯复合材料的扫描电镜图;
图2为实施例3中氧化石墨烯、纳米碳酸银和碳酸银纳米球修饰的氧化石墨烯复合材料的红外光谱图;
图3为实施例4中可见光下苯酚的光催化降解图。
具体实施方式
下面结合附图及具体实施方式对本发明做进一步详细说明。
实施例1
一种碳酸银纳米球修饰的氧化石墨烯复合材料,棒状纳米碳酸银通过静电自组装修饰到氧化石墨烯表面后转变为纳米球,平均粒径约为50nm。
一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,步骤如下:
步骤一、在避光条件下,将20ml 3.5mmol/L表面活性剂十六烷基三甲基溴化铵溶液加入20ml 0.1m/L的硝酸银水溶液,再向混合物中逐滴加入10ml 0.1m/L的碳酸钠水溶液,经磁力搅拌充分混匀1小时后转移到高压反应釜中,
在70℃下水热反应2小时,待产物自然冷却至室温后用乙醇离心洗涤3次,最后烘干得到棒状纳米碳酸银;
步骤二、在避光条件下,将1.0mg氧化石墨烯超声分散在乙二醇中,步骤一所得的纳米碳酸银取0.1g超声分散在蒸馏水中,混合并磁力搅,使之发生静电自组装反应,反应2小时后用蒸馏水离心洗涤3次,最后烘干得到碳酸银纳米球修饰的氧化石墨烯复合材料。
实施例2
一种碳酸银纳米球修饰的氧化石墨烯复合材料,棒状纳米碳酸银修饰到氧化石墨烯表面后转变为纳米球,平均粒径约为100nm。
一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,步骤如下:
步骤一、在避光条件下,将40ml 3.5mmol/L表面活性剂十六烷基三甲基溴化铵溶液加入40ml 0.1m/L的硝酸银水溶液,再向混合物中逐滴加入20ml 0.1m/L的碳酸钠水溶液,经磁力搅拌充分混匀1小时后转移到高压反应釜中,在70℃下水热反应2小时,待产物自然冷却至室温后用乙醇离心洗涤3次,最后烘干得到棒状纳米碳酸银;
步骤二、在避光条件下,将3.0mg氧化石墨烯超声分散在乙二醇中,步骤一所得的纳米碳酸银取0.3g超声分散在蒸馏水中,混合并磁力搅拌,使之发生静电自组装反应,反应2小时后用蒸馏水离心洗涤3次,最后烘干得到碳酸银纳米球修饰的氧化石墨烯复合材料。
实施例3
一种碳酸银纳米球修饰的氧化石墨烯复合材料,棒状纳米碳酸银修饰到氧化石墨烯表面后转变为纳米球,平均粒径约为70nm。
一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,步骤如下:
步骤一、在避光条件下,将30ml 3.5mmol/L表面活性剂十六烷基三甲基溴化铵溶液加入30ml 0.1m/L的硝酸银水溶液,再向混合物中逐滴加入15ml 0.1m/L的碳酸钠水溶液,经磁力搅拌充分混匀1小时后转移到高压反应釜中,在70℃下水热反应2小时,待产物自然冷却至室温后用乙醇离心洗涤3次,最后烘干得到棒状纳米碳酸银;
步骤二、在避光条件下,将2.0mg氧化石墨烯超声分散在乙二醇中,步骤一所得的纳米碳酸银取0.2g超声分散在蒸馏水中,混合并磁力搅拌,使之发生静电自组装反应,反应2小时后用蒸馏水离心洗涤3次,最后烘干得到碳酸银纳米球修饰的氧化石墨烯复合材料。
实施例4
实施例3制得的碳酸银纳米球修饰的氧化石墨烯复合材料对苯酚的光催化降解应用:
取50mg实施例3制得的碳酸银纳米球修饰的氧化石墨烯复合材料,加入50mL10mg/L的苯酚溶液,在避光条件下,超声30分钟以保证纳米复合材料光催化剂完全分散于溶液中,继续将分散液置于磁力搅拌下充分混匀1小时以达到吸附-解吸平衡,然后转移到可见光下发生光催化降解反应,反应后所得混合物用薄膜过滤器过滤,使用高效液相色谱测定光催化降解前后苯酚的浓度变化。
为了进一步证明纳米碳酸银的性能优越,用普通沉淀法制备得到碳酸银,并通过与步骤二相同的方法制备碳酸银-氧化石墨烯材料。控制其他条件相同,在没有催化剂(nocatalyst)、仅有氧化石墨烯(GO)、仅有纳米碳酸银(Ag2CO3,HT)、仅有沉淀法制备的碳酸银(Ag2CO3)和沉淀法制备的碳酸银-氧化石墨烯(GO/Ag2CO3)材料的情况下,作为五组对照实验,与实施例3制备的纳米碳酸银-氧化石墨烯(GO/Ag2CO3,HT)材料一起对苯酚进行光催化降解。如图3所示,在没有催化剂和仅有氧化石墨烯的情况下,苯酚几乎未发生降解;对比两种制备方法得到的碳酸银对苯酚的降解曲线,发现水热法制备的纳米碳酸银对苯酚的降解率明显更高;水热法制备的纳米碳酸银及其复合材料对苯酚的吸收及光催化降解结果如表1。
表1 水热法制备的碳酸银对苯酚的吸收及光催化降解结果
在碳酸银纳米球修饰的氧化石墨烯复合材料的催化作用下,苯酚的浓度降低最为显著。这说明了碳酸银纳米球修饰的氧化石墨烯复合材料在可见光下光催化降解苯酚的应用具有显著的优越性。
以上所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。此外,以上实施例中所使用的硝酸银、十六烷基三甲基溴化铵、碳酸钠、乙醇和乙二醇购自国药集团化学试剂有限公司,氧化石墨烯购自先锋纳米材料科技有限公司;实施例中所使用的高效液相色谱以甲醇为流动相。

Claims (7)

1.一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,其特征在于,包括以下步骤:
步骤一、避光条件下,将表面活性剂十六烷基三甲基溴化铵溶液加入硝酸银溶液,再逐滴加入碳酸钠溶液,经磁力搅拌充分混匀后转移至高压反应釜中进行水热反应,待产物自然冷却至室温后用乙醇离心洗涤,烘干得到表面带正电性的纳米碳酸银;
步骤二、避光条件下,将呈现负电性的氧化石墨烯超声分散在乙二醇中,再将步骤一所得的纳米碳酸银超声分散在蒸馏水中,混合并磁力搅拌,发生静电作用促进材料间的自组装反应,产物用蒸馏水离心洗涤,烘干得到碳酸银纳米球修饰的氧化石墨烯复合材料,棒状纳米碳酸银通过静电自组装修饰到氧化石墨烯表面后形成纳米球,粒径为50-100nm。
2.根据权利要求1所述的一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,其特征在于,所述步骤一中硝酸银溶液、十六烷基三甲基溴化铵溶液与碳酸钠溶液的浓度分别为0.1mol/L、3.5mmol/L、0.1mol/L,其溶液体积比例为1:1:0.5,体积范围为20~40mL:20~40mL:10~20mL,磁力搅拌充分混匀时间为0.5-1.5小时。
3.根据权利要求1所述的一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,其特征在于,所述步骤一中硝酸银溶液、十六烷基三甲基溴化铵溶液与碳酸钠溶液的比例为30mL:30mL:15mL,磁力搅拌充分混匀时间为1小时。
4.根据权利要求1所述的一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,其特征在于,所述步骤一中水热反应的温度为60~80℃,反应1~3小时。
5.根据权利要求1所述的一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,其特征在于,所述步骤一中水热反应的温度为70℃,反应2小时。
6.根据权利要求1所述的一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,其特征在于,所述步骤二中碳酸银与氧化石墨烯的质量比为50~150:1,磁力搅拌充分混匀时间为1~3小时。
7.根据权利要求1所述的一种碳酸银纳米球修饰的氧化石墨烯复合材料的制备方法,其特征在于,所述步骤二中碳酸银与氧化石墨烯的质量比为100:1,磁力搅拌充分混匀时间为2小时。
CN201710103091.5A 2017-02-24 2017-02-24 一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用 Expired - Fee Related CN106914261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710103091.5A CN106914261B (zh) 2017-02-24 2017-02-24 一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710103091.5A CN106914261B (zh) 2017-02-24 2017-02-24 一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN106914261A CN106914261A (zh) 2017-07-04
CN106914261B true CN106914261B (zh) 2019-07-05

Family

ID=59454191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710103091.5A Expired - Fee Related CN106914261B (zh) 2017-02-24 2017-02-24 一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN106914261B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110102324A (zh) * 2019-03-26 2019-08-09 广东工业大学 一种新型高效碳酸银/溴化银/go三元复合光催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447061A (zh) * 2013-08-16 2013-12-18 安徽师范大学 碳酸银-氧化石墨烯复合纳米材料及其制备方法及应用
CN103934013A (zh) * 2014-04-18 2014-07-23 江苏大学 一种复合光催化剂及其制备方法
CN104841467A (zh) * 2015-04-21 2015-08-19 昆明理工大学 一种介孔碳酸银纳米棒可见光催化剂及其制备方法
CN105521808A (zh) * 2014-09-30 2016-04-27 四川大学 可见光催化剂碳酸银的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447061A (zh) * 2013-08-16 2013-12-18 安徽师范大学 碳酸银-氧化石墨烯复合纳米材料及其制备方法及应用
CN103934013A (zh) * 2014-04-18 2014-07-23 江苏大学 一种复合光催化剂及其制备方法
CN105521808A (zh) * 2014-09-30 2016-04-27 四川大学 可见光催化剂碳酸银的制备方法
CN104841467A (zh) * 2015-04-21 2015-08-19 昆明理工大学 一种介孔碳酸银纳米棒可见光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation and characterization of graphene oxide/Ag2CO3 photocatalyst and its visible light photocatalytic activity;Jiade Li et al;《Applied Surface Science》;20150713;第358卷;第68-174页
Re-investigation on reduced graphene oxide/Ag2CO3 composite photocatalyst: An insight into the double-edged sword role of RGO;Wenguang Wang et al;《Applied Surface Science》;20161106;摘要,第2.1节,2.3节,第3.2节

Also Published As

Publication number Publication date
CN106914261A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
CN100434167C (zh) 负载贵金属的碳纳米材料的制备方法
CN102963934B (zh) 钨酸铋量子点及其与石墨烯复合材料的制备方法
Chen et al. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light
CN103480399B (zh) 一种微纳结构磷酸银基复合可见光催化材料及其制备方法
Zhuang et al. Degradation of octane using an efficient and stable core-shell Fe3O4@ C during Fenton processes: Enhanced mass transfer, adsorption and catalysis
Zhu et al. Visible-light-driven Ag/Ag 3 PO 4-based plasmonic photocatalysts: Enhanced photocatalytic performance by hybridization with graphene oxide
CN103480353A (zh) 一种用水热法合成碳量子点溶液制备复合纳米光催化剂的方法
CN108722445B (zh) 一种超薄卤氧化铋基固溶体光催化剂及其制备方法和应用
Gao et al. In situ growth of 2D/3D Bi2MoO6/CeO2 heterostructures toward enhanced photodegradation and Cr (VI) reduction
Altin CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A
Shan et al. Highly active magnetic bismuth tungstate/magnetite composite under visible light irradiation in the presence of hydrogen peroxide
Chen et al. Large-scale synthesis and enhanced visible-light-driven photocatalytic performance of hierarchical Ag/AgCl nanocrystals derived from freeze-dried PVP–Ag+ hybrid precursors with porosity
Mu et al. Visible light photocatalytic activity of Cu, N co-doped carbon dots/Ag3PO4 nanocomposites for neutral red under green LED radiation
CN107252685A (zh) 一种含羟基胺类化合物功能化磁性氧化石墨烯催化材料及其制备方法和应用
Luo et al. A dual-MOFs (Fe and Co)/g-C3N4 heterostructure composite for high-efficiently activating peroxymonosulfate in degradation of sertraline in water
CN104941636A (zh) 电子束辐照制备银/二氧化铈/石墨烯三元复合光催化剂的方法
CN106552651A (zh) 一种Bi12O17Br2光催化剂的合成及应用方法
CN109433229A (zh) 一种CdS/CoO纳米异质结构的制备方法
Chen et al. Synthesis of halloysite nanotubes supported Bi-modified BaSnO3 photocatalysts for the enhanced degradation of methylene blue under visible light
Pandey et al. Synthesis of novel tetranuclear Ni complex incorporated mesoporous silica for improved photocatalytic degradation of methylene blue in presence of visible light
Zhang et al. Efficient charge separation of photo-Fenton catalyst: Core-shell CdS/Fe3O4@ N-doped C for enhanced photodegradation performance
Sanni et al. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline
Zhang et al. In-situ fabrication of a phase continuous transition Bismuth iodide/Bismuth niobate heterojunction: Interface regulation and the enhanced photodegradation mechanism
Niu et al. Highly efficient noble metal-free g-C3N4@ NixSy nanocomposites for catalytic reduction of nitrophenol, azo dyes and Cr (VI)
CN106914261B (zh) 一种碳酸银纳米球修饰的氧化石墨烯复合材料及其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190705

CF01 Termination of patent right due to non-payment of annual fee