CN106904958A - 具有适宜孔隙率和力学强度的ha多孔陶瓷的制备方法及其产品 - Google Patents

具有适宜孔隙率和力学强度的ha多孔陶瓷的制备方法及其产品 Download PDF

Info

Publication number
CN106904958A
CN106904958A CN201710224190.9A CN201710224190A CN106904958A CN 106904958 A CN106904958 A CN 106904958A CN 201710224190 A CN201710224190 A CN 201710224190A CN 106904958 A CN106904958 A CN 106904958A
Authority
CN
China
Prior art keywords
porous ceramics
particles
mechanical strength
preparation
suitable porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710224190.9A
Other languages
English (en)
Other versions
CN106904958B (zh
Inventor
罗彦凤
吴进川
王远亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201710224190.9A priority Critical patent/CN106904958B/zh
Publication of CN106904958A publication Critical patent/CN106904958A/zh
Application granted granted Critical
Publication of CN106904958B publication Critical patent/CN106904958B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法及其产品,具体方法为将棒形HA颗粒(r‑HA)与球形HA颗粒(s‑HA)混合后浸泡于蒸馏水中,搅拌下加入聚丙烯酰胺,搅拌至形成均匀的陶瓷泥浆,然后成型,制成陶瓷前体,再烧结得HA多孔陶瓷,利用r‑HA与s‑HA混合烧结影响陶瓷的孔隙率和力学强度,制得适宜孔隙率和力学强度的HA多孔陶瓷,可作为骨组织修复与再生支架使用。

Description

具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法及其 产品
技术领域
本发明属于生物材料领域,涉及一种具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法,还涉及制得的HA多孔陶瓷。
背景技术
羟基磷灰石(HA)生物陶瓷支架常被用作促进骨组织修复和再生的桥连,因HA与自然骨组织矿物相具有相同的组成,不仅安全、无毒还兼具生物活性和骨传导性。HA生物陶瓷支架中含有适当尺寸的孔隙,并占有一定的体积分数,对陶瓷和组织之间的相互作用有重要作用,即新生骨可以从HA与原骨结合处沿着HA陶瓷表面并向陶瓷内部攀附生长,与周围骨组织形成良好的骨性结合,促进骨的再生和重建。但正是由于HA生物陶瓷的多孔性,导致其支架的本体力学强度不足,限制了它在承重部位骨生长重建中的应用。鉴于此,大量研究试图通过不同的制备方法和致孔剂来控制陶瓷孔隙结构,包括孔隙率,孔径,孔的形状和分布等,以此来获得力学强度与功能兼备的HA多孔陶瓷,取得了一定的效果。
然而,HA多孔陶瓷的力学性能除受孔结构影响以外,还与HA颗粒的烧结性能密切相关。颗粒间良好的烧结与融合有利于形成强度更高的支架。但是,不同HA颗粒形状能调控HA多孔陶瓷烧结性能及力学强度未见报道。
发明内容
研究发现,在烧结密实的HA陶坯时,棒形HA(r-HA)颗粒比球形HA颗粒(s-HA)的烧结温度低,但得到的r-HA陶坯没有s-HA陶坯密实,提示HA颗粒的形状会影响HA的烧结性和孔结构。考虑到s-HA和r-HA是两种最常见的羟基磷灰石形状,因此,利用HA颗粒形状对HA多孔陶瓷烧结性能及力学强度的调控,对指导多孔HA陶瓷的设计与加工,并获得具有适宜孔隙率和力学强度的多孔HA陶瓷支架有重要意义。
有鉴于此,本发明的目的之一在于提供孔隙率适宜和力学强度高的HA多孔陶瓷的制备方法,该方法通过不同HA颗粒形状(r-HA、s-HA)调控HA多孔陶瓷烧结性能及力学强度的方法;本发明的目的之二在于提供由上述方法制得的HA多孔陶瓷。
为达到上述目的,本发明提供如下技术方案:
一种孔隙率适宜和力学强度高的HA多孔陶瓷的制备方法,包括如下步骤:将棒形HA颗粒与球形HA颗粒按质量比为80:20~20:80混合后浸泡于蒸馏水中,搅拌下加入聚丙烯酰胺,搅拌至形成均匀的陶瓷泥浆,然后成型,制成陶瓷前体,再烧结得HA多孔陶瓷。
本发明中,所述棒形HA颗粒与球形HA颗粒按质量比为60:40~40:60混合。
本发明中,所述聚丙烯酰胺的加入量按棒形HA颗粒与球形HA颗粒的混合物:聚丙烯酰胺的质量比为1:3~10:1;优选为,所述聚丙烯酰胺的加入量按棒形HA颗粒与球形HA颗粒的混合物:聚丙烯酰胺的质量比为1:1~5:1;更优选为,所述聚丙烯酰胺的加入量按棒形HA颗粒与球形HA颗粒的混合物:聚丙烯酰胺的质量比为3:1~3:2。
本发明中,所述成型为将陶瓷泥浆倒入24孔板中,置于-20℃冰箱冷冻过夜,再冷冻干燥48小时。
本发明中,所述烧结为将制得的陶瓷前体在900-1300℃、真空条件下烧结2-6小时。
本发明中,所述烧结为将制得的陶瓷前体置于高温烧结炉中,真空环境下以10℃/min的升温速率加热至1100℃,保温4h后降至18~25℃,得HA多孔陶瓷。
2、所述制备方法制得的HA多孔陶瓷。
本发明的有益效果在于:本发明公开了HA多孔陶瓷的制备方法,利用s-HA与r-HA具有不同的烧结性,s-HA在烧结过程中主要发生表面熔结,而r-HA会发生晶体生长,且s-HA在烧结过程中对孔可起支撑作用,并且在混合烧结过程中r-HA与s-HA颗粒的熔合作用导致r-HA/s-HA混合陶瓷的孔隙率随r-HA的增加而减小,其力学强度具有明显的r-HA/s-HA比率依赖性;本发明还在陶瓷前体中加入PAM,其含不同比例PAM的陶瓷前体经高温排除PAM会产生不同的孔径和孔隙率。利用上述机理可指导多孔HA陶瓷的设计与加工,以期获得具有适宜孔隙率和力学强度的多孔HA陶瓷支架,用于骨组织修复与再生。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为HA多孔陶瓷孔隙率随r-HA/s-HA比率的变化曲线。
图2为HA多孔陶瓷压缩强度随r-HA/s-HA比率的变化曲线。
图3为r-HA/s-HA比率对HA多孔陶瓷表面形貌的影响。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
实施例1
一种孔隙率适宜和力学强度高的HA多孔陶瓷制备方法,包括如下步骤:
(1)HA陶瓷前体的制备:将棒形HA(r-HA)颗粒比球形HA颗粒(s-HA)按百分质量比50:50混合后浸泡于蒸馏水中,然后在机械搅拌下加入相当于r-HA和s-HA混合物1.5倍质量的PAM,待溶液呈半固体状后保持搅拌1h,形成均匀的陶瓷泥浆,然后将陶瓷泥浆倒入24孔板中成型,置于-20℃冰箱冷冻过夜,最后冷冻干燥48小时,即成陶瓷前体;
(2)HA陶瓷的烧结:将步骤(1)制得的陶瓷前体置于高温烧结炉中,真空环境下以10℃/min的升温速率加热至1100℃,保温4h后降至室温(18~25℃),得HA多孔陶瓷。
按照上述相同方法,通过调整HA(r-HA)颗粒比球形HA颗粒(s-HA)混合物(HA)与PAM比率(HA/PAM)及r-HA与s-HA比率(r-HA/s-HA),并标记为HAabcd,其中a、b两个数字代表HA与PAM的质量比,而后两个数字代表r-HA与s-HA的质量比。例如,HA3264表示HA/PAM为3/2、r-HA/s-HA=60/40的多孔HA陶瓷。
将制得的HA多孔陶瓷表面形貌观察:将烧结好的HA多孔陶瓷进行喷金处理后,采用扫描电子显微镜(SEM)对陶瓷表面形貌进行观察,并拍照记录。
HA陶瓷孔隙率测定:利用下列公式计算HA多孔陶瓷的总孔隙率(Total porosity,Tp):
其中:
ρB——为多孔陶瓷体积密度,即单位体积多孔陶瓷体积的质量(g/cm3)。
ρ0——为HA理论密度3.16g/cm3
样品的尺寸和重量分别由游标卡尺和电子天平测出,总孔隙率由三个平行样品的计算平均值得出。
HA多孔陶瓷压缩强度(σc)测定:采用GB/T 1448-2005测试与计算方法,利用ELF3330力学测试仪测定HA多孔陶瓷的力学强度。其压缩强度计算公式为:
σc=P/S
σc——压缩强度或压缩应力,单位为兆帕(MPa);
P——破坏载荷或最大载荷,单位为牛顿(N);
S——样品的截面积(mm2),S=πD2/4,D为样品直径(mm)。
采用模板消除法制备多孔陶瓷时,发明中模板聚合物(PAM)的用量直接影响陶瓷孔隙率并进而影响陶瓷力学性能。为了更全面地考查HA颗粒形状,即r-HA/s-HA比率对HA多孔陶瓷孔隙率和力学性能的影响,分别选用HA/PAM比率为60/40、67/30和72/28,r-HA/s-HA比率为0/1、4/6、5/5、6/4、1/0制得HA陶瓷前体进行陶瓷烧结。采用Origin 9.0软件拟合HA多孔陶瓷孔隙率和力学强度分别与r-HA/s-HA比率的关系曲线,结果如图1和图2所示。可以看到,对于特定的HA/PAM,HA多孔陶瓷的孔隙率随r-HA/s-HA比率的增加而呈指数下降,相反压缩强度随r-HA/s-HA比率的增加而呈指数增加。
为了阐明r-HA/s-HA比率对HA颗粒烧结性能的影响,采用SEM对各陶瓷的表面形貌进行了观察,结果如图3所示。从图中可以看出,对任一给定的HA/PAM比率,随r-HA/s-HA比率的增大,由单一颗粒形状s-HA或r-HA所烧结的陶瓷其HA颗粒都以简单的堆砌方式形成。s-HA陶瓷表面的颗粒表面之间具有明显的粘结(图3,HA3201-A&a),这种烧结粘合能力应该源自于s-HA具有较高的单位体积表面能。s-HA颗粒间的粘结足以支撑其烧结过程中随着PAM裂解造成的坍塌,从而保持PAM裂解留下的多孔结构,形成高的孔隙率以及富含连通性的亚孔结构。相反,单纯由r-HA所形成的陶瓷其颗粒堆砌致密,颗粒间没有明显的粘结(图3,HA3210-A&a);而且r-HA颗粒在陶瓷烧结过程中发生了晶粒生长。由于烧结过程中r-HA晶粒间没有明显的粘结,导致其无法支撑PAM裂解造成的坍塌,从而形成相对致密的低孔隙率结构。上述观察表明,s-HA与r-HA具有不同的烧结性,前者在烧结过程中主要发生表面溶结,而后者会发生晶体生长。
s-HA与r-HA混合进行烧结后,所得陶瓷的表面形貌和陶瓷壁颗粒结构明显不同于纯的s-HA陶瓷和纯的r-HA陶瓷。HA颗粒间有明显熔合,颗粒间的点接触基本变为面接触,形成了具有一定拓扑形貌的光滑连续相结构,且这种相结构具有明显的r-HA/s-HA比率依赖性。正是由于s-HA在烧结过程中对孔的支撑作用,以及r-HA在烧结过程中与s-HA颗粒的熔合作用导致r-HA/s-HA混合陶瓷的孔隙率随r-HA的增加而减小,其力学强度具有明显的r-HA/s-HA比率依赖性。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (9)

1.具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法,其特征在于,包括如下步骤:将棒形HA颗粒与球形HA颗粒按质量比为80:20~20:80混合后浸泡于蒸馏水中,搅拌下加入聚丙烯酰胺,搅拌至形成均匀的陶瓷泥浆,然后成型,制成陶瓷前体,再烧结得HA多孔陶瓷。
2.根据权利要求1所述具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法,其特征在于:所述棒形HA颗粒与球形HA颗粒按质量比为60:40~40:60混合。
3.根据权利要求1所述具有适宜孔隙率和力学强度的HA多孔陶瓷制备方法,其特征在于:所述聚丙烯酰胺的加入量按棒形HA颗粒与球形HA颗粒的混合物:聚丙烯酰胺的质量比为1:3~10:1。
4.根据权利要求3所述具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法,其特征在于:所述聚丙烯酰胺的加入量按棒形HA颗粒与球形HA颗粒的混合物:聚丙烯酰胺的质量比为1:1~5:1。
5.根据权利要求4所述具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法,其特征在于:所述聚丙烯酰胺的加入量按棒形HA颗粒与球形HA颗粒的混合物:聚丙烯酰胺的质量比为3:1~3:2。
6.根据权利要求1所述具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法,其特征在于:所述成型为将陶瓷泥浆倒入24孔板中,置于-20℃冰箱冷冻过夜,再冷冻干燥48小时。
7.根据权利要求1所述具有适宜孔隙率和力学强度的HA多孔陶瓷制备方法,其特征在于:所述烧结为将制得的陶瓷前体在900-1300℃、真空条件下烧结2-6小时。
8.根据权利要求7所述具有适宜孔隙率和力学强度的HA多孔陶瓷的制备方法,其特征在于:所述烧结为将制得的陶瓷前体置于高温烧结炉中,真空环境下以10℃/min的升温速率加热至1100℃,保温4h后降至18~25℃,得HA多孔陶瓷。
9.权利要求1~8任一项所述制备方法制得的HA多孔陶瓷。
CN201710224190.9A 2017-04-07 2017-04-07 具有适宜孔隙率和力学强度的ha多孔陶瓷的制备方法及其产品 Active CN106904958B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710224190.9A CN106904958B (zh) 2017-04-07 2017-04-07 具有适宜孔隙率和力学强度的ha多孔陶瓷的制备方法及其产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710224190.9A CN106904958B (zh) 2017-04-07 2017-04-07 具有适宜孔隙率和力学强度的ha多孔陶瓷的制备方法及其产品

Publications (2)

Publication Number Publication Date
CN106904958A true CN106904958A (zh) 2017-06-30
CN106904958B CN106904958B (zh) 2020-07-14

Family

ID=59195979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710224190.9A Active CN106904958B (zh) 2017-04-07 2017-04-07 具有适宜孔隙率和力学强度的ha多孔陶瓷的制备方法及其产品

Country Status (1)

Country Link
CN (1) CN106904958B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208877A (ja) * 1992-01-28 1993-08-20 Kanebo Ltd リン酸カルシウム系セラミックス多孔体及びその製造方法
CN1488602A (zh) * 2003-08-12 2004-04-14 四川大学 多孔磷酸钙生物陶瓷材料及其制备方法
EP1521730A2 (en) * 2002-07-12 2005-04-13 Robert M. Pilliar Method of manufacture of porous inorganic structures and infiltration with organic polymers
CN1621391A (zh) * 2003-11-27 2005-06-01 宾得株式会社 多孔磷酸钙陶瓷及其制备方法
CN101411891A (zh) * 2008-12-01 2009-04-22 天津理工大学 一种可降解纳米钙磷化合物增强镁锌合金骨折内固定材料
CN101734635A (zh) * 2009-12-31 2010-06-16 四川大学 一种纳米羟基磷灰石粉体的制备方法
CN102285815A (zh) * 2011-06-07 2011-12-21 西安理工大学 一种双孔型多孔陶瓷的制备方法
CN103467104A (zh) * 2012-06-07 2013-12-25 中南大学 激光制备人工骨中加少量聚乳酸提高陶瓷烧结性能的方法
CN103638556A (zh) * 2013-12-03 2014-03-19 四川大学 一种表面纳米化改性磷酸钙生物活性陶瓷及其制备和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208877A (ja) * 1992-01-28 1993-08-20 Kanebo Ltd リン酸カルシウム系セラミックス多孔体及びその製造方法
EP1521730A2 (en) * 2002-07-12 2005-04-13 Robert M. Pilliar Method of manufacture of porous inorganic structures and infiltration with organic polymers
CN1488602A (zh) * 2003-08-12 2004-04-14 四川大学 多孔磷酸钙生物陶瓷材料及其制备方法
CN1621391A (zh) * 2003-11-27 2005-06-01 宾得株式会社 多孔磷酸钙陶瓷及其制备方法
CN101411891A (zh) * 2008-12-01 2009-04-22 天津理工大学 一种可降解纳米钙磷化合物增强镁锌合金骨折内固定材料
CN101734635A (zh) * 2009-12-31 2010-06-16 四川大学 一种纳米羟基磷灰石粉体的制备方法
CN102285815A (zh) * 2011-06-07 2011-12-21 西安理工大学 一种双孔型多孔陶瓷的制备方法
CN103467104A (zh) * 2012-06-07 2013-12-25 中南大学 激光制备人工骨中加少量聚乳酸提高陶瓷烧结性能的方法
CN103638556A (zh) * 2013-12-03 2014-03-19 四川大学 一种表面纳米化改性磷酸钙生物活性陶瓷及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
罗民华等: "《多孔陶瓷实用技术》", 31 March 2006, 中国建材工业出版社 *
肖素光等: "粉体形态对网化HA陶瓷支架烧结和力学性能的影响:球形和针状HA粉体对比研究", 《四川师范大学学报(自然科学版)》 *

Also Published As

Publication number Publication date
CN106904958B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
Franks et al. Colloidal processing: enabling complex shaped ceramics with unique multiscale structures
Cyster et al. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering
Nor et al. Preparation and characterization of ceramic foam produced via polymeric foam replication method
Zhou et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications
Sopyan et al. Preparation and characterization of porous hydroxyapatite through polymeric sponge method
Yan et al. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting
CN109279909A (zh) 一种高强度碳化硼多孔陶瓷的制备方法
Zhao et al. Polymer template fabrication of porous hydroxyapatite scaffolds with interconnected spherical pores
CN105272266A (zh) 一种先驱体转化碳化硅泡沫陶瓷的制备方法
CN103011883A (zh) 一种超高温轻质氧化锆隔热材料的制备方法
Talou et al. Two alternative routes for starch consolidation of mullite green bodies
Li et al. Foam-gelcasting preparation and properties of high-strength mullite porous ceramics
CN109928756A (zh) 一种碳化硅增强碳基复合材料及制备方法
Li et al. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques
Han et al. Microstructure, mechanical properties and in vitro bioactivity of akermanite scaffolds fabricated by laser sintering
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
Li et al. Integrating surface topography of stripe pattern on pore surface of 3-dimensional hydroxyapatiye scaffolds
Wang et al. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute
CN108395232B (zh) 一种高渗流速率的堇青石基多孔陶瓷的制备方法
CN108439990B (zh) 一种二硼化钛基陶瓷复合材料及其制备方法
CN104876641B (zh) 一种多孔材料的组合浇铸制备方法
CN109320257A (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN106904958A (zh) 具有适宜孔隙率和力学强度的ha多孔陶瓷的制备方法及其产品
Zhang et al. Highly porous ceramics based on ultralong hydroxyapatite nanowires
Agrawal et al. Fabrication of hydroxyapatite ceramics by microwave processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant