CN106872958A - 基于线性融合的雷达目标自适应检测方法 - Google Patents

基于线性融合的雷达目标自适应检测方法 Download PDF

Info

Publication number
CN106872958A
CN106872958A CN201710284871.4A CN201710284871A CN106872958A CN 106872958 A CN106872958 A CN 106872958A CN 201710284871 A CN201710284871 A CN 201710284871A CN 106872958 A CN106872958 A CN 106872958A
Authority
CN
China
Prior art keywords
clutter
vector
gaussian
detector
covariance matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710284871.4A
Other languages
English (en)
Other versions
CN106872958B (zh
Inventor
简涛
黄晓冬
何友
初建崇
丁彪
夏沭涛
张建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naval Aeronautical University
Original Assignee
Naval Aeronautical Engineering Institute of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval Aeronautical Engineering Institute of PLA filed Critical Naval Aeronautical Engineering Institute of PLA
Priority to CN201710284871.4A priority Critical patent/CN106872958B/zh
Publication of CN106872958A publication Critical patent/CN106872958A/zh
Application granted granted Critical
Publication of CN106872958B publication Critical patent/CN106872958B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Abstract

本发明公开了一种基于线性融合的雷达目标自适应检测方法,属于雷达信号处理领域。针对实际环境中杂波非高斯程度的时空易变特点,综合利用特定杂波背景下最优或次优杂波协方差矩阵估计方法,基于高斯背景下自适应匹配滤波器或广义似然比检验检测器,以及非高斯背景下自适应归一化匹配滤波,合理利用杂波非高斯特征信息,通过简洁有效的线性融合规则,设计合适的自适应检测器结构;所提出的检测器结构简洁,具有很强的泛化能力,能同时兼顾检测器的检测性能、算法运算量等多方面需求,增强了检测器的恒虚警率鲁棒性和对杂波环境的自适应性,提高了未知杂波环境下的雷达目标检测性能,具有推广应用价值。

Description

基于线性融合的雷达目标自适应检测方法
技术领域
本发明隶属于雷达信号处理领域,具体涉及一种基于线性融合的雷达目标自适应检测方法。
背景技术
雷达目标自适应检测主要涉及两个方面:未知杂波谱特性的准确估计和自适应检测器结构的合理构建;未知杂波协方差矩阵估计是杂波谱特性估计中的重要内容,其估计结果的好坏直接影响最终的检测性能,实际中可利用与待检测距离单元邻近的不包含目标的参考数据,对未知的杂波谱特性进行估计。
对低分辨率雷达场景,杂波分布满足中心极限定理,不同距离单元杂波统计特性可用高斯分布进行建模。但随着杂波环境的复杂化、雷达分辨率的提高或在低掠地角条件下,背景杂波呈现出较强的非高斯特性,一般可采用复合高斯分布进行描述和建模;根据中心极限定理的局部有效性,复合高斯分布可表示为时空慢变的非负纹理分量与时空快变的复高斯散斑分量之乘积。针对经典的复高斯背景下的雷达点目标检测问题,广义似然比检验检测器通过对所有未知参数进行联合估计,充分利用待检测距离单元数据和参考数据中的杂波信息,在高斯环境中能获得最优的检测性能,且对高斯杂波具有恒虚警率(CFAR)特性;复高斯背景下未知杂波协方差矩阵的最大似然估计可表示为采样协方差矩阵形式,与广义似然比检验检测器相比,基于采样协方差矩阵的自适应匹配滤波器能以较小的运算量在高斯环境中获得次优的检测性能,且对高斯杂波具有CFAR特性。以上两种点目标检测器在高斯背景下各有所长,广义似然比检验检测器能获得最优检测性能,但运算量略高,而自适应匹配滤波器在降低运算量的同时仍能保持次优的检测性能,但二者的检测性能和CFAR特性均随着杂波非高斯特性的增强而变差。在杂波服从复合高斯分布的非高斯背景下,未知杂波协方差矩阵的最大似然估计没有闭型表达式,且涉及到超越方程的求解,归一化采样协方差矩阵等均为次优估计方法;以两步法广义似然比检验为基础,基于归一化采样协方差矩阵的自适应归一化匹配滤波器在非高斯环境中具有较好的检测性能,且对复合高斯杂波表现出一定的CFAR鲁棒性,但其检测性能和CFAR特性在高斯杂波背景下有所退化。虽然针对高斯和复合高斯杂波背景存在最优或次优的杂波协方差矩阵估计方法和点目标检测器结构,但实际环境中,杂波的非高斯特性往往在时间和空间上随环境的改变而变化,上述特定杂波背景下的最优或次优杂波协方差矩阵估计方法和点目标检测器难以适应杂波环境的快速变化,导致相应的检测性能和CFAR特性恶化。
针对实际环境中杂波非高斯程度的时空易变特点,如何综合利用特定杂波背景下最优或次优杂波协方差矩阵估计方法和点目标检测器,合理利用杂波非高斯特征信息,通过简洁有效的融合规则设计合适的点目标自适应检测器结构,在增强检测器CFAR鲁棒性的前提下,进一步提高未知杂波环境下的雷达目标检测性能,是提升复杂电磁环境下雷达探测能力的关键,也是目前急需解决的难题。
发明内容
针对实际环境中杂波非高斯程度的时空易变特点,如何综合利用特定杂波背景下最优或次优杂波协方差矩阵估计方法,充分发挥自适应匹配滤波器和广义似然比检验检测器对高斯杂波环境的优越性能,以及自适应归一化匹配滤波器对非高斯杂波环境的鲁棒性,合理利用杂波非高斯特征信息,通过简洁有效的融合规则,设计合适的点目标自适应检测器结构,兼顾实际检测环境对检测性能和算法运算量的需求,增强检测器的CFAR鲁棒性和对杂波环境的自适应性,提高未知杂波环境下的雷达目标检测性能。
本发明所述基于线性融合的雷达目标自适应检测方法包括以下技术措施:
步骤1获取单个待检测距离单元雷达回波向量x0作为待检测数据向量,以单个待检测距离单元为中心,在其前后分别连续取一定数量距离单元雷达回波观测数据,构成R个参考数据向量xm,m=1,2,…,R,其中,x0和xm,m=1,2,…,R均为N×1维的向量,N表示雷达接收阵元数与相干处理脉冲数的乘积;
步骤2利用参考数据向量xm,m=1,2,…,R,分别计算未知协方差矩阵的采样协方差矩阵估计值和近似最大似然估计值
其中,未知协方差矩阵的采样协方差矩阵估计值表示为
上式中,上标H表示矩阵的共轭转置运算;
未知协方差矩阵的近似最大似然估计值通过如下的迭代过程实现
其中,上标-1表示矩阵的求逆运算,k=0,1,...,K-1,K表示最终的迭代次数,表示第k次迭代的估计矩阵;为增强估计过程的普适性,式(2)的初始化矩阵采用单位阵,而最终的迭代结果即为近似最大似然估计值
步骤3根据实际检测环境对检测性能和算法运算量的需求,基于采样协方差矩阵估计值计算回波向量x0的均匀背景检测器检测统计量λh,基于近似最大似然估计值计算回波向量x0的自适应归一化匹配滤波器检测统计量λANMF;根据实际杂波的非高斯程度设定比例因子α,基于均匀背景检测器和自适应归一化匹配滤波器的线性融合,构建回波向量x0的自适应检测统计量λα
其中,基于采样协方差矩阵估计值回波向量x0的均匀背景检测器的形式采用自适应匹配滤波器或广义似然比检验检测器;
自适应匹配滤波器检测统计量λAMF表示为
上式中,p表示已知的空时导向矢量,是一个N×1维的单位向量,根据雷达工作参数确定;
广义似然比检验检测器检测统计量λGLRT表示为
基于近似最大似然估计值回波向量x0的自适应归一化匹配滤波器检测统计量λANMF表示为
基于λh和λANMF的线性融合,构建回波向量x0的自适应检测统计量λα,即
λα=αλh+(1-α)λANMF (6)
上式中,比例因子α满足0≤α≤1,且根据实际杂波的非高斯程度设定,使得检测器具有很强的泛化能力,其中杂波的非高斯程度越大,则α的取值越小;λh根据实际需要取λGLRT或λAMF,若检测器对检测性能要求较高则取λh=λGLRT,若检测器对降低运算量要求较高则取λh=λAMF
步骤4为保持检测方法的恒虚警率特性,根据预设的虚警概率设置检测门限T;将回波向量x0的自适应检测统计量λα与门限T进行比较,若λα≥T,则判定待检测距离单元存在目标,回波向量x0不作为其他距离单元的参考数据;反之若λα<T,则判定待检测距离单元不存在目标,回波向量x0作为后续其他距离单元的参考数据。
与背景技术相比,本发明的有益效果是:1)合理利用杂波非高斯特征信息,能根据实际环境中杂波非高斯程度自适应设定线性融合中的比例因子;2)通过综合利用特定杂波背景下最优或次优杂波协方差矩阵估计方法,能将高斯背景下自适应匹配滤波器或广义似然比检验检测器与复合高斯背景下自适应归一化匹配滤波器进行简洁高效的线性融合,充分发挥自适应匹配滤波器和广义似然比检验检测器对高斯杂波环境的优越性能,以及自适应归一化匹配滤波器对非高斯杂波环境的鲁棒性;3)所设计的点目标检测器结构简洁,具有很强的泛化能力,能同时兼顾检测性能、算法运算量等多方面需求,能增强检测器的CFAR鲁棒性和对杂波环境的自适应性,提高未知杂波环境下的雷达目标检测的综合性能。
附图说明
图1是本发明所提出的基于线性融合的雷达目标自适应检测方法的功能模块图。图1中,1.采样协方差矩阵计算模块,2.近似最大似然估计矩阵计算模块,3.均匀背景检测器构建模块,4.自适应归一化匹配滤波器构建模块,5.线性融合计算模块,6.检测判决模块。
具体实施方式
下面结合附图对本发明作进一步描述。本发明实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。
参照说明书附图1,本发明的具体实施方式分为以下几个步骤:
步骤1待检测距离单元为中心,在其前后分别连续取一定数量距离单元雷达回波观测数据,构成R个参考数据向量xm,m=1,2,…,R,其中,xm,m=1,2,…,R均为N×1维的向量,N表示雷达接收阵元数与相干处理脉冲数的乘积;并将参考数据向量送至采样协方差矩阵计算模块(1)和近似最大似然估计矩阵计算模块(2);
步骤2利用参考数据向量xm,m=1,2,…,R,在采样协方差矩阵计算模块(1)中,根据式(1)计算未知协方差矩阵的采样协方差矩阵估计值并将送至均匀背景检测器构建模块(3);在近似最大似然估计矩阵计算模块(2)中,根据式(2)计算未知协方差矩阵的近似最大似然估计值并将送至自适应归一化匹配滤波器构建模块(4);
值得注意的是,当K=1,根据式(2)计算的近似最大似然估计值表示为
由式(7)可知,由于式(2)的初始化矩阵采用单位阵,经过一次迭代后获得的近似最大似然估计值恰好为归一化采样协方差矩阵,说明归一化采样协方差矩阵为近似最大似然估计值在K=1时的特例,显示了式(2)所示的近似最大似然估计过程具有很强的普适性;对于非高斯杂波环境,当K≥3时,近似最大似然估计能获得较好的估计精度,综合考虑算法运算量和检测器设计对协方差矩阵估计精度的要求,取K=3的迭代结果作为近似最大似然估计值;
步骤3获取单个待检测距离单元的N×1维雷达回波向量x0作为待检测数据向量,并将x0送至均匀背景检测器构建模块(3)和自适应归一化匹配滤波器构建模块(4);在均匀背景检测器构建模块(3)中,根据实际检测环境对检测性能和算法运算量的需求,基于计算回波向量x0的均匀背景检测器检测统计量λh,若检测器对检测性能要求较高则利用式(4)取λh=λGLRT,若检测器对降低运算量要求较高则利用式(3)取λh=λAMF;在自适应归一化匹配滤波器构建模块(4)中,根据式(5)利用计算回波向量x0的自适应归一化匹配滤波器检测统计量λANMF,并将λh和λANMF送至线性融合计算模块(5);在线性融合计算模块(5)中,根据实际杂波的非高斯程度设定比例因子α,杂波的非高斯程度越大,则α的取值越小,基于均匀背景检测器和自适应归一化匹配滤波器的线性融合,根据式(6)构建回波向量x0的自适应检测统计量λα,将λα送至检测判决模块(6);
值得注意的是,当背景杂波分布的高斯性较强时,α的取值较大,在极端的高斯背景下,取α=1,此时由式(6)可知λα=λh,说明基于采样协方差矩阵的自适应匹配滤波器或广义似然比检验检测器为本发明所提出的检测方法在α=1时的特例,且本发明所提出的检测方法可根据实际检测环境对检测性能和算法运算量的需求自动选择两种检测器中的一种;而当背景杂波分布的非高斯性较强时,α的取值较小,在极端的复合高斯分布的非高斯背景下,取α=0,此时由式(6)可知λα=λANMF,说明自适应归一化匹配滤波器为本发明所提出的检测方法在α=0时的特例;综上所述,本发明所提出的检测方法能合理利用杂波非高斯特征信息,根据实际杂波分布的非高斯程度自适应调整参数,使检测器结构能适应于实际杂波环境的变化,具有很强的泛化能力,通过将高斯和复合高斯背景下最优或次优杂波协方差矩阵估计方法和检测器进行匹配利用,充分发挥广义似然比检验检测器在高斯杂波背景下的最优检测性能、自适应匹配滤波器兼顾运算量和检测性能需求的优异综合性能、以及自适应归一化匹配滤波器在非高斯杂波背景下的CFAR鲁棒性和检测性能优势,且能涵盖现有三种检测器结构;
步骤4在检测判决模块(6)中进行检测判决并输出检测结果,为保持检测方法的恒虚警率特性,根据预设的虚警概率设置检测门限T;将单个待检测距离单元对应的回波向量x0的自适应检测统计量λα与门限T进行比较,若λα≥T,则判定待检测距离单元存在点目标,回波向量x0不能作为其他距离单元的参考数据;反之若λα<T,则判定待检测距离单元不存在点目标,回波向量x0可作为后续其他距离单元的参考数据。

Claims (3)

1.基于线性融合的雷达目标自适应检测方法,其特征在于,包括以下步骤:
步骤1获取单个待检测距离单元雷达回波向量x0作为待检测数据向量,以单个待检测距离单元为中心,在其前后分别连续取一定数量距离单元雷达回波观测数据,构成R个参考数据向量xm,m=1,2,…,R,其中,x0和xm,m=1,2,…,R均为N×1维的向量,N表示雷达接收阵元数与相干处理脉冲数的乘积;
步骤2利用参考数据向量xm,m=1,2,…,R,分别计算未知协方差矩阵的采样协方差矩阵估计值和近似最大似然估计值
步骤3根据实际检测环境对检测性能和算法运算量的需求,基于采样协方差矩阵估计值计算回波向量x0的均匀背景检测器检测统计量λh,基于近似最大似然估计值计算回波向量x0的自适应归一化匹配滤波器检测统计量λANMF;根据实际杂波的非高斯程度设定比例因子α,基于均匀背景检测器与自适应归一化匹配滤波器进行线性融合,构建回波向量x0的自适应检测统计量λα
步骤4为保持检测方法的恒虚警率特性,根据预设的虚警概率设置检测门限T;将回波向量x0的自适应检测统计量λα与门限T进行比较,若λα≥T,则判定待检测距离单元存在目标,回波向量x0不作为其他距离单元的参考数据;反之若λα<T,则判定待检测距离单元不存在目标,回波向量x0作为后续其他距离单元的参考数据。
2.根据权利要求1所述的基于线性融合的雷达目标自适应检测方法,其特征在于,所述步骤2中,计算未知协方差矩阵的采样协方差矩阵估计值和近似最大似然估计值的过程包括如下步骤:
计算未知协方差矩阵的采样协方差矩阵估计值
M ^ S C M = 1 R &Sigma; m = 1 R x m x m H - - - ( 1 )
其中,上标H表示矩阵的共轭转置运算;
计算未知协方差矩阵的近似最大似然估计值
M ^ ( k + 1 ) = N R &Sigma; t = 1 R x m x m H x m H ( M ^ ( k ) ) - 1 x m - - - ( 2 )
其中,上标-1表示矩阵的求逆运算,k=0,1,...,K-1,K表示最终的迭代次数,表示第k次迭代的估计矩阵;为增强估计过程的普适性,式(2)的初始化矩阵采用单位阵,而最终的迭代结果即为近似最大似然估计值
3.根据权利要求1所述的基于线性融合的雷达目标自适应检测方法,其特征在于,所述步骤3中包括如下步骤:
均匀背景检测器检测统计量λh根据实际需要取广义似然比检验检测器检测统计量λGLRT或自适应匹配滤波器检测统计量λAMF,若检测器对检测性能要求较高则取λh=λGLRT,若检测器对降低运算量要求较高则取λh=λAMF
其中,自适应匹配滤波器检测统计量λAMF表示为
&lambda; A M F = | p H M ^ S C M - 1 x 0 | 2 p H M ^ S C M - 1 p - - - ( 3 )
上式中,p表示已知的空时导向矢量,是一个N×1维的单位向量,根据雷达工作参数确定;
广义似然比检验检测器检测统计量λGLRT表示为
&lambda; G L R T = | p H M ^ S C M - 1 x 0 | 2 p H M ^ S C M - 1 p ( 1 + x 0 H M ^ S C M - 1 x 0 / R ) - - - ( 4 )
自适应归一化匹配滤波器检测统计量λANMF表示为
&lambda; A N M F = | p H M ^ A M L - 1 x 0 | 2 ( p H M ^ A M L - 1 p ) ( x 0 H M ^ A M L - 1 x 0 ) - - - ( 5 )
基于线性融合的自适应检测统计量λα表示为
λα=αλh+(1-α)λANMF (6)
上式中,比例因子α满足0≤α≤1,且根据实际杂波的非高斯程度设定,杂波的非高斯程度越大,则α的取值越小。
CN201710284871.4A 2017-04-27 2017-04-27 基于线性融合的雷达目标自适应检测方法 Active CN106872958B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710284871.4A CN106872958B (zh) 2017-04-27 2017-04-27 基于线性融合的雷达目标自适应检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710284871.4A CN106872958B (zh) 2017-04-27 2017-04-27 基于线性融合的雷达目标自适应检测方法

Publications (2)

Publication Number Publication Date
CN106872958A true CN106872958A (zh) 2017-06-20
CN106872958B CN106872958B (zh) 2019-04-12

Family

ID=59161790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710284871.4A Active CN106872958B (zh) 2017-04-27 2017-04-27 基于线性融合的雷达目标自适应检测方法

Country Status (1)

Country Link
CN (1) CN106872958B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196238A (zh) * 2018-01-12 2018-06-22 西安电子科技大学 高斯背景下基于自适应匹配滤波的杂波图检测方法
CN108919225A (zh) * 2018-07-26 2018-11-30 中国人民解放军海军航空大学 部分均匀环境下距离扩展目标多通道融合检测方法
CN108919224A (zh) * 2018-07-26 2018-11-30 中国人民解放军海军航空大学 基于斜对称结构的宽带雷达目标自适应融合检测方法
CN109541577A (zh) * 2018-12-13 2019-03-29 中国人民解放军空军预警学院 一种部分均匀环境中未知干扰下的自适应子空间检测器
CN111999714A (zh) * 2020-09-02 2020-11-27 中国人民解放军海军航空大学 基于多散射点估计和杂波知识辅助的自适应融合检测方法
CN111999717A (zh) * 2020-09-02 2020-11-27 中国人民解放军海军航空大学 基于协方差矩阵结构统计估计的自适应融合检测方法
CN112014823A (zh) * 2020-09-02 2020-12-01 中国人民解放军海军航空大学 基于目标幅度综合估计的自适应融合检测方法
CN112965040A (zh) * 2021-02-05 2021-06-15 重庆邮电大学 一种基于背景预筛选的自适应cfar目标检测方法
CN113341380A (zh) * 2021-06-01 2021-09-03 中国人民解放军海军航空大学 复高斯杂波中基于子空间杂波对消的目标检测方法
CN116299401A (zh) * 2023-05-19 2023-06-23 成都航空职业技术学院 基于目标散射点位置的恒虚警方法、设备及其存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576131A (zh) * 2013-11-02 2014-02-12 中国人民解放军海军航空工程学院 距离扩展目标内禀模态特征能量智能融合检测方法
CN103605120A (zh) * 2013-11-02 2014-02-26 中国人民解放军海军航空工程学院 距离扩展目标内禀模态局部奇异值有序融合检测方法
CN103995259A (zh) * 2014-06-06 2014-08-20 中国人民解放军海军航空工程学院 密集干扰环境下雷达目标自适应滤波融合检测方法
CN103995258A (zh) * 2014-06-06 2014-08-20 中国人民解放军海军航空工程学院 复杂杂波边缘环境下雷达目标自适应融合检测方法
CN106483515A (zh) * 2016-09-23 2017-03-08 西安电子科技大学 均匀k分布杂波下的最优自适应检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576131A (zh) * 2013-11-02 2014-02-12 中国人民解放军海军航空工程学院 距离扩展目标内禀模态特征能量智能融合检测方法
CN103605120A (zh) * 2013-11-02 2014-02-26 中国人民解放军海军航空工程学院 距离扩展目标内禀模态局部奇异值有序融合检测方法
CN103995259A (zh) * 2014-06-06 2014-08-20 中国人民解放军海军航空工程学院 密集干扰环境下雷达目标自适应滤波融合检测方法
CN103995258A (zh) * 2014-06-06 2014-08-20 中国人民解放军海军航空工程学院 复杂杂波边缘环境下雷达目标自适应融合检测方法
CN106483515A (zh) * 2016-09-23 2017-03-08 西安电子科技大学 均匀k分布杂波下的最优自适应检测方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196238B (zh) * 2018-01-12 2021-07-27 西安电子科技大学 高斯背景下基于自适应匹配滤波的杂波图检测方法
CN108196238A (zh) * 2018-01-12 2018-06-22 西安电子科技大学 高斯背景下基于自适应匹配滤波的杂波图检测方法
CN108919225A (zh) * 2018-07-26 2018-11-30 中国人民解放军海军航空大学 部分均匀环境下距离扩展目标多通道融合检测方法
CN108919224A (zh) * 2018-07-26 2018-11-30 中国人民解放军海军航空大学 基于斜对称结构的宽带雷达目标自适应融合检测方法
CN108919225B (zh) * 2018-07-26 2020-06-30 中国人民解放军海军航空大学 部分均匀环境下距离扩展目标多通道融合检测方法
CN109541577B (zh) * 2018-12-13 2022-07-05 中国人民解放军空军预警学院 一种部分均匀环境中未知干扰下的自适应子空间检测器
CN109541577A (zh) * 2018-12-13 2019-03-29 中国人民解放军空军预警学院 一种部分均匀环境中未知干扰下的自适应子空间检测器
CN111999717A (zh) * 2020-09-02 2020-11-27 中国人民解放军海军航空大学 基于协方差矩阵结构统计估计的自适应融合检测方法
CN112014823A (zh) * 2020-09-02 2020-12-01 中国人民解放军海军航空大学 基于目标幅度综合估计的自适应融合检测方法
CN111999714A (zh) * 2020-09-02 2020-11-27 中国人民解放军海军航空大学 基于多散射点估计和杂波知识辅助的自适应融合检测方法
CN111999714B (zh) * 2020-09-02 2022-04-01 中国人民解放军海军航空大学 基于多散射点估计和杂波知识辅助的自适应融合检测方法
CN112965040A (zh) * 2021-02-05 2021-06-15 重庆邮电大学 一种基于背景预筛选的自适应cfar目标检测方法
CN112965040B (zh) * 2021-02-05 2024-01-23 重庆邮电大学 一种基于背景预筛选的自适应cfar目标检测方法
CN113341380A (zh) * 2021-06-01 2021-09-03 中国人民解放军海军航空大学 复高斯杂波中基于子空间杂波对消的目标检测方法
CN116299401A (zh) * 2023-05-19 2023-06-23 成都航空职业技术学院 基于目标散射点位置的恒虚警方法、设备及其存储介质
CN116299401B (zh) * 2023-05-19 2023-10-17 成都航空职业技术学院 基于目标散射点位置的恒虚警方法、设备及其存储介质

Also Published As

Publication number Publication date
CN106872958B (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN106872958A (zh) 基于线性融合的雷达目标自适应检测方法
CN106932766B (zh) 基于变参数广义结构的距离扩展目标自适应检测方法
FARSHCHIAn et al. The Pareto distribution for low grazing angle and high resolution X-band sea clutter
CN107102302A (zh) 基于非高斯参数的雷达目标融合检测方法
CN105137498B (zh) 一种基于特征融合的地下目标探测识别系统及方法
CN106468770B (zh) K分布杂波加噪声下的近最优雷达目标检测方法
US8138963B1 (en) Method for detecting targets using space-time adaptive processing and shared knowledge of the environment
CN111965632B (zh) 一种基于黎曼流形降维的雷达目标检测方法
CN105093196B (zh) 基于逆伽马纹理复合高斯模型下的相干检测方法
CN108919223A (zh) 宽带雷达目标自适应结构化匹配滤波方法
CN106569193B (zh) 基于前-后向收益参考粒子滤波的海面小目标检测方法
CN108802722A (zh) 一种基于虚拟谱的弱目标检测前跟踪方法
CN108919224A (zh) 基于斜对称结构的宽带雷达目标自适应融合检测方法
CN110058222B (zh) 一种基于传感器选择的双层粒子滤波检测前跟踪方法
CN104237861B (zh) 一种未知杂波背景下的cfar检测门限获取方法
CN109782248A (zh) 一种雷达杂波处理方法
CN107942324B (zh) 基于多普勒引导的多帧联合小目标双重检测方法
CN104155651A (zh) 一种用于极化雷达目标跟踪的概率数据关联方法
CN106772302A (zh) 一种复合高斯背景下的知识辅助stap检测方法
CN105353371B (zh) 基于ar谱扩展分形的海面雷达目标检测方法
CN104198998B (zh) 非均匀背景下基于聚类处理的恒虚警检测方法
CN111880159A (zh) 一种基于lstm的雷达序列信号检测方法及系统
CN105954739A (zh) 一种知识辅助的非参量恒虚警检测方法
CN105866748A (zh) 一种基于检测先验的固定窗长恒虚警检测方法
CN106353743A (zh) 匹配于等效形状参数的近最优雷达目标检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190315

Address after: 264001 scientific research office, two Road 188, Zhifu District, Yantai, Shandong

Applicant after: Naval Aviation University of PLA

Address before: 264001 scientific research department, 188 road two, Zhifu District, Yantai, Shandong

Applicant before: Naval Aeronautical Engineering Institute PLA

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant