CN106876720A - 一种氧化铋改性的高温固体氧化物电解池复合阳极材料 - Google Patents
一种氧化铋改性的高温固体氧化物电解池复合阳极材料 Download PDFInfo
- Publication number
- CN106876720A CN106876720A CN201510918656.6A CN201510918656A CN106876720A CN 106876720 A CN106876720 A CN 106876720A CN 201510918656 A CN201510918656 A CN 201510918656A CN 106876720 A CN106876720 A CN 106876720A
- Authority
- CN
- China
- Prior art keywords
- oxide
- bismuth oxide
- electrolytic cell
- temperature solid
- solid oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
- H01M4/8835—Screen printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
Abstract
本发明涉及种氧化铋改性的高温固体氧化物电解池复合阳极材料,其特征在于:在传统的钙钛矿型阳极材料中掺入稀土氧化物稳定的氧化铋,形成氧化铋质量比为10%~90%的氧化铋-钙钛矿复合材料。经复合后该材料的比表面积、电子-离子混合电导率、电催化活性都得到了显著提高,用作阳极时可有效提升高温固体氧化物电解池的性能。
Description
技术领域
本发明涉及高温固体氧化物电解池的阳极材料,其特征是向传统的钙钛矿型阳极材料中掺入稀土氧化物稳定的氧化铋进行改性,形成氧化铋质量比为10%~90%的氧化铋-钙钛矿复合材料。
背景技术
高温固体氧化物电解池是一种运行在中高温(600~800℃)的电解设备,得益于其较高的工作温度,可以高效地将水蒸气电解制得氢气与氧气。目前固体氧化物电解池的设计基本上沿用已有的固体氧化物燃料电池体系,其典型配置采用金属镍与氧化钇稳定的氧化锆的复合金属陶瓷材料(Ni-YSZ)作阴极,氧化钇稳定的氧化锆(YSZ)作电解质,钙钛矿型氧化物作阳极。其中决定整体电解效率的速控步骤是氧电极上的阳极析氧反应。然而,当传统固体氧化物燃料电池所用的钙钛矿型氧电极La0.8Sr0.2MnO3+δ(LSM)直接用于电解时,呈现出了一定的缺陷。其最显著的问题是在电解模式下工作容易发生电极脱落,这是由于La0.8Sr0.2MnO3+δ的反应活性较低,在外加的极化电流作用下,氧气强行析出而破坏了电极-电解质的连接界面。改进的方法是向LSM电极中掺入具有氧离子电导的物相,形成氧离子导电网络,扩展反应界面,从而提高电极的电化学催化活性。
发明内容
为解决传统高温固体氧化物电解池阳极催化活性或稳定性较差的问题,本发明提供了一种具有高电催化活性且制备容易的新型复合阳极材料。
本发明解决其技术问题所采用的方案是:在传统的钙钛矿型阳极材料中掺入具有高离子电导率的稀土氧化物稳定的氧化铋,形成氧化铋质量比为10%~90%的氧化铋-钙钛矿复合材料。
本发明所述的稀土氧化物稳定的氧化铋,化学式为Bi1-xLnxO1.5(0<x<1),其中Ln为Y、Zr、La、Ce、Sm、Er、Dy中的一种。
本发明所述的复合材料的合成方法包括硝酸盐溶液碱性共沉淀法或柠檬酸-硝酸盐燃烧法。
本发明所述的氧化铋改性的高温固体氧化物电解池复合阳极材料为La1-xSrxMnO3+δ和/或La1-xSrxCo1-yFeyO3-δ;0<x<1,0<y<1,0<δ<0.5。
本发明所述的氧化铋改性的高温固体氧化物电解池复合阳极材料的具体制备方法如下:
(1)以欲合成的复合阳极氧化物的阳离子(Ln、Bi、La、Sr、Mn等)所对应的硝酸盐为起始原料,通过硝酸盐溶液碱性共沉淀法或柠檬酸-硝酸盐燃烧法合成所需的氧化物粉末;
(2)将所得的粉末研磨,加入胶配制成油墨状浆料;
(3)将浆料通过丝网印刷的方法涂覆在Ni-YSZ/YSZ膜电极的电解质面上,在500~1500℃下焙烧1~100小时,即得到本发明所述的具有氧化铋改性复合阳极的高温固体氧化物电解池。
本发明的有益效果是,所述的复合材料的比表面积、电子-离子混合电导率、电催化活性都得到了显著提高,用作阳极时可有效提升高温固体氧化物电解池的性能。
附图说明
图1为Bi0.42Y0.58O1.5-La0.8Sr0.2MnO3+δ在各个温度下的极化曲线,并附有与LSM电极和LSCF/GDC电极的对比。
具体实施方式
实施例1
合成Bi1-xYxO1.5-La0.8Sr0.2MnO3+δ(x=0.23,0.30,0.58),其中两者的摩尔比例为1:1。将Y、Bi、La、Sr、Mn的硝酸盐按照比例溶解于去离子水中,然后加入柠檬酸,使柠檬酸与金属离子的比例保持在2:1。将溶液pH保持在8~10,并在搅拌下加热使之成为凝胶状,继续加热,引发自燃。得到的粉末在500℃焙烧1小时以除去有机残留,然后研磨并加入正丁醇(含乙基纤维素作为粘结剂)制成浆料。然后将浆料通过丝网印刷的方法涂覆在Ni-YSZ/YSZ膜电极的电解质面上,在1000℃下焙烧3小时,即得到本发明所述的具有氧化铋改性复合阳极的高温固体氧化物电解池。
实施例2
电化学性能测试。将上述含有氧化铋改性复合阳极的高温固体氧化物电解池安装在电化学性能评价设备上进行测试。控制阴极气氛为50%H2-50%H2O,流量200ml/min,阳极气氛为100%O2,流量100ml/min。图1为Bi0.42Y0.58O1.5-La0.8Sr0.2MnO3+δ在各个温度下的极化曲线。图中显示了其与LSM电极和LSCF/GDC电极的对比,同温度下,氧化铋改性复合阳极性能远高于LSM,比LSCF/GDC也略高。
Claims (3)
1.一种氧化铋改性的高温固体氧化物电解池复合阳极材料,其特征在于:向钙钛矿型阳极材料中掺入稀土氧化物稳定的氧化铋进行改性,形成氧化铋质量比为10%~90%的氧化铋-钙钛矿复合材料。
2.根据权利要求1所述的氧化铋改性的高温固体氧化物电解池复合阳极材料,其特征在于:所述的稀土氧化物稳定的氧化铋,化学式为Bi1-xLnxO1.5(0<x<1),其中Ln为Y、Zr、La、Ce、Sm、Er、Dy中的一种。
3.根据权利要求1所述的氧化铋改性的高温固体氧化物电解池复合阳极材料,其特征在于:所述的钙钛矿型阳极材料为La1-xSrxMnO3+δ和/或La1-xSrxCo1-yFeyO3-δ;0<x<1,0<y<1,0<δ<0.5。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510918656.6A CN106876720A (zh) | 2015-12-12 | 2015-12-12 | 一种氧化铋改性的高温固体氧化物电解池复合阳极材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510918656.6A CN106876720A (zh) | 2015-12-12 | 2015-12-12 | 一种氧化铋改性的高温固体氧化物电解池复合阳极材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106876720A true CN106876720A (zh) | 2017-06-20 |
Family
ID=59177923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510918656.6A Pending CN106876720A (zh) | 2015-12-12 | 2015-12-12 | 一种氧化铋改性的高温固体氧化物电解池复合阳极材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106876720A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235589A (zh) * | 2018-11-29 | 2020-06-05 | 中国科学院大连化学物理研究所 | 一种高温电解池阴极材料及其制备和应用 |
CN112647089A (zh) * | 2020-12-15 | 2021-04-13 | 中国科学院大连化学物理研究所 | 一种固体氧化物电解池三元复合阳极的制备方法 |
CN118271088A (zh) * | 2024-05-31 | 2024-07-02 | 西南石油大学 | 一种铋掺杂的中温sofc阴极材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007141460A (ja) * | 2005-11-14 | 2007-06-07 | National Institute For Materials Science | ビスマス・エルビウム・ニオブ酸化物固溶体からなる酸化物イオン伝導材料及びその製造方法 |
CN101515646A (zh) * | 2009-03-10 | 2009-08-26 | 中国科学院上海硅酸盐研究所 | 一种中温固体氧化物燃料电池复合阴极材料及其制备方法 |
CN103887520A (zh) * | 2012-12-21 | 2014-06-25 | 中国科学院大连化学物理研究所 | 一种低温烧结制备固体氧化物燃料电池复合阴极的方法 |
CN104078687A (zh) * | 2013-03-25 | 2014-10-01 | 中国科学院物理研究所 | 含有碱金属或碱土金属元素的固体氧化物燃料电池的阳极材料及其制备方法和用途 |
JP2015171984A (ja) * | 2013-08-27 | 2015-10-01 | 国立大学法人東京工業大学 | 結晶性無機化合物 |
-
2015
- 2015-12-12 CN CN201510918656.6A patent/CN106876720A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007141460A (ja) * | 2005-11-14 | 2007-06-07 | National Institute For Materials Science | ビスマス・エルビウム・ニオブ酸化物固溶体からなる酸化物イオン伝導材料及びその製造方法 |
CN101515646A (zh) * | 2009-03-10 | 2009-08-26 | 中国科学院上海硅酸盐研究所 | 一种中温固体氧化物燃料电池复合阴极材料及其制备方法 |
CN103887520A (zh) * | 2012-12-21 | 2014-06-25 | 中国科学院大连化学物理研究所 | 一种低温烧结制备固体氧化物燃料电池复合阴极的方法 |
CN104078687A (zh) * | 2013-03-25 | 2014-10-01 | 中国科学院物理研究所 | 含有碱金属或碱土金属元素的固体氧化物燃料电池的阳极材料及其制备方法和用途 |
JP2015171984A (ja) * | 2013-08-27 | 2015-10-01 | 国立大学法人東京工業大学 | 結晶性無機化合物 |
Non-Patent Citations (2)
Title |
---|
JOURNAL OF POWER SOURCES: "La0.84Sr0.16MnO3-δ cathodes impregnated with Bi1.4Er0.6O3 for", 《JOURNAL OF POWER SOURCES》 * |
ZHIYI JIANG,ET AL: "La0.85Sr0.15MnO3-δInfiltrated Y0.5Bi1.5O3 Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells", 《ELECTROCHEMICAL AND SOLID-STATE LETTERS》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111235589A (zh) * | 2018-11-29 | 2020-06-05 | 中国科学院大连化学物理研究所 | 一种高温电解池阴极材料及其制备和应用 |
CN111235589B (zh) * | 2018-11-29 | 2021-06-01 | 中国科学院大连化学物理研究所 | 一种高温电解池阴极材料及其制备和应用 |
CN112647089A (zh) * | 2020-12-15 | 2021-04-13 | 中国科学院大连化学物理研究所 | 一种固体氧化物电解池三元复合阳极的制备方法 |
CN112647089B (zh) * | 2020-12-15 | 2021-12-07 | 中国科学院大连化学物理研究所 | 一种固体氧化物电解池三元复合阳极的制备方法 |
CN118271088A (zh) * | 2024-05-31 | 2024-07-02 | 西南石油大学 | 一种铋掺杂的中温sofc阴极材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yun et al. | Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst | |
Marina et al. | Electrode performance in reversible solid oxide fuel cells | |
Molouk et al. | Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells | |
US20110244365A1 (en) | Metal oxide-yttria stabilized zirconia composite and solid oxide fuel cell using the same | |
Lu et al. | Efficient CO2 electrolysis with scandium doped titanate cathode | |
US20150197866A1 (en) | Method for generating oxygen and water electrolysis device | |
CN109860626A (zh) | 负载铁镍合金纳米粒子的rp结构的氧化物及其制备与应用 | |
CN108103524A (zh) | 一种固体氧化物电解池及其制备方法 | |
JP2009179871A (ja) | 電気分解セル、及び水素製造装置 | |
CN104934613B (zh) | 一种高温固体氧化物电解池阳极材料及复合阳极材料 | |
Zhou et al. | Investigation of cobalt-free perovskite Sr2FeTi0. 75Mo0. 25O6− δ as new cathode for solid oxide fuel cells | |
CN106876720A (zh) | 一种氧化铋改性的高温固体氧化物电解池复合阳极材料 | |
Ju et al. | Phase transition of doped LaFeO3 anode in reducing atmosphere and their power generation property in intermediate temperature solid oxide fuel cell | |
Ai et al. | Performance and stability of nano-structured Pd and Pd0. 95M0. 05 (M= Mn, Co, Ce, and Gd) infiltrated Y2O3–ZrO2 oxygen electrodes of solid oxide electrolysis cells | |
Liu et al. | Robust Ni-doped Ruddlesden-popper (La, Sr) Fe1-xNixO4+ δ oxide as solid oxide cells fuel electrode for CO2 electrolysis | |
JP2009209441A (ja) | 電気化学セル | |
JP2020135987A (ja) | 電気化学セル | |
Chin et al. | Correlation between the thickness of NiFe2O4 and hydrogen production performance for solid oxide electrolysis cells | |
Qi et al. | Enhancing the catalytic activity of PrBaFe2O5+ δ double perovskite with BaCoO3-δ modification as an electrode material for symmetrical solid oxide fuel cells | |
JP2009263741A (ja) | 高温水蒸気電解セル | |
Zhou et al. | Novel YBaCo3. 2Ga0. 8O7+ δ as a cathode material and performance optimization for IT-SOFCs | |
CN110993997A (zh) | 一种提高可逆固体氧化物电池运行稳定性的方法 | |
Ishihara | Solid oxide reversible cells (SORCs) using LaGaO3-based oxide electrolyte and oxide fuel electrode | |
EP3259795B1 (en) | Electrochemical oxidation of carbonaceous deposits in liquid-hydrocarbon fueled solid oxide fuel cells | |
KR20210078009A (ko) | Lcnfo를 공기극으로 포함하는 고체산화물 공전해 셀 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170620 |
|
RJ01 | Rejection of invention patent application after publication |