CN106910683B - 一种激光退火的控制方法及装置 - Google Patents

一种激光退火的控制方法及装置 Download PDF

Info

Publication number
CN106910683B
CN106910683B CN201710071446.7A CN201710071446A CN106910683B CN 106910683 B CN106910683 B CN 106910683B CN 201710071446 A CN201710071446 A CN 201710071446A CN 106910683 B CN106910683 B CN 106910683B
Authority
CN
China
Prior art keywords
side edge
length
moving distance
inclination angle
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710071446.7A
Other languages
English (en)
Other versions
CN106910683A (zh
Inventor
金映秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Technology Co Ltd
Priority to CN201710071446.7A priority Critical patent/CN106910683B/zh
Publication of CN106910683A publication Critical patent/CN106910683A/zh
Application granted granted Critical
Publication of CN106910683B publication Critical patent/CN106910683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02354Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明提供了一种激光退火的控制方法及装置,该激光退火的控制方法包括:获取预设倾斜角、第一侧边的边长和第二侧边的边长,所述第一侧边与第二侧边相连,所述基板固定在基台上;根据所述预设倾斜角和第一侧边的边长设定激光束的发光长度;根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第一移动距离;根据所述第一移动距离控制所述基台沿着所述第二侧边所在的方向移动,以对所述基板进行退火,从而能增大退火过程中的激光扫描面积,减少非结晶区域的产生,结晶效果好。

Description

一种激光退火的控制方法及装置
【技术领域】
本发明涉及薄膜制备技术领域,特别是涉及一种激光退火的控制方法及装置。
【背景技术】
薄膜晶体管(Thin Film Transistor,TFT)可分为多晶硅(p-Si)TFT与非晶硅(a-Si)TFT,两者的差异在于电晶体特性不同。由于非晶硅a-Si本身自有的缺陷问题,如缺陷态多导致的开态电流低、迁移率低、稳定性差,使得它在很多领域受到限制,而P-Si的分子结构在一颗晶粒(Grain)中的排列状态是整齐而有方向性的,其电子移动率比排列杂乱的非晶硅快了200-300倍,故通常需要将a-Si转化为p-Si。
低温多晶硅(Low Temperature Poly-Silicon,LTPS)技术是新一代的TFT显示器制造流程,主要是通过准分子激光退火(ELA)、金属优化晶化(MIC)或固相晶化法(SPC)工艺将a-Si薄膜层转变为p-Si薄膜层。LTPSTFT显示器具有更快的响应时间,更高的分辨率,因此具有更佳的画面显示品质。在形成显示装置外围的电路时使用LTPS技术,能够减少集成电路(IC),简化显示装置的外围,进而实现窄边框技术。
准分子激光退火(ELA)工艺,是一种相对比较复杂的退火过程。对于多晶硅薄膜中,晶粒尺寸及晶粒均匀性的控制一直是该技术领域中的研究热点。因为低温多晶硅薄膜晶体管的沟道区所覆盖的多晶硅晶粒尺寸及分布情况(均匀性问题),将直接影响到低温多晶硅薄膜晶体管的电学性能(如:迁移率大小,迁移率及阈值电压的均匀性等)。因此,如何控制非晶硅转变为理想的多晶硅(多晶硅薄膜晶粒尺寸较大,并且分布均匀)技术,是一个重要的研究课题。
图1和图2描述了现有技术中准分子激光退火设备制备多晶硅薄膜的过程,大致为:将表面沉积有a-Si薄膜的基板100固定在基台(图中未示出)上,使其与Y轴的倾斜角为θ,然后打开固定位置处的激光源(图中未示出)发射激光,该激光垂直照射到基板100的表面,驱动基台沿X轴方向移动,以对基板100进行激光扫描,从而将a-Si转化为p-Si。这种激光扫描方法容易产生大范围的扫描死角区域(也即无法结晶化的区域),如图2所示,扫描区域为S,基板102上S之外的区域均为扫描死角区域,结晶效果差。
【发明内容】
本发明的目的在于提供一种激光退火的控制方法及装置,以解决现有对TFT阵列基板的退火方法容易产生大面积无法结晶化的区域,结晶效果差的技术问题。
为解决上述技术问题,本发明提供了一种激光退火的控制方法及装置,包括:
获取预设倾斜角、以及基板的第一侧边的边长和第二侧边的边长,所述第一侧边与第二侧边相连,所述基板固定在基台上;
根据所述预设倾斜角和第一侧边的边长设定激光束的发光长度;
根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第一移动距离;
根据所述第一移动距离控制所述基台沿着所述第二侧边所在的方向移动,以对所述基板进行退火。
进一步地,所述根据所述预设倾斜角和第一侧边的边长调整激光束的发光长度,包括:
利用公式L1/cosθ计算第一阀值,其中,L1为所述第一侧边的边长,θ为所述预设倾斜角;
设定激光束的发光长度,使所述发光长度等于所述第一阀值。
进一步地,所述根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第一移动距离,包括:
利用公式(L2-L1*tanθ)*cosθ计算所述基台的第一移动距离,其中,L2为所述第二侧边的边长。
进一步地,所述根据所述第一移动距离控制所述基台沿着所述第二侧边所在的方向移动,包括:
沿着所述第二侧边所在的方向匀速移动所述基台,并计算每一时刻的移动距离;
判断当前移动距离是否到达所述第一移动距离;
若是,则停止所述基台的移动。
进一步地,在停止所述基台的移动之后,还包括:
根据所述预设倾斜角和第二侧边的边长对所述发光长度进行调整;
根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第二移动距离;
控制所述基台沿着所述第一侧边所在的方向移动所述第二移动距离,以对所述基板进行二次退火。
进一步地,所述根据所述预设倾斜角和第二侧边的边长对所述发光长度进行调整,包括:
利用公式L2/cosθ计算第二阀值,并将所述发光长度调整至所述第二阀值。
进一步地,所述根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第二移动距离,包括:
利用公式(L1-L2*tanθ)*cosθ计算所述基台的第二移动距离。
为解决上述技术问题,本发明还提供了一种激光退火的控制装置及装置,包括:
获取模块,用于获取预设倾斜角、以及基板的第一侧边的边长和第二侧边的边长,所述第一侧边与第二侧边相连,所述基板固定在基台上;
设定模块,用于根据所述预设倾斜角和第一侧边的边长设定激光束的发光长度;
计算模块,用于根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第一移动距离;
第一控制模块,用于根据所述第一移动距离控制所述基台沿着所述第二侧边所在的方向移动,以对所述基板进行退火。
进一步地,所述设定模块用于:
利用公式L1/cosθ计算第一阀值,其中,L1为所述第一侧边的边长,θ为所述预设倾斜角;
设定激光束的发光长度,使所述发光长度等于所述第一阀值。
进一步地,所述计算模块用于:
利用公式(L2-L1*tanθ)*cosθ计算所述基台的第一移动距离,其中,L2为所述第二侧边的边长。
进一步地,所述第一控制模块用于:
沿着所述第二侧边所在的方向匀速移动所述基台,并计算每一时刻的移动距离;
判断当前移动距离是否到达所述第一移动距离;
若是,则停止所述基台的移动。
进一步地,所述激光退火的控制装置还包括第二控制模块,用于:
在所述第一控制模块停止所述基台的移动之后,根据所述预设倾斜角和第二侧边的边长对所述发光长度进行调整;
根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第二移动距离;
控制所述基台沿着所述第一侧边所在的方向移动所述第二移动距离,以对所述基板进行二次退火。
本发明的有益效果:本发明提供了一种激光退火的控制方法及装置,通过获取预设倾斜角和基板的底边边长,并根据该预设倾斜角和第一侧边的边长设定激光束的发光长度,之后,根据该预设倾斜角、第一侧边的边长和第二侧边的边长计算该基台的第一移动距离,并根据该第一移动距离控制该基台沿着该第二侧边所在的方向移动,以对该基板进行退火,从而能增大退火过程中的激光扫描面积,减少非结晶区域的产生,结晶效果好。
【附图说明】
图1为现有技术中基板的运动轨迹示意图;
图2为图1中基板上扫描区域的示意图;
图3为本发明实施例中激光退火设备的结构示意图;
图4为本发明实施例中激光退火的控制方法的流程示意图;
图5为本发明实施例中基板的运动轨迹示意图;
图6为本发明实施例中基板上扫描区域的示意图;
图7为本发明实施例中经过二次扫描的基板上扫描区域示意图;
图8为本发明实施例中激光退火的控制装置的结构示意图。
【具体实施方式】
为使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例提供一种激光退火的控制方法及装置。以下将分别进行详细说明。
本实施例将从激光退火的控制装置的角度进行描述,该激光退火的控制装置具体可以集成在激光退火设备等终端中。
请参阅图3至图7,图4具体描述了本发明实施例提供的激光退火的控制方法,其可以包括:
S101、获取预设倾斜角、以及基板1的第一侧边11的边长和第二侧边12的边长,该第一侧边11与第二侧边12相连,该基板1固定在基台2上。
本实施例中,请参见图3和图5,基板1可以通过卡盘3固定在基台2上,该基台2由驱动装置(图中未示出)进行驱动,以带动基板1沿X-Y轴移动。该预设倾斜角是指基板1的第一侧边11与Y轴方向(或者第二侧边12与X轴方向)的夹角,其大小可以根据实际需求而定,通常可以是0.5′-2.0′。该基板1可以是玻璃基板或者石英基板,其上形成有一层非晶硅薄膜(图中未示出),具体的,可以采用等离子体增强化学气相沉积(PEVCD)方法在基板1的表面上先沉积氮化硅SiNx层(图中未示出),再沉积二氧化硅SiO2层(图中未示出),然后在SiO2层上沉积非晶硅薄膜层。
S102、根据该预设倾斜角和第一侧边11的边长设定激光束4的发光长度。
本实施例中,该激光束4可以由氙Xe和氯化氢Hcl两种气体按照一定比例混合形成。该激光束4的属性参数可以根据实际需求而定,其中,该属性参数可以包括脉冲频率、重叠率、扫描速率和能量密度等,比如,脉冲频率可以为500Hz,重叠率可以为92%~98%,激光能量密度可以为300mJ/cm~500mJ/cm。
优选的,请参见图6,上述步骤S102具体可以包括:
利用公式L1/cosθ计算第一阀值,其中,L1为该第一侧边11的边长,θ为该预设倾斜角;
设定激光束4的发光长度h,使该发光长度h等于该第一阀值。
本实施例中,可以通过控制位于固定位置处的激光源(图中未示出)的出光孔的数量来控制激光束4的发光长度h。相对于现有技术来说,通过上述方法计算出的发光长度h明显要长于现有退火过程中的发光长度h。
S103、根据该预设倾斜角、第一侧边11的边长和第二侧边12的边长计算该基台2的第一移动距离d1。
本实施例中,该第一移动距离d1是指基台2沿X轴方向的移动距离。
优选的,上述步骤S103具体可以包括:
利用公式(L2-L1*tanθ)*cosθ计算该基台2的第一移动距离d1,其中,L2为该第二侧边12的边长。
S104、根据该第一移动距离d1控制该基台2沿着该第二侧边12所在的方向移动,以对该基板1进行退火。
优选的,上述步骤S104具体可以包括:
沿着该第二侧边12所在的方向匀速移动该基台2,并计算每一时刻的移动距离;
判断当前移动距离是否到达该第一移动距离d1;
若是,则停止该基台2的移动。
本实施例中,可以通过驱动装置驱动该基台2移动,其移动速度可以根据实际需求而定,比如可以为4mm/s~16mm/s。实际操作过程中,当激光束4的发光长度h设定好时,需要根据激光束4的位置设定好基台2的初始位置,具体的,可以获取激光束4的左端点和右端点所在的位置坐标,移动基台2使基板1的左下角移动至(贴近)激光束4的左端点处,将此时基台2所在的位置定为初始位置。然后,沿着第二侧边12所在的方向开始往上移动该基台2,直至基板1的右上角移至(贴近)激光束4的右端点处停止移动。
此外,为进一步增大结晶区域的面积,可以沿着第一侧边11进行二次激光扫描,也即,在停止该基台2的移动之后,该激光退火的控制方法还可以包括:
根据该预设倾斜角和第二侧边12的边长对该发光长度h进行调整;
根据该预设倾斜角、第一侧边11的边长和第二侧边12的边长计算该基台2的第二移动距离d2;
控制该基台2沿着该第一侧边11所在的方向移动该第二移动距离d2,以对该基板1进行二次退火。
本实施例中,请参见图7,可以通过利用公式L2/cosθ计算第二阀值,并将该发光长度h调整至该第二阀值。利用公式(L1-L2*tanθ)*cosθ计算该基台2的第二移动距离d2。
需要说明的是,由于激光束4打到基板1外部的时候,会产生热变化、异物、激光反射等一系列问题,故为确保在退火过程中,激光束4不会打到基板1的外部,激光束4的实际发光长度h应略小于步骤S102中计算出的发光长度h,实际第一移动距离d1(或实际第二移动距离d2)应略小于步骤S103中计算出的第一移动距离d1(或第二移动距离d2)。从图6和图7可以看出,扫描区域A1或A2明显大于图2中现有技术的扫描区域S,且经过二次扫描之后,扫描区域A1和A2的总面积几乎占据了整个基板1,极大地减少了结晶死角区域(非结晶区域),提高了结晶效率。
上述激光退火的控制方法,通过获取预设倾斜角和基板1的底边边长,并根据该预设倾斜角和第一侧边11的边长设定激光束4的发光长度h,之后,根据该预设倾斜角、第一侧边11的边长和第二侧边12的边长计算该基台2的第一移动距离d1,并根据该第一移动距离d1控制该基台2沿着该第二侧边12所在的方向移动,以对该基板1进行退火,从而能增大退火过程中的激光扫描面积,减少非结晶区域的产生,结晶效果好。
请参阅图8,图8具体描述了一种激光退火的控制装置,其可以包括:获取模块50、设定模块60、计算模块70和第一控制模块80,其中:
(1)获取模块50
获取模块50,用于获取预设倾斜角、以及基板1的第一侧边11的边长和第二侧边12的边长,该第一侧边11与第二侧边12相连,该基板1固定在基台2上。
本实施例中,该预设倾斜角是指基板1的第一侧边11与Y轴方向(或者第二侧边12与X轴方向)的夹角,其大小可以根据实际需求而定,通常可以是0.5′-2.0′。该基板1可以是玻璃基板或者石英基板,其上形成有一层非晶硅薄膜(图中未示出),具体的,可以采用等离子体增强化学气相沉积(PEVCD)方法在基板1的表面上先沉积氮化硅SiNx层(图中未示出),再沉积二氧化硅SiO2层(图中未示出),然后在SiO2层上沉积非晶硅薄膜层。
(2)设定模块60
设定模块60,用于根据该预设倾斜角和第一侧边11的边长设定激光束4的发光长度h。
本实施例中,该激光束4可以由氙Xe和氯化氢Hcl两种气体按照一定比例混合形成。该激光束4的属性参数可以根据实际需求而定,其中,该属性参数可以包括脉冲频率、重叠率、扫描速率和能量密度等,比如,脉冲频率可以为500Hz,重叠率可以为92%~98%,激光能量密度可以为300mJ/cm~500mJ/cm。
优选的,请参见图6,该设定模块60具体可以用于:
利用公式L1/cosθ计算第一阀值,其中,L1为该第一侧边11的边长,θ为该预设倾斜角;
设定激光束4的发光长度h,使该发光长度h等于该第一阀值。
本实施例中,设定模块60可以通过控制位于固定位置处的激光源(图中未示出)的出光孔的数量来控制激光束4的发光长度h。相对于现有技术来说,通过上述方法计算出的发光长度h明显要长于现有退火过程中的发光长度h。
(3)计算模块70
计算模块70,用于根据该预设倾斜角、第一侧边11的边长和第二侧边12的边长计算该基台2的第一移动距离d1。
本实施例中,该第一移动距离d1是指基台2沿X轴方向的移动距离。
优选的,该计算模块70具体可以用于:
利用公式(L2-L1*tanθ)*cosθ计算该基台2的第一移动距离d1,其中,L2为该第二侧边12的边长。
(4)第一控制模块80
第一控制模块80,用于根据该第一移动距离d1控制该基台2沿着该第二侧边12所在的方向移动,以对该基板1进行退火。
优选的,该第一控制模块80具体可以用于:
沿着该第二侧边12所在的方向匀速移动该基台2,并计算每一时刻的移动距离;
判断当前移动距离是否到达该第一移动距离d1;
若是,则停止该基台2的移动。
本实施例中,该第一控制模块80可以通过驱动装置驱动该基台2移动,其移动速度可以根据实际需求而定,比如可以为4mm/s~16mm/s。实际操作过程中,当激光束4的发光长度h设定好时,该第一控制模块80需要根据激光束4的位置设定好基台2的初始位置,具体的,可以先获取激光束4的左端点和右端点所在的位置坐标,移动基台2使基板1的左下角移动至(贴近)激光束4的左端点处,将此时基台2所在的位置定为初始位置。然后,沿着第二侧边12所在的方向开始往上移动该基台2,直至基板1的右上角移至(贴近)激光束4的右端点处停止移动。
此外,为进一步增大结晶区域的面积,可以沿着第一侧边11进行二次激光扫描,也即,该激光退火的控制装置还可以包括第二控制模块,用于:
在该第一控制模块80停止该基台2的移动之后,根据该预设倾斜角和第二侧边12的边长对该发光长度h进行调整;
根据该预设倾斜角、第一侧边11的边长和第二侧边12的边长计算该基台2的第二移动距离d2;
控制该基台2沿着该第一侧边11所在的方向移动该第二移动距离d2,以对该基板1进行二次退火。
本实施例中,请参见图7,第二控制模块可以通过利用公式L2/cosθ计算第二阀值,并将该发光长度h调整至该第二阀值,利用公式(L1-L2*tanθ)*cosθ计算该基台2的第二移动距离d2,之后,调整好基台2的初始位置,然后控制基台2沿着第一侧边11所在方向往右移动第二移动距离d2,以实现第二次激光退火。
上述激光退火的控制装置,通过获取模块50获取预设倾斜角和基板1的底边边长,设定模块60根据该预设倾斜角和第一侧边11的边长设定激光束4的发光长度h,之后,计算模块70根据该预设倾斜角、第一侧边11的边长和第二侧边12的边长计算该基台2的第一移动距离d1,第一控制模块80根据该第一移动距离d1控制该基台2沿着该第二侧边12所在的方向移动,以对该基板1进行退火,从而能增大退火过程中的激光扫描面积,减少非结晶区域的产生,结晶效果好。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种激光退火的控制方法,其特征在于,包括:
获取预设倾斜角、以及基板的第一侧边的边长和第二侧边的边长,所述第一侧边与第二侧边相连,所述基板以所述预设倾斜角固定在基台上;
根据所述预设倾斜角和第一侧边的边长设定激光束的发光长度;
根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第一移动距离;
根据所述第一移动距离控制所述基台沿着所述第二侧边所在的方向移动,同时,所述激光束以所述发光长度垂直照射在所述基板的上表面,以对所述基板进行退火;
当所述基台停止移动后,根据所述预设倾斜角和第二侧边的边长对所述发光长度进行调整;
根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第二移动距离;
控制所述基台沿着所述第一侧边所在的方向移动所述第二移动距离,以对所述基板进行二次退火。
2.根据权利要求1所述的激光退火的控制方法,其特征在于,所述根据所述预设倾斜角和第一侧边的边长设定激光束的发光长度,包括:
利用公式L1/cosθ计算第一阀值,其中,L1为所述第一侧边的边长,θ为所述预设倾斜角;
设定激光束的发光长度,使所述发光长度等于所述第一阀值。
3.根据权利要求2所述的激光退火的控制方法,其特征在于,所述根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第一移动距离,包括:
利用公式(L2-L1*tanθ)*cosθ计算所述基台的第一移动距离,其中,L2为所述第二侧边的边长。
4.根据权利要求1所述的激光退火的控制方法,其特征在于,所述根据所述第一移动距离控制所述基台沿着所述第二侧边所在的方向移动,包括:
沿着所述第二侧边所在的方向匀速移动所述基台,并计算每一时刻的移动距离;
判断当前移动距离是否到达所述第一移动距离;
若是,则停止所述基台的移动。
5.根据权利要求1所述的激光退火的控制方法,其特征在于,所述根据所述预设倾斜角和第二侧边的边长对所述发光长度进行调整,包括:
利用公式L2/cosθ计算第二阀值,并将所述发光长度调整至所述第二阀值。
6.根据权利要求1所述的激光退火的控制方法,其特征在于,所述根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第二移动距离,包括:
利用公式(L1-L2*tanθ)*cosθ计算所述基台的第二移动距离。
7.一种激光退火的控制装置,其特征在于,包括:
获取模块,用于获取预设倾斜角、以及基板的第一侧边的边长和第二侧边的边长,所述第一侧边与第二侧边相连,所述基板以所述预设倾斜角固定在基台上;
设定模块,用于根据所述预设倾斜角和第一侧边的边长设定激光束的发光长度;
计算模块,用于根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第一移动距离;
第一控制模块,用于根据所述第一移动距离控制所述基台沿着所述第二侧边所在的方向移动,同时,所述激光束以所述发光长度垂直照射在所述基板的上表面,以对所述基板进行退火;
第二控制模块,用于当所述基台停止移动后,根据所述预设倾斜角和第二侧边的边长对所述发光长度进行调整;根据所述预设倾斜角、第一侧边的边长和第二侧边的边长计算所述基台的第二移动距离;控制所述基台沿着所述第一侧边所在的方向移动所述第二移动距离,以对所述基板进行二次退火。
8.根据权利要求7所述的激光退火的控制装置,其特征在于,所述设定模块用于:
利用公式L1/cosθ计算第一阀值,其中,L1为所述第一侧边的边长,θ为所述预设倾斜角;
设定激光束的发光长度,使所述发光长度等于所述第一阀值。
9.根据权利要求8所述的激光退火的控制装置,其特征在于,所述计算模块用于:
利用公式(L2-L1*tanθ)*cosθ计算所述基台的第一移动距离,其中,L2为所述第二侧边的边长。
10.根据权利要求7所述的激光退火的控制装置,其特征在于,所述第一控制模块用于:
沿着所述第二侧边所在的方向匀速移动所述基台,并计算每一时刻的移动距离;
判断当前移动距离是否到达所述第一移动距离;
若是,则停止所述基台的移动。
CN201710071446.7A 2017-02-09 2017-02-09 一种激光退火的控制方法及装置 Active CN106910683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710071446.7A CN106910683B (zh) 2017-02-09 2017-02-09 一种激光退火的控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710071446.7A CN106910683B (zh) 2017-02-09 2017-02-09 一种激光退火的控制方法及装置

Publications (2)

Publication Number Publication Date
CN106910683A CN106910683A (zh) 2017-06-30
CN106910683B true CN106910683B (zh) 2020-01-14

Family

ID=59208323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710071446.7A Active CN106910683B (zh) 2017-02-09 2017-02-09 一种激光退火的控制方法及装置

Country Status (1)

Country Link
CN (1) CN106910683B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604276A (zh) * 2003-09-29 2005-04-06 统宝光电股份有限公司 利用激光结晶形成多晶系膜层的方法
CN101184871A (zh) * 2005-04-06 2008-05-21 纽约市哥伦比亚大学理事会 薄膜的线扫描顺序横向固化
CN101208778A (zh) * 2005-09-14 2008-06-25 株式会社Ihi 激光退火的方法及装置
CN101617069A (zh) * 2005-12-05 2009-12-30 纽约市哥伦比亚大学理事会 处理膜的系统和方法以及薄膜
CN103779195A (zh) * 2014-01-29 2014-05-07 上海集成电路研发中心有限公司 激光退火方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119919A (ja) * 2002-09-30 2004-04-15 Hitachi Ltd 半導体薄膜および半導体薄膜の製造方法
KR102032961B1 (ko) * 2012-10-31 2019-10-17 삼성디스플레이 주식회사 실리콘 기판 결정화 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604276A (zh) * 2003-09-29 2005-04-06 统宝光电股份有限公司 利用激光结晶形成多晶系膜层的方法
CN101184871A (zh) * 2005-04-06 2008-05-21 纽约市哥伦比亚大学理事会 薄膜的线扫描顺序横向固化
CN101208778A (zh) * 2005-09-14 2008-06-25 株式会社Ihi 激光退火的方法及装置
CN101617069A (zh) * 2005-12-05 2009-12-30 纽约市哥伦比亚大学理事会 处理膜的系统和方法以及薄膜
CN103779195A (zh) * 2014-01-29 2014-05-07 上海集成电路研发中心有限公司 激光退火方法及系统

Also Published As

Publication number Publication date
CN106910683A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
US6590228B2 (en) LCD device with optimized channel characteristics
CN1312730C (zh) 激光装置、激光辐射方法及半导体器件及其制造方法
US7510920B2 (en) Manufacturing method for a thin film transistor that uses a pulse oscillation laser crystallize an amorphous semiconductor film
US7915099B2 (en) Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device
US6989300B1 (en) Method for forming semiconductor films at desired positions on a substrate
US20110309370A1 (en) Systems and methods for the crystallization of thin films
WO2016004665A1 (zh) 低温多晶硅的制作方法及使用该方法的tft基板的制作方法与tft基板结构
JP2004311935A (ja) 単結晶シリコン膜の製造方法
US20040209410A1 (en) Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor
JP2004055771A (ja) 半導体薄膜の製造方法及びレーザ照射装置
TW200816320A (en) Systems and methods for optimizing the crystallization of amorphous silicon
JP2013510443A (ja) 非周期的なパルスによる部分的溶解膜処理のシステムおよび方法
US9646831B2 (en) Advanced excimer laser annealing for thin films
Kim et al. 59.1: Invited paper: LTPS backplane technologies for AMLCDs and AMOLEDs
CN103003928A (zh) 薄膜半导体器件的制造方法、薄膜半导体阵列基板的制造方法、结晶硅薄膜的形成方法以及结晶硅薄膜的形成装置
JP4369109B2 (ja) 半導体装置の作製方法
CN106910683B (zh) 一种激光退火的控制方法及装置
WO2013172965A1 (en) Advanced excimer laser annealing for thin films
US6396560B1 (en) Method of producing liquid crystal display panel
JP4769491B2 (ja) 結晶化方法、薄膜トランジスタの製造方法、薄膜トランジスタおよび表示装置
CN104821278B (zh) 低温多晶硅的制造方法及装置、多晶硅
JP2000208769A (ja) 薄膜半導体装置の製造方法及びレ―ザ照射装置
US11521989B2 (en) Display substrate, display apparatus and manufacturing method of display substrate
CN102099895B (zh) 结晶膜的制造方法及结晶膜制造装置
JP2007208174A (ja) レーザアニール技術、半導体膜、半導体装置、及び電気光学装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant