CN106876755B - 一种铈基电解质隔层上低温烧制复合阴极的方法 - Google Patents

一种铈基电解质隔层上低温烧制复合阴极的方法 Download PDF

Info

Publication number
CN106876755B
CN106876755B CN201510922865.8A CN201510922865A CN106876755B CN 106876755 B CN106876755 B CN 106876755B CN 201510922865 A CN201510922865 A CN 201510922865A CN 106876755 B CN106876755 B CN 106876755B
Authority
CN
China
Prior art keywords
cathode
phase
added
powder
base electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510922865.8A
Other languages
English (en)
Other versions
CN106876755A (zh
Inventor
程谟杰
尚磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510922865.8A priority Critical patent/CN106876755B/zh
Publication of CN106876755A publication Critical patent/CN106876755A/zh
Application granted granted Critical
Publication of CN106876755B publication Critical patent/CN106876755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种铈基电解质隔层上低温烧制复合阴极的方法。该方法采用柠檬酸铵共合成法制备电池阴极粉料,将焙烧成相后的粉料配置成阴极浆料涂覆在阳极/电解质/铈基电解质隔层三合一上,低温700~800℃烧结成电池阴极。该复合阴极同时具有钙钛矿和立方萤石相,是混合离子电子导体,颗粒尺寸小且均匀,比表面积大,与传统机械混合法制备阴极相比,700℃的最大功率密度提高了约20%并且电池能够稳定运行。

Description

一种铈基电解质隔层上低温烧制复合阴极的方法
技术领域:
本发明涉及固体氧化物燃料电池复合阴极,具体地说是一种低温烧结制备固体氧化物燃料电池复合阴极的方法
背景技术:
固体氧化物燃料电池(SOFCs)是将储存在燃料和氧化剂中的化学能直接转化成电能的能量转换装置,与传统的产能技术相比,其具有产能效率高,清洁无污染,应用范围广等特点,是目前最有前景的清洁能源技术之一。降低SOFC运行温度到800℃以下基于可以使用廉价不锈钢作为连接体,降低SOFC运行成本;并且可以压制电池各部件间的反应,解决密封和电池部件热退化等难题,因此成为目前SOFC的主要发展方向之一。
基于Co、Fe基钙钛矿材料的混合电子离子导体性质,常用作中低温SOFC阴极材料。将其与铈基萤石材料相混合可以进一步提升其氧催化活性,有文献表明,其有效反应活性位点主要集中在钙钛矿/萤石/O2的三相界面上(Journal of Power Sources 269(2014)180-188)。在YSZ电解质表面制备一层铈基电解质隔层可以有效阻止Co、Fe基钙钛矿材料与YSZ电解质之间的高温反应,维持了中低温SOFC的高性能(Solid State Ionics 179(2008)919-923)。然而传统的机械混合制备复合阴极的方法不仅很难使粉体均匀分散,造成阴极有效反应活性位点的减少,而且需要高温(≧1000℃)烧结,使得颗粒长大较为严重,三相界面损失严重,因此均导致了电池性能较低。因此本专利提出一种简单有效的制备固体氧化物燃料电池复合阴极的方法,所制得的阴极同时具有钙钛矿相和立方萤石相,两相颗粒大小均匀且均匀分散,比表面积大并且可以在700~800℃低温烧结,与铈基电解质隔层界面接触良好,电池性能较高。
发明内容
本发明提出一种在铈基隔层上低温烧结制备固体氧化物燃料电池复合阴极的方法。具体实施步骤为:
1)合成复合粉体:将含有钙钛矿相和萤石相的金属离子硝酸盐粉末按化学计量比共同加入到烧杯中搅拌溶解,向其中加入金属离子0.5~1.5倍摩尔量的络合剂,使用氨水或HNO3调溶液pH,加热搅拌溶液。蒸发溶剂待溶液成透明粘稠状,转移至蒸发皿中加热使其自蔓延燃烧得到复合粉体初粉。将复合粉体初粉转移至坩埚中,800~1000℃焙烧成相
2)配置阴极浆料:将成相粉体用研钵研磨均匀后加胶配置电池阴极浆料
3)电池阴极的烧结制备:将阴极浆料涂覆在阳极/电解质/铈基电解质隔层三合一上基底或铈基电解质膜基底上,从室温升温到700~800℃,并于700~800℃烧结1~2h成电池复合阴极。使用此方法合成的电池阴极拥有较高的比表面积,两相分布均匀,反应活性位点多,阴极与铈基电解质隔层界面接触良好,与传统的机械混合制备电池阴极相比,电池性能得到较大提高。
本方法所合成的阴极为钙钛矿/萤石相复合阴极,其中钙钛矿相通式为:(Ln1-xZx)(M1-yNy)O3-d,其中应用于复合粉体中A位的Ln为La、Sm、Ba、Pr中的任意一种,Z为A位Ln中掺杂元素Sr、Ca中的一种或两种,其中x取值介于0~0.5;应用于复合粉体中B位的M和N为Co、Fe中的任意一种,其中y取值介于0~0.5,0≤d≤0.1764。萤石相为GDC(氧化钆稳定的氧化铈)、SDC(氧化钐稳定的氧化铈)、YDC(氧化钇稳定的氧化铈)中的一种或两种以上。合成的钙钛矿/萤石相质量比为3:7~7:3之间,合成粉体所选用的络合剂为尿素、甘氨酸、柠檬酸铵、EDTA+柠檬酸中的一种,溶液pH可以通过加入氨水调节至pH值≧9或者加入硝酸调节至pH值<1,优选碱性条件合成。
该复合阴极同时具有钙钛矿和立方萤石相,是混合离子电子导体,颗粒尺寸小且均匀,比表面积大,与传统机械混合法制备阴极相比,700℃的最大功率密度提高了约20%并且电池能够稳定运行。
本发明的优势在于:
本发明采用共合成的方法制备复合阴极,得到的粉体中钙钛矿/萤石相均匀分散,三相界面遍布于整个阴极体相中,且平均粒径只有几十纳米,比表面积大,达12.5288m2/g,得到的粉体可以在低温烧结成复合阴极,避免了传统阴极制备时钙钛矿/萤石两相分布不均匀,并且需要高温烧结阴极造成的颗粒长大和三相界面电化学活性位的减少。
附图说明
图1是采用柠檬酸铵法共合成的
La0.6Sr0.4Co0.2Fe0.8O3-ζ/Gd0.1Ce0.9O1.95=60:40wt%的复合阴极800℃焙烧2h后的XRD图谱
图2是采用柠檬酸-EDTA法共合成的
La0.6Sr0.4Co0.2Fe0.8O3-ζ/Gd0.1Ce0.9O1.95=60:40wt%复合阴极800℃焙烧2h后的SEM照片
图3是采用柠檬酸铵法共合成的
La0.6Sr0.4Co0.2Fe0.8O3-ζ/Gd0.1Ce0.9O1.95=60:40wt%的复合阴极800℃焙烧2h后配成浆料,在Gd0.1Ce0.9O1.95隔层上700℃烧结2h后的阴极/隔层断面SEM图片
图4是采用柠檬酸铵法共合成的
La0.6Sr0.4Co0.2Fe0.8O3-ζ/Gd0.1Ce0.9O1.95=60:40wt%复合粉体800℃焙烧2h后配成浆料,700℃烧结成电池阴极后,Au集流,700℃测试的电池I-V曲线与传统机械混合复合阴极Au集流电池的比较。
具体实施方式
实施例1:
采用柠檬酸铵法共合成
La0.6Sr0.4Co0.2Fe0.8O3-ζ/Gd0.1Ce0.9O1.95=60:40wt%复合阴极材料,其中La0.6Sr0.4Co0.2Fe0.8O3-ζ取0.05mol。称取0.7783gGd2O3粉末(分析纯),于500ml烧杯中,加入HNO3(分析纯)后搅拌使其完全溶解,称取16.7817gCe(NO3)3·6H2O,12.9872gLa(NO3)3·6H2O(分析纯),4.2325gSr(NO3)2(分析纯),2.9105gCo(NO3)2·6H2O,16.16gFe(NO3)3·9H2O(分析纯)于烧杯中加入去离子水后搅拌使其全部溶解。然后按照柠檬酸铵:金属离子摩尔比为1.5:1的比例加入52.1496g柠檬酸铵(分析纯),用氨水(分析纯)调节溶液的pH=9使溶液变澄清透明,然后加热搅拌蒸发溶剂直到溶液变粘稠溶胶状后倒入蒸发皿中,用电炉加热使体系自蔓延燃烧,收集得到的初粉在马弗炉中800℃焙烧,采用XRD表征焙烧后的粉体,图1为所得到粉体的XRD图
实施例2:
采用柠檬酸-EDTA法共合成
La0.6Sr0.4Co0.2Fe0.8O3-ζ/Gd0.1Ce0.9O1.95=60:40wt%复合阴极材料,其中La0.6Sr0.4Co0.2Fe0.8O3-ζ取0.05mol。称取0.7783gGd2O3粉末(分析纯),于500ml烧杯中,加入HNO3(分析纯)后搅拌使其完全溶解,称取16.7817gCe(NO3)3·6H2O,12.9872gLa(NO3)3·6H2O(分析纯),4.2325gSr(NO3)2(分析纯),2.9105gCo(NO3)2·6H2O,16.16gFe(NO3)3·9H2O(分析纯)于烧杯中加入去离子水后搅拌使其全部溶解。然后按照柠檬酸:EDTA:金属离子摩尔比为1.2:1.2:1的比例加入36.0454g柠檬酸(分析纯),50.1281g EDTA(分析纯),用氨水调节溶液的pH=9使溶液变澄清透明,然后加热搅拌蒸发溶剂直到溶液变粘稠溶胶状后倒入蒸发皿中,用电炉加热使体系自蔓延燃烧,收集得到的初粉在马弗炉中800℃焙烧后配置阴极浆料(加入30wt%阴极胶,加胶的成分为溶解乙基纤维素(2wt%)的松油醇(98wt%)溶液)涂覆Gd0.1Ce0.9O1.95隔层上700℃烧结阴极,其焙烧后的粉体SEM图片和烧结阴极断面SEM图片如图2和图3所示。
实施例3
如实施例1中制备La0.6Sr0.4Co0.2Fe0.8O3-ζ/Gd0.1Ce0.9O1.95=60:40wt%复合阴极材料,研磨均匀后加入40wt%阴极胶(加胶的成分为溶解乙基纤维素(10wt%)的松油醇(90wt%)溶液)配置阴极浆料,涂覆0.0100g到Gd0.1Ce0.9O1.95隔层上于700℃烧结2h后在自组装的电池评价装置上测试,700℃极化18h后测试I-V曲线,结果如图4所示。

Claims (7)

1.一种铈基电解质隔层上低温烧制复合阴极的方法,其特征在于,具体实施步骤如下:
1)将含有钙钛矿相和萤石相的金属离子硝酸盐粉体按所需化学计量比共同加入到烧杯中溶解,溶解后加入金属离子0.5~1.5倍摩尔量的络合剂,使用氨水或HNO3调溶液pH,加热搅拌溶液;
2)蒸发溶剂待溶液成透明粘稠状,转移至蒸发皿中加热使其自蔓延燃烧得到复合粉体初粉;
3)将复合粉体初粉转移至马弗炉中,800~1000℃焙烧成相;
4)将成相粉体用研钵研磨均匀后加胶配置电池阴极浆料;
5)将阴极浆料涂覆在阳极/电解质/铈基电解质隔层三合一基底或铈基电解质膜基底上,从室温升温到700~800℃,并于700~800℃烧结1~2h成电池阴极。
2.如权利要求1所述的方法,其特征在于,所制备的阴极为钙钛矿/萤石相复合阴极,其中钙钛矿相通式为:(Ln1-xZx)(M1-yNy)O3-d,其中应用于复合粉体中A位的Ln为La、Sm、Ba、Pr中的任意一种,Z为A位Ln中掺杂元素Sr、Ca中的一种或两种,其中x取值介于0~0.5;应用于复合粉体中B位的M和N为Co、Fe中的任意一种或二种,其中y取值介于0~0.5,0≤d≤0.1764;萤石相为氧化钆稳定的氧化铈GDC、氧化钐稳定的氧化铈SDC、氧化钇稳定的氧化铈YDC中的一种或两种以上。
3.如权利要求1或2所述的方法,其特征在于,所制备的钙钛矿/萤石相质量比为3:7~7:3之间。
4.如权利要求1所述的方法,其特征在于,所选用的络合剂为尿素、甘氨酸、柠檬酸铵、EDTA+柠檬酸中的任一种。
5.如权利要求1所述的方法,其特征在于,溶液pH可以通过加入氨水调节至pH值≧9或者加入硝酸调节至pH值<1。
6.如权利要求1所述的方法,其特征在于,所加胶的成分为溶解乙基纤维素的松油醇溶液,其中乙基纤维素的浓度为1~20wt%,松油醇的浓度为80~99wt%。
7.如权利要求1所述的方法,其特征在于,铈基电解质隔层可以通过浆料涂覆、磁控溅射、脉冲激光沉积或蒸镀工艺制备。
CN201510922865.8A 2015-12-12 2015-12-12 一种铈基电解质隔层上低温烧制复合阴极的方法 Active CN106876755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510922865.8A CN106876755B (zh) 2015-12-12 2015-12-12 一种铈基电解质隔层上低温烧制复合阴极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510922865.8A CN106876755B (zh) 2015-12-12 2015-12-12 一种铈基电解质隔层上低温烧制复合阴极的方法

Publications (2)

Publication Number Publication Date
CN106876755A CN106876755A (zh) 2017-06-20
CN106876755B true CN106876755B (zh) 2019-07-02

Family

ID=59178333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510922865.8A Active CN106876755B (zh) 2015-12-12 2015-12-12 一种铈基电解质隔层上低温烧制复合阴极的方法

Country Status (1)

Country Link
CN (1) CN106876755B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841840A (zh) * 2017-11-28 2019-06-04 中国科学院大连化学物理研究所 一种高温电解池用复合燃料电极及其制备方法
CN108123156B (zh) * 2017-12-29 2020-02-18 成都新柯力化工科技有限公司 一种燃料电池的复合膜电极的制备方法
CN111254458B (zh) * 2018-11-30 2021-05-14 中国科学院大连化学物理研究所 一种钙钛矿复合阴极及其制备方法和应用
CN113540489B (zh) * 2021-05-15 2022-09-09 山东工业陶瓷研究设计院有限公司 阻隔层浆料、制备方法以及阻隔层制备方法和电池单体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479957A (zh) * 2010-11-30 2012-05-30 中国科学院大连化学物理研究所 一种共合成固体氧化物燃料电池复合阴极材料的方法
CN103208634A (zh) * 2013-03-25 2013-07-17 北京科技大学 用于中低温质子传输固体氧化物燃料电池的复合阴极材料
CN103887520A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 一种低温烧结制备固体氧化物燃料电池复合阴极的方法
CN103887548A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 一种具有择优取向的氧化铈基电解质薄膜及其制备和应用
US20150148216A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479957A (zh) * 2010-11-30 2012-05-30 中国科学院大连化学物理研究所 一种共合成固体氧化物燃料电池复合阴极材料的方法
CN103887520A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 一种低温烧结制备固体氧化物燃料电池复合阴极的方法
CN103887548A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 一种具有择优取向的氧化铈基电解质薄膜及其制备和应用
CN103208634A (zh) * 2013-03-25 2013-07-17 北京科技大学 用于中低温质子传输固体氧化物燃料电池的复合阴极材料
US20150148216A1 (en) * 2013-11-26 2015-05-28 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof

Also Published As

Publication number Publication date
CN106876755A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
Chung et al. In situ preparation of a La 1.2 Sr 0.8 Mn 0.4 Fe 0.6 O 4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs
Kan et al. Trends in electrode development for next generation solid oxide fuel cells
Dong et al. A comparative study of Sm0. 5Sr0. 5MO3− δ (M= Co and Mn) as oxygen reduction electrodes for solid oxide fuel cells
Liu et al. LSM-infiltrated LSCF cathodes for solid oxide fuel cells
Peña-Martínez et al. Performance of XSCoF (X= Ba, La and Sm) and LSCrX′(X′= Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC
CN101320814B (zh) 低温固体氧化物燃料电池的电解质材料及其制备方法
CN108832136B (zh) 一种固体氧化物电池用复合氧电极及其制备方法
CN110797542B (zh) 一种对称固体氧化物燃料电池电极材料及其制备方法
CN104916850B (zh) 固体氧化物燃料电池阴极用材料及具其复合阴极材料及其制备方法和电池复合阴极制备方法
CN106876755B (zh) 一种铈基电解质隔层上低温烧制复合阴极的方法
CN103887520A (zh) 一种低温烧结制备固体氧化物燃料电池复合阴极的方法
Yang et al. Magnesium oxide as synergistic catalyst for oxygen reduction reaction on strontium doped lanthanum cobalt ferrite
Niemczyk et al. Assessment of layered La2-x (Sr, Ba) xCuO4-δ oxides as potential cathode materials for SOFCs
CN102340008A (zh) 一种固体氧化物燃料电池阴极材料及其制备方法
US20140302420A1 (en) Ceramic Anode Materials for Solid Oxide Fuel Cells
Guo et al. Thermal and electrochemical properties of layered perovskite PrBaCo2− xMnxO5+ δ (x= 0.1, 0.2 and 0.3) cathode materials for intermediate temperature solid oxide fuel cells
US10059584B2 (en) Cathode material for low temperature solid oxide fuel cells
CN105870459A (zh) 一种高催化活性中温固体氧化物燃料电池复合阴极材料及其制备方法
CN112186201B (zh) 金属氧化物阴极材料、复合阴极材料及电池
Mao et al. Electrode properties of (Pr0. 9La0. 1) 2− x (Ni0. 74Cu0. 21Al0. 05) O4+ δ (with x= 0, 0.05, and 0.1) as cathodes in IT-SOFCs
CN101515646B (zh) 一种中温固体氧化物燃料电池复合阴极材料及其制备方法
CN102104153A (zh) 中低温固体氧化物燃料电池阴极制备方法
Gao et al. Preparation and characterization of La1− xSrxNiyFe1− yO3− δ cathodes for low-temperature solid oxide fuel cells
Peng et al. Pr1. 8La0. 2Ni0. 74Cu0. 21Ga0. 05O4+ δ as a potential cathode material with CO2 resistance for intermediate temperature solid oxide fuel cell
Chen et al. Toward understanding of temperature dependence of an advanced ceramic fuel cell with Ni0. 8Co0. 15Al0. 05LiO2 as an electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant