CN111235589B - 一种高温电解池阴极材料及其制备和应用 - Google Patents

一种高温电解池阴极材料及其制备和应用 Download PDF

Info

Publication number
CN111235589B
CN111235589B CN201811444589.9A CN201811444589A CN111235589B CN 111235589 B CN111235589 B CN 111235589B CN 201811444589 A CN201811444589 A CN 201811444589A CN 111235589 B CN111235589 B CN 111235589B
Authority
CN
China
Prior art keywords
electrolyte
equal
cathode
interlayer
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811444589.9A
Other languages
English (en)
Other versions
CN111235589A (zh
Inventor
程谟杰
赵哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201811444589.9A priority Critical patent/CN111235589B/zh
Publication of CN111235589A publication Critical patent/CN111235589A/zh
Application granted granted Critical
Publication of CN111235589B publication Critical patent/CN111235589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种高温电解池阴极材料及制备和应用,其特征在于所述阴极材料是钙钛矿氧化物Ln1‑xSrxAlyFe1‑yO3‑δ,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤1,0≤y﹤1,0.05≤δ≤0.5。本发明的该阴极材料作为高温电解池阴极,具有良好的电化学性能,显示出优异的水电解性能和稳定性。

Description

一种高温电解池阴极材料及其制备和应用
技术领域
本发明涉及燃料电池和电解池领域,具体涉及一种高温电解池阴极材料及其制备和应用。
背景技术
高温固体氧化物电解池(solid oxide electrolysis cell,SOEC)被认为是高效的能源转化和储存装置之一,它可利用风能、太阳能所产生的电,高效地电解水蒸气、二氧化碳或两者的混合物而得到氢气或合成气。这些产物既可以通过燃料电池发电以弥补电网高峰期的电力需求,又可以进一步转化为其他化工燃料,应用场景非常多元化。
SOEC的核心部件包括电解质、阴极(氢电极)与阳极(氧电极),三者构成了三明治结构。SOEC的阴极起着催化H2O或CO2的电化学还原反应,并提供反应物与产物气体传输通道的作用,它必须具有良好的催化活性、电导率以及足够的孔隙率,还必须具备工作条件下的化学稳定性、热稳定性与机械强度。目前,高温电解池应用较多的是Ni-YSZ阴极。但是,由于SOEC工作在高温高湿条件下,Ni/YSZ的稳定性问题更为突出,是影响SOEC运行寿命的主要因素之一。Ni电极暴露在高湿度条件下,易发生显著的颗粒聚结现象,Ni覆盖率下降,极化阻抗增大,导致电化学性能明显下降。因此,具有高活性和高稳定性的阴极材料尚需开发。
发明内容
本发明公开了一种高温电解池阴极材料Ln1-xSrxAlyFe1-yO3-δ,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤1,0≤y﹤1,0.05≤δ≤0.5。本发明的该阴极材料作为高温固体氧化物燃料电池的阴极,具有良好的电化学性能,显示出优异的水电解性能和稳定性。
本发明解决上述问题所采用的技术方案为:一种高温电解池阴极材料,其特征在于:所述阴极材料是钙钛矿氧化物Ln1-xSrxAlyFe1-yO3-δ,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤1,0≤y﹤1,0.05≤δ≤0.5。
本发明公开一种固体氧化物电解池膜电极,其特征在于所述膜电极由阴极、隔层、电解质、隔层、阳极叠层组成,所述电解质两侧设置隔层,阳极和阴极相对设置电解质两侧的隔层上。所述阴极包含化学组成为Ln1-xSrxAlyFe1-yO3-δ的粉体,Ln为La,Pr,Sm,Gd,Er,Yb,Y中一种或几种,0≤x≤1,0≤y﹤1,0≤δ≤0.5,所述电解质包含化学组成为YnZr1-nO2的粉体,0≤n≤0.2,所述隔层包含化学组成为GdzCe1-zO2的粉体,0≤z≤0.2,所述阳极包含化学组成为A1-kSrkComFe1-mO3-β的粉体,0≤k≤1,0≤m≤1,0≤β≤0.5,A为La,Pr,Sm中一种。
所述膜电极的阴极Ln1-xSrxAlyFe1-yO3-δ,Ln优选La,Pr,Sm中一种或几种。
所述膜电极的阳极A1-kSrkComFe1-mO3-β,A优选La,Sm中一种。
所述阴极Ln1-xSrxAlyFe1-yO3-δ,优选0≤x≤0.5,0≤y﹤0.4。
所述阳极A1-kSrkComFe1-mO3-β,优选0≤k≤0.6,0≤m≤0.8。
所述阴极、隔层、电解质、隔层、阳极叠层厚度分别为10-50微米,0.03-3微米,150-500微米,0.03-3微米,10-50微米。
所述电解质由流延法、干压法制备,所述隔层由浆料涂覆法、丝网印刷法、磁控溅射法制备到电解质两侧,所述阳极可由浆料涂覆法、丝网印刷法制备到电解质一侧的隔层上,所述阴极可由浆料涂覆法、丝网印刷法制备到电解质另一侧的隔层上。
所述阴极和膜电极在高温固体氧化物电解池中的应用,可用于水蒸气电解。
本发明的优点在于:
本发明公开的高温电解池阴极材料,在还原气氛中具有较高的电导率和氧化/还原循环稳定性,解决了传统Ni阴极抗氧化/还原循环稳定性差的问题,在电解水方面显示出优异的电化学性能和较好的稳定性。该阴极材料制备简单,制备原材料价格相对较低,容易放大制备。
具体实施方式
下面通过实施例对本发明作进一步的阐述。
实施例1
固体氧化物电解池膜电极:阴极、隔层、电解质、隔层、阳极叠层厚度分别为20微米,0.05微米,200微米,0.05微米,20微米。其中,阴极为La0.8Sr0.2Al0.3Fe0.7O2.8,隔层为Gd0.1Ce0.9O2,电解质为Y0.15Zr0.85O2,阳极为La0.6Sr0.4Co0.2Fe0.8O2.7。制备方法如下,首先通过干压法制备电解质,然后通过浆料涂覆法在电解质两侧分别制备隔层,最后通过丝网印刷法分别在电解质两侧隔层上制备阴极和阳极。
膜电极电化学测试结果如下,测试温度800℃下,阴极测湿度45%,1.3V电解电压下,电流密度达到0.15A.cm-2,200h运行后无明显衰减。
实施例2
固体氧化物电解池膜电极:阴极、隔层、电解质、隔层、阳极叠层厚度分别为50微米,2微米,180微米,2微米,20微米。其中,阴极为Sm0.8Sr0.2Al0.3Fe0.7O2.85,隔层为Gd0.2Ce0.8O2,电解质为Y0.15Zr0.85O2,阳极为Sm0.6Sr0.4CoO2.65。制备方法如下,首先通过流延法制备电解质,然后通过磁控溅射法在电解质两侧分别制备隔层,最后通过丝网印刷法分别在电解质两侧隔层上制备阴极和阳极。
膜电极电化学测试结果如下,测试温度800℃下,阴极测湿度45%,1.3V电解电压下,电流密度达到0.35A.cm-2,200h运行后无明显衰减。
实施例3
固体氧化物电解池膜电极:阴极、隔层、电解质、隔层、阳极叠层厚度分别为30微米,1微米,250微米,1微米,40微米。其中,阴极为Sm0.6Sr0.4Al0.4Fe0.6O2.75,隔层为Gd0.2Ce0.8O2,电解质为Y0.15Zr0.85O2,阳极为Pr0.7Sr0.3CoO2.7。制备方法如下,首先通过流延法制备电解质,然后通过磁控溅射法在电解质两侧分别制备隔层,最后通过丝网印刷法分别在电解质两侧隔层上制备阴极和阳极。
膜电极电化学测试结果如下,测试温度800℃下,阴极测湿度45%,1.3V电解电压下,电流密度达到0.30A.cm-2,200h运行后无明显衰减。

Claims (7)

1.一种固体氧化物电解池膜电极,其特征在于:所述膜电极由阴极、隔层、电解质、隔层、阳极层叠组成,所述电解质两侧设置隔层,阳极和阴极相对设置电解质两侧的隔层上;所述阴极包含化学组成为Ln1-xSrxAlyFe1-yO3-δ的粉体,Ln为La,Pr,Sm,Gd,Er,Yb,Y 中一种或几种,0﹤x﹤1,0﹤y﹤1,0≤δ≤0.5,所述电解质包含化学组成为YnZr1-nO2的粉体,
0﹤n≤0.2,所述隔层包含化学组成为GdzCe1-zO2的粉体, 0﹤z﹤0.2,所述阳极包含化学组成为A1-kSrkComFe1-mO3-β的粉体,0﹤k﹤1,0≤m≤1,0≤β≤0.5,A为La,Pr,Sm中一种或二种以上。
2.按照权利要求1所述的固体氧化物电解池膜电极,其特征在于:所述膜电极的阴极Ln1-xSrxAlyFe1-yO3-δ,Ln为La,Pr,Sm中一种或几种。
3.按照权利要求1所述的 固体氧化物电解池膜电极,其特征在于:所述膜电极的阳极A1-kSrkComFe1-mO3-β,A为La,Sm中一种。
4.按照权利要求1或2所述的固体氧化物电解池膜电极,其特征在于:所述阴极Ln1- xSrxAlyFe1-yO3-δ, 0﹤x≤0.5,0﹤y﹤0.4。
5.按照权利要求1或3所述的固体氧化物电解池膜电极,其特征在于:所述阳极A1- kSrkComFe1-mO3-β, 0﹤k≤0.6, 0≤m≤0.8。
6.一种权利要求2-5任一项所述的固体氧化物电解池膜电极的制备方法,其特征在于:所述电解质由流延法或干压法制备,所述隔层由浆料涂覆法、丝网印刷法或磁控溅射法制备到电解质两侧,所述阳极可由浆料涂覆法或丝网印刷法制备到电解质一侧的隔层上,所述阴极可由浆料涂覆法或丝网印刷法制备到电解质另一侧的隔层上。
7.一种权利要求2-5任一所述的膜电极在高温固体氧化物电解池中的应用,可用于水蒸气电解。
CN201811444589.9A 2018-11-29 2018-11-29 一种高温电解池阴极材料及其制备和应用 Active CN111235589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811444589.9A CN111235589B (zh) 2018-11-29 2018-11-29 一种高温电解池阴极材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811444589.9A CN111235589B (zh) 2018-11-29 2018-11-29 一种高温电解池阴极材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN111235589A CN111235589A (zh) 2020-06-05
CN111235589B true CN111235589B (zh) 2021-06-01

Family

ID=70874194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811444589.9A Active CN111235589B (zh) 2018-11-29 2018-11-29 一种高温电解池阴极材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN111235589B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782798A (zh) * 2021-09-07 2021-12-10 中国矿业大学(北京) 一种固体氧化物电解池阴极材料、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783554A (zh) * 2004-12-02 2006-06-07 中国科学院大连化学物理研究所 一种固体氧化物燃料电池膜电极结构及制备方法
JP3786402B2 (ja) * 2001-05-30 2006-06-14 日本電信電話株式会社 固体電解質型燃料電池用空気極への電極活性酸化物の導入方法
CN101271981A (zh) * 2007-03-23 2008-09-24 中国科学院大连化学物理研究所 一种低温固体氧化物燃料电池三合一组件mea及其制备
CN101359739A (zh) * 2008-09-28 2009-02-04 南京工业大学 一种固体氧化物燃料电池阴极材料及其制备方法
CN101599546A (zh) * 2008-06-06 2009-12-09 中国科学院大连化学物理研究所 一种固体氧化物燃料电池阴极材料及应用
CN102617147A (zh) * 2012-04-17 2012-08-01 江苏科技大学 钙钛矿型结构铝酸盐基混合导电陶瓷及其制备方法
CN106876720A (zh) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 一种氧化铋改性的高温固体氧化物电解池复合阳极材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786402B2 (ja) * 2001-05-30 2006-06-14 日本電信電話株式会社 固体電解質型燃料電池用空気極への電極活性酸化物の導入方法
CN1783554A (zh) * 2004-12-02 2006-06-07 中国科学院大连化学物理研究所 一种固体氧化物燃料电池膜电极结构及制备方法
CN101271981A (zh) * 2007-03-23 2008-09-24 中国科学院大连化学物理研究所 一种低温固体氧化物燃料电池三合一组件mea及其制备
CN101599546A (zh) * 2008-06-06 2009-12-09 中国科学院大连化学物理研究所 一种固体氧化物燃料电池阴极材料及应用
CN101359739A (zh) * 2008-09-28 2009-02-04 南京工业大学 一种固体氧化物燃料电池阴极材料及其制备方法
CN102617147A (zh) * 2012-04-17 2012-08-01 江苏科技大学 钙钛矿型结构铝酸盐基混合导电陶瓷及其制备方法
CN106876720A (zh) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 一种氧化铋改性的高温固体氧化物电解池复合阳极材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Correlation between the defect structure, conductivity and chemical stability of La1-ySryFe1-xAlxO3-δ cathodes for SOFC;Danjela D. Kusˇcˇer等;《Journal of the European Ceramic Society》;20011231;第21卷(第10-11期);第1817-1820页 *

Also Published As

Publication number Publication date
CN111235589A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
Ye et al. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells
Huang et al. Investigation of La2NiO4+ δ-based cathodes for SDC–carbonate composite electrolyte intermediate temperature fuel cells
Khan et al. Flat-tubular solid oxide fuel cells and stacks: a review
CN102569786B (zh) 一种钙钛矿型Co基复合阴极材料及其制备和应用
Myung et al. Synthesis and characterization of NiO/GDC–GDC dual nano-composite powders for high-performance methane fueled solid oxide fuel cells
Liu et al. Composite ceramic cathode La0. 9Ca0. 1Fe0. 9Nb0. 1O3-δ/Sc0. 2Zr0. 8O2− δ towards efficient carbon dioxide electrolysis in zirconia-based high temperature electrolyser
Ishihara et al. Steam electrolysis using LaGaO3 based perovskite electrolyte for recovery of unused heat energy
CN101577340A (zh) 一种阴极支撑的管式固体氧化物燃料电池的制备方法
Wang et al. Tailored Sr-Co-free perovskite oxide as an air electrode for high-performance reversible solid oxide cells
Zheng et al. Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode
Shao et al. Stable SrCo0. 7Fe0. 2Zr0. 1O3-δ cathode material for proton conducting solid oxide fuel cell reactors
CN1913208A (zh) 一种中温固体氧化物燃料电池体系材料及其电池与制备方法
Zhang et al. High performance and stability of nanocomposite oxygen electrode for solid oxide cells
Tao et al. A mini-review of carbon-resistant anode materials for solid oxide fuel cells
Ishihara et al. Intermediate temperature steam electrolysis using LaGaO3-based electrolyte
Li et al. Fabrication of anode supported solid oxide electrolysis cell with the co-tape casting technique and study on co-electrolysis characteristics
Devi et al. Solid oxide fuel cell materials: a review
JP5481611B2 (ja) 高温水蒸気電解セル
CN111235589B (zh) 一种高温电解池阴极材料及其制备和应用
JP7016615B2 (ja) プロトン伝導体、固体電解質層、セル構造体、およびそれを備える水蒸気電解セルならびに燃料電池
Elangovan et al. Materials for solid oxide electrolysis cells
Liu et al. Status and prospects of intermediate temperature soid oxide fuel cells
JP7231431B2 (ja) 電気化学セル
Ishihara Low temperature solid oxide fuel cells using LaGaO3-based oxide electrolyte on metal support
CN109904470B (zh) 一种固体氧化物燃料电池阴极材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant