CN106906363B - 一种含砷铜渣的处理方法 - Google Patents

一种含砷铜渣的处理方法 Download PDF

Info

Publication number
CN106906363B
CN106906363B CN201710038220.7A CN201710038220A CN106906363B CN 106906363 B CN106906363 B CN 106906363B CN 201710038220 A CN201710038220 A CN 201710038220A CN 106906363 B CN106906363 B CN 106906363B
Authority
CN
China
Prior art keywords
copper
arsenic
slag containing
iron
containing arsenical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710038220.7A
Other languages
English (en)
Other versions
CN106906363A (zh
Inventor
邓志敢
李兴彬
魏昶
樊刚
李存兄
李旻廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Copper Co ltd Southwest Copper Branch
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201710038220.7A priority Critical patent/CN106906363B/zh
Publication of CN106906363A publication Critical patent/CN106906363A/zh
Application granted granted Critical
Publication of CN106906363B publication Critical patent/CN106906363B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明涉及一种含砷铜渣的处理方法,属于湿法冶金技术领域。本发明针对铜的质量百分数含量为10~70%、砷的质量百分数含量为5~20%、铁的质量百分数含量为5~30%的含砷铜渣提出的处理方法,在含砷铜渣中加入稀硫酸,搅拌均匀形成矿浆;在矿浆中加入氧化介质反应至矿浆的pH值为1~3,沉淀、固液分离即得到富含铜浸出液和砷铁渣。本发明方法同步实现铜、锌及铟等有价金属浸出至溶液和将砷和铁形成稳定的砷铁固化渣,具有实现有价金属回收率高、工艺流程简单、处理过程清洁高效等特点。

Description

一种含砷铜渣的处理方法
技术领域
本发明涉及一种含砷铜渣的处理方法,属于湿法冶金技术领域。
背景技术
锌精矿中通常伴生有数量较可观的铜,尤其在复杂铁闪锌矿中铜的含量可达到1%以上,具有较高经济价值。在湿法炼锌过程中,采用中浸或中浸-弱酸浸出工艺只能回收40~50%的金属铜,其余则留在浸出渣中,采用回转窑挥发法处理浸出渣时铜几乎全部进入窑渣,难以回收;采用热酸浸出技术处理浸出渣时,铜随锌、铁、铟进入热酸浸出液;采用加压浸出工艺处理锌精矿时,铜同样随锌、铁、铟进入氧压浸出液,对于上述两类浸出液大部分冶炼企业采用的是溶剂萃取回收铜和铟-氧化中和沉铁或中和沉铟-氧化沉铁。在浸出液分离除铁工艺中,为了避免沉铁过程锌、铟、铜等有价金属进入铁渣,通常需要先将浸出液中的Fe3+还原为Fe2+。目前常用的方法为在酸性条件下,利用硫化锌精矿还原浸出液中的三价铁离子,但由于精矿利用率低,需添加过量锌精矿,易导致热酸浸出液中的铜生成硫化亚铜沉淀进入渣中,渣中铜、锌含量高。还原后液采用中和法沉铟时部分铜进入沉铟渣,需在铟渣回收铟的工艺过程进行专门铜铟分离处理,其工艺流程较为繁琐,且回收率较低;溶剂萃取法虽能实现较高的铜回收率,但由于浸出液量大、铜浓度低,所需萃取体系庞大,造成大量有机试剂进入浸出液中,需进行专门脱油处理。因此,长期以来锌精矿伴生的铜未能得到较好地回收利用,从而降低了资源的综合利用率,造成了资源的浪费。
为解决锌精矿冶炼过程中锌、铁、铟、铜的高效分离和综合回收的问题,提高金属回收率和资源综合利用率,本发明的发明人在专利CN201310308061和CN201410049421中公开了湿法炼锌过程中提高铜回收率方法,采用铁粉置换法产出了一种含砷铜渣,实现了强酸性溶液中铜的高效回收和砷的有效脱除,且过程无砷化氢产生,含砷铜渣可进一步回收铜。
发明专利CN201410739063.9公开了一种从铜烟尘中回收铜、固化砷的方法,其方法特征是先将铜烟尘进行常压酸浸得到酸浸液,再对酸浸液进行氧压沉砷得到臭葱石和沉砷后的含铜液。该方法较好的实现了浸出溶液中铜与砷的分离,但浸出过程铜砷浸出率较低,浸出渣中铜砷含量高,造成了铜资源浪费和砷污染。
目前现有技术可以完成含砷铜渣中铜、砷分离,但是工艺流程长、过程难以控制,分离效率较低。
发明内容
本发明针对现有技术存在的问题,提供一种含砷铜渣的处理方法,实现有价金属高回收率、工艺流程简单、处理过程清洁高效;本发明针对铜浸出的特性与砷、铁沉淀的特性,将铜的浸出和砷的沉淀在同一反应釜同一过程中完成,利用砷和铁沉淀过程生成的酸浸出铜,满足铜浸出所需的硫酸;利用铜的浸出消耗体系中的酸,维持沉淀反应所需的低酸环境,有效实现含砷铜渣中有价金属的浸出与杂质的沉淀同步进行,达到高效分离回收的目的。
本发明采用的技术方案是:利用稀硫酸对含砷铜渣进行浆化,将所形成的矿浆置于带有搅拌装置的反应釜;在反应釜内通入氧化介质,在高温下反应,将铜及锌、铟等有价金属浸出至溶液,同时将砷和铁形成稳定的砷铁固化渣,液固分离后得到富含铜的溶液和砷铁渣。
一种含砷铜渣的处理方法,其特征在于,具体步骤如下:
(1)按照稀硫酸与含砷铜渣的液固比mL:g为20~100:1的比例,在含砷铜渣中加入稀硫酸,搅拌均匀形成矿浆;
(2)在温度90~180℃的条件下,将步骤(1)所得矿浆中加入氧化介质反应2-4小时至矿浆的pH值为1~3,沉淀、固液分离即得到富含铜浸出液和砷铁渣,砷铁渣的主要物象为无害化的臭葱石和赤铁矿。
所述含砷铜渣中铜的质量百分数含量为10~70%、砷的质量百分数含量为5~20%、铁的质量百分数含量为5~30%;
进一步地,所述含砷铜渣中铜的主要物象为砷化亚铜、氧化亚铜的一种或任意比两种,铁的主要物象为砷化亚铁、砷化铁和/或金属铁;
所述步骤(1)稀硫酸的浓度为10~30g/L;
进一步地,稀硫酸选自工业硫酸的水溶液、湿法炼锌系统的沉铁溶液或湿法冶金的电解液;
所述步骤(2)氧化介质为氧气或空气。
本发明的有益效果是:
(1)本发明利用氧化介质缓慢氧化含砷铜渣,使其中的铜、砷、铁、锌、铟等溶解进入溶液;同时,砷、铁以臭葱石和赤铁矿的形式沉淀为浸出渣,从而将铜、锌、铟的浸出和砷、铁的沉淀在同一反应釜同一过程中完成,有效实现含砷铜渣中有价金属的浸出过程与杂质的沉淀过程同步进行;
(2)本发明的反应过程中利用铁沉淀为赤铁矿所生成的酸浸出铜、锌、铟,保障浸出所需的硫酸;利用铜、锌、铟的浸出消耗体系中的酸,维持沉淀反应所需的低酸环境,既降低了酸耗,又避免了现有技术中添加中和剂来中和沉淀过程生成的硫酸以维持体系pH的不足,有价金属的浸出过程与杂质的沉淀过程无杂质引入,所得含铜溶液易于处理,有价金属回收率高、工艺流程简单、清洁高效、节能环保。
具体实施方式
下面结合具体实施方式,对本发明作进一步说明。
实施例1:本实施例的含砷铜渣中铜的质量百分数含量为69.8%、砷的质量百分数含量为5.04%、铁的质量百分数含量为5.17%;
一种含砷铜渣的处理方法,具体步骤如下:
(1)在常温条件下,按照稀硫酸与含砷铜渣的液固比mL:g为100:1的比例,在含砷铜渣中加入稀硫酸(稀硫酸为湿法冶金的电解液,稀硫酸浓度为20g/L),搅拌均匀,进行浆化形成矿浆;
(2)将步骤(1)所得矿浆输送至带有搅拌装置的加压反应釜中,在温度150℃的条件下,在在反应釜内的矿浆中通入氧气,反应3小时至矿浆的pH值为1.8,沉淀、固液分离即得到富含铜浸出液和砷铁渣;
经测定,富含铜浸出液中铜的浓度为6.54g/L,砷铁渣中砷的质量百分数含量为24.6%、铁的质量百分数含量为20.7%;
本实例中铜浸出率为98.1%,砷的沉淀率为92.9%,铁的沉淀率为76.3%。
实施例2:本实施例的含砷铜渣中铜的质量百分数含量为35.7%、砷的质量百分数含量为9.3%、铁的质量百分数含量为9.7%;
一种含砷铜渣的处理方法,具体步骤如下:
(1)在常温条件下,按照稀硫酸与含砷铜渣的液固比mL:g为20:1的比例,在含砷铜渣中加入稀硫酸(稀硫酸为湿法炼锌系统的沉铁溶液,稀硫酸浓度为30g/L),搅拌均匀,进行浆化形成矿浆;
(2)将步骤(1)所得矿浆输送至带有搅拌装置的加压反应釜中,在温度180℃的条件下,在在反应釜内的矿浆中通入氧气,反应3小时至矿浆的pH值为2.97,沉淀、固液分离即得到富含铜浸出液和砷铁渣;
经测定,富含铜浸出液中铜的浓度为17.1g/L,砷铁渣中砷的质量百分数含量为23.5%、铁的质量百分数含量为29.1%;
本实例中铜浸出率为95.7%,砷的沉淀率为92.6%,铁的沉淀率为99.1%。
实施例3:本实施例的含砷铜渣中铜的质量百分数含量为10.1%、砷的质量百分数含量为19.8%、铁的质量百分数含量为29.6%;
一种含砷铜渣的处理方法,具体步骤如下:
(1)在常温条件下,按照稀硫酸与含砷铜渣的液固比mL:g为50:1的比例,在含砷铜渣中加入稀硫酸(稀硫酸为工业硫酸的水溶液,稀硫酸浓度为10g/L),搅拌均匀,进行浆化形成矿浆;
(2)将步骤(1)所得矿浆输送至带有搅拌装置的加压反应釜中,在温度90℃的条件下,在在反应釜内的矿浆中通入氧气,反应2小时至矿浆的pH值为1.02,沉淀、固液分离即得到富含铜浸出液和砷铁渣;
经测定,富含铜浸出液中铜的浓度为2.11g/L,砷铁渣中砷的质量百分数含量为22.1%、铁的质量百分数含量为21.2%;
本实例中铜浸出率为99.7%,砷的沉淀率为91.3%,铁的沉淀率为58.6%。

Claims (2)

1.一种含砷铜渣的处理方法,其特征在于,具体步骤如下:
(1)按照稀硫酸与含砷铜渣的液固比mL:g为20~100:1的比例,在含砷铜渣中加入稀硫酸,搅拌均匀形成矿浆;其中稀硫酸的浓度为10~30g/L;
(2)在温度90~180℃的条件下,将步骤(1)所得矿浆中加入氧化介质反应至矿浆的pH值为1~3,沉淀、固液分离即得到富含铜浸出液和砷铁渣;砷铁渣的主要物象为无害化的臭葱石和赤铁矿;
所述含砷铜渣中铜的质量百分数含量为10~70%、砷的质量百分数含量为5~20%、铁的质量百分数含量为5~30%;
所述含砷铜渣中铜的主要物象为砷化亚铜与氧化亚铜的混合物或砷化亚铜,铁的主要物象为砷化亚铁、砷化铁和/或金属铁。
2.根据权利要求1所述含砷铜渣的处理方法,其特征在于:步骤(2)氧化介质为氧气或空气。
CN201710038220.7A 2017-01-19 2017-01-19 一种含砷铜渣的处理方法 Active CN106906363B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710038220.7A CN106906363B (zh) 2017-01-19 2017-01-19 一种含砷铜渣的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710038220.7A CN106906363B (zh) 2017-01-19 2017-01-19 一种含砷铜渣的处理方法

Publications (2)

Publication Number Publication Date
CN106906363A CN106906363A (zh) 2017-06-30
CN106906363B true CN106906363B (zh) 2019-02-05

Family

ID=59206439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710038220.7A Active CN106906363B (zh) 2017-01-19 2017-01-19 一种含砷铜渣的处理方法

Country Status (1)

Country Link
CN (1) CN106906363B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561547A (zh) * 2022-03-14 2022-05-31 昆明理工大学 一种综合回收高锌铜冶炼烟尘中有价金属的方法
CN116463514A (zh) * 2023-04-19 2023-07-21 昆明瀚创科技有限公司 一种铜冶炼含砷烟尘浸出渣的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149880A (en) * 1978-07-19 1979-04-17 Kennecott Copper Corporation Recovery of copper from arsenic containing metallurgical waste materials
CN1358871A (zh) * 2001-11-09 2002-07-17 北京矿冶研究总院 一种从含铜硫化矿物提取铜的方法
CN102242268A (zh) * 2011-06-15 2011-11-16 金川集团有限公司 电解法处理黑铜渣的工艺
CN104789783A (zh) * 2015-05-18 2015-07-22 郴州市金贵银业股份有限公司 一种从铅冰铜中选择性高效提铜综合回收工艺
CN105349791A (zh) * 2015-10-28 2016-02-24 郴州市金贵银业股份有限公司 一种从铁铜锍物料中选择性提取铜的方法
CN105603186A (zh) * 2016-01-24 2016-05-25 李家元 一种高效选择性分离硫化锌精矿中锌的工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149880A (en) * 1978-07-19 1979-04-17 Kennecott Copper Corporation Recovery of copper from arsenic containing metallurgical waste materials
CN1358871A (zh) * 2001-11-09 2002-07-17 北京矿冶研究总院 一种从含铜硫化矿物提取铜的方法
CN102242268A (zh) * 2011-06-15 2011-11-16 金川集团有限公司 电解法处理黑铜渣的工艺
CN104789783A (zh) * 2015-05-18 2015-07-22 郴州市金贵银业股份有限公司 一种从铅冰铜中选择性高效提铜综合回收工艺
CN105349791A (zh) * 2015-10-28 2016-02-24 郴州市金贵银业股份有限公司 一种从铁铜锍物料中选择性提取铜的方法
CN105603186A (zh) * 2016-01-24 2016-05-25 李家元 一种高效选择性分离硫化锌精矿中锌的工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
铜渣生产硫酸铜的试验研究;巫旭;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140715;第13-14、22页

Also Published As

Publication number Publication date
CN106906363A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
Guo et al. Leaching behavior of metals from high-arsenic dust by NaOH–Na2S alkaline leaching
Ju et al. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy
Rao et al. Selective extraction of zinc, gallium, and germanium from zinc refinery residue using two stage acid and alkaline leaching
Chen et al. Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction
Halli et al. Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction
CN104379778B (zh) 从复杂氧化物矿和硫化物矿回收铟、银、金和其它稀有金属、贵金属和贱金属的方法
CN101660054B (zh) 从铅锌冶炼后的废渣中提取金属铟的方法
CN106868307B (zh) 一种硫酸烧渣除砷富集金银的综合利用工艺
Yang et al. A hydrometallurgical process for the separation and recovery of antimony
Zhang et al. Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant
CN102747226B (zh) 碱铵硫耦合法处理湿法炼锌废渣的方法
Li et al. Removal of arsenic from Waelz zinc oxide using a mixed NaOH–Na2S leach
CN102312083A (zh) 一种从高铁高铟锌精矿中提取锌铟及回收铁的方法
Li et al. Extraction and separation of indium and copper from zinc residue leach liquor by solvent extraction
Guo et al. Separation and recovery of arsenic from arsenic-bearing dust
CN109621276A (zh) 一种富铁铜渣处理有色冶炼污酸中砷的方法
Li et al. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues
CN103789544A (zh) 高铁锌焙砂中浸渣与高铁硫化锌精矿协同浸出-除铜砷方法
JP2005042155A (ja) 湿式銅精錬プロセスの浸出残渣に含有される貴金属の濃縮方法
Mrážiková et al. The effect of specific conditions on Cu, Ni, Zn and Al recovery from PCBS waste using acidophilic bacterial strains
CN102399997A (zh) 一种选冶联合炼锌的方法
Che et al. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals
Liu et al. Removal and reuse of arsenic from arsenic-bearing purified residue by alkaline pressure oxidative leaching and reduction of As (V)
CN106906363B (zh) 一种含砷铜渣的处理方法
CN108265177B (zh) 一种湿法炼锌窑渣与污酸综合利用的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231116

Address after: 650000 block a, No. 625, 2nd Ring West Road, high tech Zone, Kunming, Yunnan

Patentee after: YUNNAN COPPER Co.,Ltd. SOUTHWEST COPPER BRANCH

Address before: 650093 No. 253, Xuefu Road, Wuhua District, Yunnan, Kunming

Patentee before: Kunming University of Science and Technology

TR01 Transfer of patent right