CN108919225B - 部分均匀环境下距离扩展目标多通道融合检测方法 - Google Patents

部分均匀环境下距离扩展目标多通道融合检测方法 Download PDF

Info

Publication number
CN108919225B
CN108919225B CN201810837680.0A CN201810837680A CN108919225B CN 108919225 B CN108919225 B CN 108919225B CN 201810837680 A CN201810837680 A CN 201810837680A CN 108919225 B CN108919225 B CN 108919225B
Authority
CN
China
Prior art keywords
distance
data vector
matrix
vector
clutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810837680.0A
Other languages
English (en)
Other versions
CN108919225A (zh
Inventor
简涛
何友
关键
董云龙
周强
李恒
王智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naval Aeronautical University
Original Assignee
Naval Aeronautical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval Aeronautical University filed Critical Naval Aeronautical University
Priority to CN201810837680.0A priority Critical patent/CN108919225B/zh
Publication of CN108919225A publication Critical patent/CN108919225A/zh
Application granted granted Critical
Publication of CN108919225B publication Critical patent/CN108919225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种部分均匀环境下距离扩展目标多通道融合检测方法,属于雷达信号处理领域。针对杂波边缘等异常值情况导致全局均匀性辅助数据缺失的情况,建立了部分均匀多通道自回归信号模型,将杂波空间局部均匀性、时间低阶相关性和多通道信息获取能力充分融合,有效提高了杂波先验信息的利用率,为降低距离扩展目标自适应检测的辅助数据需求奠定了数据模型基础;基于Rao检验准则,建立了部分均匀环境下距离扩展目标多通道融合检测方法,在保证恒虚警率特性的同时大幅降低了辅助数据需求,与常用的广义似然比准则方法相比,在保持检测性能基本不变的前提下,简化了参数估计过程,提高了检测器构建效率,工程适用性强,具有推广应用价值。

Description

部分均匀环境下距离扩展目标多通道融合检测方法
技术领域
本发明隶属于雷达信号处理领域,具体涉及一种部分均匀环境下距离扩展目标多通道融合检测方法。
背景技术
高距离分辨率雷达带宽大、距离分辨率高,在精确探测及成像、目标识别等方面具有明显的优势,已经成为现代雷达发展的一个重要方向。传统低距离分辨率雷达的目标回波信号往往只占据一个距离单元,常被作为“点目标”进行处理。与“点目标”不同,常见高距离分辨率雷达目标的回波信号不仅仅只占据一个距离单元,而是分布在不同的径向距离单元中,形成“距离扩展目标”。随着宽带技术在雷达领域的广泛应用,距离扩展目标自适应检测问题正受到越来越多的关注,成为近年来雷达信号处理界的热点和难点问题之一。此时,若仍采用基于邻近参考单元估计未知杂波统计特性的传统点目标自适应检测器,则距离扩展目标强散射点的能量会泄漏到邻近距离单元中形成“信号污染”现象,将极大降低高辨率雷达目标检测性能。
距离扩展目标自适应检测主要借助于辅助数据来实现。辅助数据一般取自于与待检测距离单元空间邻近的距离单元,且假定不含目标信号,而只含有与待检测距离单元主数据独立同分布的杂波分量,利用充分的辅助数据可实现对未知杂波协方差矩阵的准确估计。然而,对于实际雷达面临的杂波边缘等异常值情况,杂波背景的全局均匀性被破坏,满足全局均匀的辅助数据有时很难获取,从而严重影响距离扩展目标自适应检测性能。
事实上,复杂杂波背景的全局均匀性虽遭破坏,但杂波的局部均匀性在一定的径向距离范围内仍有所体现,此时可用部分均匀模型对杂波建模,即待检测距离单元与参考距离单元中杂波分量拥有相同的协方差矩阵结构和不同的功率水平,此种模型能充分利用杂波局部均匀性,但其可利用的参考距离单元数受限于实际杂波非均匀程度。另外,随着空时自适应处理技术的广泛应用,多通道参数化模型为降低辅助数据需求提供了新途径,对于大部分雷达目标检测场景,杂波回波可用低阶自回归模型建模。在部分均匀背景下,如何充分挖掘多通道自回归模型的数据结构优势,针对高距离分辨率雷达的距离扩展目标检测,设计简单有效的参数化检测方法,在保持自适应检测性能的同时降低辅助数据需求,是工程应用中急需解决的难题。
发明内容
1.要解决的技术问题
高距离分辨率雷达在实际工作环境中,由于杂波边缘等异常值情况的出现,常常会产生全局均匀性辅助数据缺失的情况,导致基于传统采样协方差矩阵的距离扩展目标自适应检测方法的检测性能急剧下降。在部分均匀背景下,如何充分挖掘多通道自回归模型的数据结构优势,针对非均匀杂波下的距离扩展目标自适应检测场景,设计简单有效的参数化检测方法,在保持自适应检测性能的同时降低辅助数据需求,是工程应用中急需解决的难题。
2.技术方案
本发明所述部分均匀环境下距离扩展目标多通道融合检测方法包括以下技术措施:
步骤1从L个待检测距离单元获取待检测数据,从与待检测距离单元邻近的K个无目标距离单元获取纯杂波辅助数据,构建部分均匀环境下距离扩展目标多通道信号模型;具体步骤包括:
由L个待检测距离单元回波复幅值构成L个待检测数据向量Xl=[xl T(1),…,xl T(n),…,xl T(N)]T,l=1,2,…,L,即主数据向量,其中,上标“T”表示矩阵的转置运算,xl(n)表示第l个待检测距离单元接收到的第n个脉冲对应的J×1维复数据向量,J为通道数,N为相干处理脉冲数;
以待检测距离单元为中心,在其前后分别连续取一定数量的不包含目标的距离单元回波复幅值,构成K个只含纯杂波的辅助数据向量Zk=[zk T(1),…,zk T(n),…,zk T(N)]T,k=1,2,…,K,其中,zk(n)表示第k个参考距离单元接收到的第n个脉冲对应的J×1维复数据向量;
假设不同距离单元间杂波分量相互统计独立,主数据Xl中的杂波分量记为Cl=[cl T(1),…,cl T(n),…,cl T(N)]T,辅助数据Zk中的杂波分量记为Dk=[dk T(1),…,dk T(n),…,dk T(N)]T,Cl和Dk服从协方差矩阵结构相同但功率水平不同的零均值复高斯分布,即Cl~CN(0,γM)且Dk~CN(0,M),其中“CN”表示复高斯分布,M是未知的空时协方差矩阵,γ是未知的功率缩放因子,且γ>0,对于均匀环境有γ=1;
主数据向量和辅助数据向量中的杂波分量cl(n)和dk(n)均用一维P阶复自回归过程建模,即J×1维的杂波分量cl(n)和dk(n)有如下表示形式
Figure BDA0001744909440000021
Figure BDA0001744909440000022
其中,上标“H”表示矩阵的共轭转置运算,A(p)表示自回归系数矩阵A的第p个J×J维分量矩阵,而未知的JP×J维自回归系数矩阵表示为A=[AT(1),…,AT(p),…,AT(P)]T,al(n)和bk(n)均表示J×1维噪声向量,且满足al(n)~CN(0,γQ)和bk(n)~CN(0,Q),Q表示未知的空间协方差矩阵;
步骤2依据主数据和辅助数据分别构建截断向量,进而建立临时估计矩阵并计算相应的临时特征值,基于临时特征值估计未知的功率缩放因子;具体步骤包括:
依据主数据Xl构建的截断向量yl(n)为
yl(n)=[xl T(n-1),xl T(n-2),…,xl T(n-P)]T,l=1,2,…,L (3)
依据辅助数据Zk构建的截断向量wk(n)为
wk(n)=[zk T(n-1),zk T(n-2),…,zk T(n-P)]T,k=1,2,…,K (4)
基于主数据、辅助数据及相应的截断向量,建立的4个临时估计矩阵
Figure BDA0001744909440000031
Figure BDA0001744909440000032
分别表示为
Figure BDA0001744909440000033
Figure BDA0001744909440000034
Figure BDA0001744909440000035
Figure BDA0001744909440000036
Figure BDA0001744909440000037
进行特征值分解,得到J(P+1)个临时特征值μi,i=1,2,...,J(P+1),对
Figure BDA0001744909440000038
进行特征值分解,得到JP个临时特征值vi,i=1,2,...,JP,其中,上标“-1/2”表示对逆矩阵的Cholesky分解;
基于临时特征值μi,i=1,2,...,J(P+1)和vi,i=1,2,...,JP,利用式(9)求解未知功率缩放因子的估计值
Figure BDA0001744909440000039
Figure BDA00017449094400000310
步骤3依据功率缩放因子估计值构建中间估计矩阵,进而估计未知的自回归系数矩阵和空间协方差矩阵;具体步骤包括:
依据功率缩放因子估计值
Figure BDA00017449094400000311
构建的3个中间估计矩阵
Figure BDA00017449094400000312
Figure BDA00017449094400000313
分别表示为
Figure BDA0001744909440000041
Figure BDA0001744909440000042
Figure BDA0001744909440000043
未知空间协方差矩阵Q的估计值
Figure BDA0001744909440000044
表示为
Figure BDA0001744909440000045
未知自回归系数矩阵A的估计值
Figure BDA0001744909440000046
表示为
Figure BDA0001744909440000047
步骤4依据自回归系数矩阵估计值重构主数据向量和导向矢量,基于Rao检验准则建立部分均匀环境下距离扩展目标多通道融合检测方法;具体步骤包括:
依据自回归系数矩阵估计值
Figure BDA0001744909440000048
重构的主数据向量
Figure BDA0001744909440000049
表示为
Figure BDA00017449094400000410
式中,
Figure BDA00017449094400000411
表示式(14)中自回归系数分量矩阵A(p)的估计值;
依据自回归系数矩阵估计值
Figure BDA00017449094400000412
重构的导向矢量
Figure BDA00017449094400000413
表示为
Figure BDA00017449094400000414
式中,s(n)表示第n个脉冲对应的J×1维已知空间导向矢量;
基于Rao检验准则,部分均匀环境下距离扩展目标多通道融合检测方法的检测统计量λ表示为
Figure BDA00017449094400000415
式中,估计值
Figure BDA00017449094400000416
Figure BDA00017449094400000417
分别由式(9)、式(13)、式(15)和式(16)获得;
步骤5为保持检测方法的恒虚警率特性,根据预设的虚警概率设置检测门限;将检测统计量与检测门限进行比较,若检测统计量不小于检测门限,则判定L个待检测距离单元存在目标,当前主数据不作为其他距离单元的辅助数据;反之若检测统计量小于检测门限,则判定L个待检测距离单元不存在目标,当前主数据作为后续其他距离单元的辅助数据。
3.有益效果
与背景技术相比,本发明的有益效果是:1)针对辅助数据缺失的非均匀杂波环境,建立了部分均匀多通道自回归信号模型,将杂波空间局部均匀性、时间低阶相关性和多通道信息获取能力充分融合,为降低距离扩展目标自适应检测的辅助数据需求奠定了数据模型基础;2)基于Rao检验准则,建立了部分均匀环境下距离扩展目标多通道融合检测方法,在保证恒虚警率特性的同时大幅降低了辅助数据需求,与常用的广义似然比准则方法相比,在保持检测性能基本不变的前提下,简化了参数估计过程,提高了检测器构建效率,工程适用性强,具有广泛的潜在推广应用价值。
附图说明
图1是本发明所提出的部分均匀环境下距离扩展目标多通道融合检测方法的功能模块图。图1中,1.信号模型构建模块,2.功率缩放因子估计模块,3.多通道模型矩阵估计模块,4.多通道融合检测器构建模块,5.检测判决模块。
具体实施方式
下面结合附图对本发明作进一步描述。本发明实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。
参照说明书附图1,本发明的具体实施方式分为以下几个步骤:
步骤1由L个待检测距离单元回波复幅值构成L个JN×1维主数据向量Xl=[xl T(1),…,xl T(n),…,xl T(N)]T,l=1,2,…,L;通过对待检测区域周围的无目标范围进行雷达照射,获得与待检测距离单元邻近的不包含目标的纯杂波辅助数据,构成K个JN×1维辅助数据向量Zk=[zk T(1),…,zk T(n),…,zk T(N)]T,k=1,2,…,K;将主数据向量和辅助数据向量送至信号模型构建模块(1);在信号模型构建模块(1)中,依据式(1)和式(2)构建部分均匀环境下距离扩展目标多通道信号模型,并将建模后的主数据向量和辅助数据向量送至功率缩放因子估计模块(2);
值得注意的是,式(1)和式(2)所示的部分均匀多通道自回归信号模型针对辅助数据缺失的高距离分辨率雷达目标检测环境,将部分均匀模型中的杂波空间局部均匀性信息与自回归模型中的时间低阶相关性信息充分融合,有效提高了杂波先验信息的利用率;并结合多通道信号模型,增加了回波信息获取渠道,通过将未知空时协方差矩阵降维分解为低维的自回归系数矩阵和空间协方差矩阵,减少了未知参量个数,为进一步降低距离扩展目标自适应检测的辅助数据需求奠定了数据模型基础;
步骤2在功率缩放因子估计模块(2)中,依据式(3)和式(4)分别构建主数据和辅助数据的截断向量,进而依据式(5)至式(8)分别建立4个临时估计矩阵
Figure BDA0001744909440000051
Figure BDA0001744909440000052
Figure BDA0001744909440000053
进行特征值分解,得到临时特征值μi,i=1,2,...,J(P+1),对
Figure BDA0001744909440000054
进行特征值分解,得到临时特征值vi,i=1,2,...,JP,基于临时特征值μi,i=1,2,...,J(P+1)和vi,i=1,2,...,JP,利用式(9)求解未知功率缩放因子的估计值
Figure BDA0001744909440000061
并将
Figure BDA0001744909440000062
送至多通道模型矩阵估计模块(3);
值得注意的是,根据式(9)建立函数f(γ)
Figure BDA0001744909440000063
由于f(γ)在区间γ∈(0,+∞)上单调递增,且有
Figure BDA0001744909440000064
Figure BDA0001744909440000065
因此,式(9)的解
Figure BDA0001744909440000066
是唯一的;
步骤3在多通道模型矩阵估计模块(3)中,依据功率缩放因子估计值
Figure BDA0001744909440000067
基于式(10)至式(12)分别建立3个中间估计矩阵
Figure BDA0001744909440000068
Figure BDA0001744909440000069
进而依据式(13)和式(14)分别获得空间协方差矩阵估计值
Figure BDA00017449094400000610
和自回归系数矩阵估计值
Figure BDA00017449094400000611
并将
Figure BDA00017449094400000612
Figure BDA00017449094400000613
送至多通道融合检测器构建模块(4)中;
步骤4在多通道融合检测器构建模块(4)中,依据自回归系数矩阵估计值
Figure BDA00017449094400000614
基于式(15)和式(16)分别获得重构的主数据向量
Figure BDA00017449094400000615
和重构的导向矢量
Figure BDA00017449094400000616
基于Rao检验准则,依据式(17)建立部分均匀环境下距离扩展目标多通道融合检测方法的检测统计量λ,并将λ送至检测判决模块(5)中;
值得注意的是,式(17)针对辅助数据缺失的非均匀杂波环境下距离扩展目标自适应检测,利用Rao检验准则建立部分均匀环境下距离扩展目标多通道融合检测方法,在保证恒虚警率特性的同时大幅降低了辅助数据需求;本发明检测器构建过程中只需估计无目标假设下的未知参数,且可通过适当增加相干处理脉冲数减小由自回归模型阶数增大所引起的检测损失;与常用的同时估计有目标和无目标两种假设下未知参数的广义似然比准则方法相比,在保持检测性能基本不变的前提下,简化了参数估计过程,提高了检测器构建效率,工程适用性强,具有更广泛的潜在应用价值;另外,当距离扩展目标的待检测距离单元数L降为1时,式(17)所示的检测统计量还适用于经典点目标检测应用场合,即部分均匀环境下点目标多通道Rao检测器实际上是本发明所提融合检测方法的特例,说明本发明所提检测方法具有更大的适用范围和推广应用价值;
步骤5在检测判决模块(5)中,为保持检测方法的恒虚警率特性,根据预设的虚警概率设置检测门限;将检测统计量λ与检测门限进行比较,若λ不小于检测门限,则判定L个待检测距离单元存在目标,当前主数据不作为其他距离单元的辅助数据;反之若λ小于检测门限,则判定L个待检测距离单元不存在目标,当前主数据作为后续其他距离单元的辅助数据。

Claims (1)

1.部分均匀环境下距离扩展目标多通道融合检测方法,其特征在于,包括以下步骤:
步骤1从L个待检测距离单元获取待检测数据,从与待检测距离单元邻近的K个无目标距离单元获取纯杂波辅助数据,构建部分均匀环境下距离扩展目标多通道信号模型;
由L个待检测距离单元回波复幅值构成L个待检测数据向量Xl=[xl T(1),…,xl T(n),…,xl T(N)]T,l=1,2,…,L,即主数据向量,其中,上标“T”表示矩阵的转置运算,xl(n)表示第l个待检测距离单元接收到的第n个脉冲对应的J×1维复数据向量,J为通道数,N为相干处理脉冲数;
以待检测距离单元为中心,在其前后分别连续取一定数量的参考距离单元回波复幅值,构成K个只含纯杂波的辅助数据向量Zk=[zk T(1),…,zk T(n),…,zk T(N)]T,k=1,2,…,K,其中,zk(n)表示第k个参考距离单元接收到的第n个脉冲对应的J×1维复数据向量;
假设不同距离单元间杂波分量相互统计独立,主数据向量Xl中的杂波分量记为Cl=[cl T(1),…,cl T(n),…,cl T(N)]T,辅助数据向量Zk中的杂波分量记为Dk=[dk T(1),…,dk T(n),…,dk T(N)]T,Cl和Dk服从协方差矩阵结构相同但功率水平不同的零均值复高斯分布,即Cl~CN(0,γM)且Dk~CN(0,M),其中“CN”表示复高斯分布,M是未知的空时协方差矩阵,γ是未知的功率缩放因子,且γ>0,对于均匀环境有γ=1;
主数据向量和辅助数据向量中的杂波分量cl(n)和dk(n)均用一维P阶复自回归过程建模,即J×1维的杂波分量cl(n)和dk(n)有如下表示形式
Figure FDA0002499241890000011
Figure FDA0002499241890000012
其中,P为复自回归过程的阶数,cl(n-p)为主数据向量Xl中杂波分量Cl的第n-p个分量,dk(n-p)为辅助数据向量Zk中杂波分量Dk的第n-p个分量,上标“H”表示矩阵的共轭转置运算,A(p)表示自回归系数矩阵A的第p个J×J维分量矩阵,而自回归系数矩阵A是未知的JP×J维矩阵,表示为A=[AT(1),…,AT(p),…,AT(P)]T,al(n)和bk(n)均表示J×1维噪声向量,且满足al(n)~CN(0,γQ)和bk(n)~CN(0,Q),Q表示未知的空间协方差矩阵;
步骤2依据主数据向量和辅助数据向量分别构建截断向量,进而建立临时估计矩阵并计算相应的临时特征值,基于临时特征值估计未知的功率缩放因子;
依据主数据向量Xl构建的截断向量yl(n)为
yl(n)=[xl T(n-1),xl T(n-2),…,xl T(n-P)]T,l=1,2,…,L (3)
依据辅助数据向量Zk构建的截断向量wk(n)为
wk(n)=[zk T(n-1),zk T(n-2),…,zk T(n-P)]T,k=1,2,…,K (4)
其中,xl(n-1),xl(n-2),xl(n-P)分别表示主数据向量Xl的第n-1、n-2、n-P个分量,zk(n-1),zk(n-2),zk(n-P)分别表示辅助数据向量Zk的第n-1、n-2、n-P个分量,基于主数据向量、辅助数据向量及相应的截断向量,建立的4个临时估计矩阵
Figure FDA0002499241890000021
Figure FDA0002499241890000022
分别表示为
Figure FDA0002499241890000023
Figure FDA0002499241890000024
Figure FDA0002499241890000025
Figure FDA0002499241890000026
Figure FDA0002499241890000027
进行特征值分解,得到J(P+1)个临时特征值μi,i=1,2,…,J(P+1),对
Figure FDA0002499241890000028
进行特征值分解,得到JP个临时特征值vi,i=1,2,...,JP,其中,上标“-1/2”表示对逆矩阵的Cholesky分解;
基于临时特征值μi,i=1,2,…,J(P+1)和vi,i=1,2,…,JP,利用式(9)求解未知功率缩放因子的估计值
Figure FDA0002499241890000029
Figure FDA00024992418900000210
步骤3依据功率缩放因子估计值构建中间估计矩阵,进而估计未知的自回归系数矩阵和空间协方差矩阵;
依据功率缩放因子估计值
Figure FDA0002499241890000031
构建的3个中间估计矩阵
Figure FDA0002499241890000032
Figure FDA0002499241890000033
分别表示为
Figure FDA0002499241890000034
Figure FDA0002499241890000035
Figure FDA0002499241890000036
空间协方差矩阵Q的估计值
Figure FDA0002499241890000037
表示为
Figure FDA0002499241890000038
自回归系数矩阵A的估计值
Figure FDA0002499241890000039
表示为
Figure FDA00024992418900000310
步骤4依据自回归系数矩阵估计值重构主数据向量和导向矢量,基于Rao检验准则建立部分均匀环境下距离扩展目标多通道融合检测方法;
依据自回归系数矩阵估计值
Figure FDA00024992418900000311
重构的主数据向量
Figure FDA00024992418900000312
表示为
Figure FDA00024992418900000313
式中,
Figure FDA00024992418900000314
表示A(p)的估计值;
依据自回归系数矩阵估计值
Figure FDA00024992418900000315
重构的导向矢量
Figure FDA00024992418900000316
表示为
Figure FDA00024992418900000317
式中,s(n)和s(n-P)分别表示第n个和第n-p个脉冲对应的J×1维已知空间导向矢量;
基于Rao检验准则,部分均匀环境下距离扩展目标多通道融合检测方法的检测统计量λ表示为
Figure FDA00024992418900000318
式中,估计值
Figure FDA00024992418900000319
Figure FDA00024992418900000320
分别由式(9)、式(13)、式(15)和式(16)获得;
步骤5为保持检测方法的恒虚警率特性,根据预设的虚警概率设置检测门限;将检测统计量与检测门限进行比较,若检测统计量不小于检测门限,则判定L个待检测距离单元存在目标,当前主数据向量不作为后续其他距离单元的辅助数据向量;反之若检测统计量小于检测门限,则判定L个待检测距离单元不存在目标,当前主数据向量作为后续其他距离单元的辅助数据向量。
CN201810837680.0A 2018-07-26 2018-07-26 部分均匀环境下距离扩展目标多通道融合检测方法 Active CN108919225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810837680.0A CN108919225B (zh) 2018-07-26 2018-07-26 部分均匀环境下距离扩展目标多通道融合检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810837680.0A CN108919225B (zh) 2018-07-26 2018-07-26 部分均匀环境下距离扩展目标多通道融合检测方法

Publications (2)

Publication Number Publication Date
CN108919225A CN108919225A (zh) 2018-11-30
CN108919225B true CN108919225B (zh) 2020-06-30

Family

ID=64417275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810837680.0A Active CN108919225B (zh) 2018-07-26 2018-07-26 部分均匀环境下距离扩展目标多通道融合检测方法

Country Status (1)

Country Link
CN (1) CN108919225B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991597A (zh) * 2019-04-04 2019-07-09 中国人民解放军国防科技大学 一种面向弱扩展目标的检测前跟踪方法
CN111999716B (zh) * 2020-09-02 2022-03-29 中国人民解放军海军航空大学 基于杂波先验信息的目标自适应融合检测方法
CN114577907B (zh) * 2021-12-31 2022-11-08 哈尔滨工业大学(深圳) 一种曲面板构件损伤检测方法、系统及存储介质
CN115902810B (zh) * 2022-12-29 2024-04-19 中国人民解放军空军预警学院 非均匀环境中分布式无人机载雷达扩展目标检测器与系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576131A (zh) * 2013-11-02 2014-02-12 中国人民解放军海军航空工程学院 距离扩展目标内禀模态特征能量智能融合检测方法
CN103605120A (zh) * 2013-11-02 2014-02-26 中国人民解放军海军航空工程学院 距离扩展目标内禀模态局部奇异值有序融合检测方法
CN103995259A (zh) * 2014-06-06 2014-08-20 中国人民解放军海军航空工程学院 密集干扰环境下雷达目标自适应滤波融合检测方法
CN103995258A (zh) * 2014-06-06 2014-08-20 中国人民解放军海军航空工程学院 复杂杂波边缘环境下雷达目标自适应融合检测方法
CN105425223A (zh) * 2015-11-11 2016-03-23 西安电子科技大学 广义帕累托杂波下稀疏距离扩展雷达目标的检测方法
CN105425230A (zh) * 2015-11-11 2016-03-23 西安电子科技大学 逆高斯纹理复合高斯杂波下距离扩展目标自适应检测方法
CN106872958A (zh) * 2017-04-27 2017-06-20 中国人民解放军海军航空工程学院 基于线性融合的雷达目标自适应检测方法
CN106932766A (zh) * 2017-04-27 2017-07-07 中国人民解放军海军航空工程学院 基于变参数广义结构的距离扩展目标自适应检测方法
CN107085205A (zh) * 2017-04-19 2017-08-22 西安电子科技大学 基于杂波协方差矩阵结构信息的自适应检测方法
CN107102302A (zh) * 2017-04-27 2017-08-29 中国人民解放军海军航空工程学院 基于非高斯参数的雷达目标融合检测方法
CN107526070A (zh) * 2017-10-18 2017-12-29 中国航空无线电电子研究所 天波超视距雷达的多路径融合多目标跟踪算法
CN107677997A (zh) * 2017-09-28 2018-02-09 杭州电子科技大学 基于GLMB滤波和Gibbs采样的扩展目标跟踪方法
CN108318877A (zh) * 2017-11-27 2018-07-24 西安电子科技大学 基于多基地雷达的杂波子空间下目标检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823346B1 (en) * 2014-12-04 2017-11-21 National Technology & Engineering Solutions Of Sandia, Llc Apodization of spurs in radar receivers using multi-channel processing

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605120A (zh) * 2013-11-02 2014-02-26 中国人民解放军海军航空工程学院 距离扩展目标内禀模态局部奇异值有序融合检测方法
CN103576131A (zh) * 2013-11-02 2014-02-12 中国人民解放军海军航空工程学院 距离扩展目标内禀模态特征能量智能融合检测方法
CN103995259A (zh) * 2014-06-06 2014-08-20 中国人民解放军海军航空工程学院 密集干扰环境下雷达目标自适应滤波融合检测方法
CN103995258A (zh) * 2014-06-06 2014-08-20 中国人民解放军海军航空工程学院 复杂杂波边缘环境下雷达目标自适应融合检测方法
CN105425223A (zh) * 2015-11-11 2016-03-23 西安电子科技大学 广义帕累托杂波下稀疏距离扩展雷达目标的检测方法
CN105425230A (zh) * 2015-11-11 2016-03-23 西安电子科技大学 逆高斯纹理复合高斯杂波下距离扩展目标自适应检测方法
CN107085205A (zh) * 2017-04-19 2017-08-22 西安电子科技大学 基于杂波协方差矩阵结构信息的自适应检测方法
CN106872958A (zh) * 2017-04-27 2017-06-20 中国人民解放军海军航空工程学院 基于线性融合的雷达目标自适应检测方法
CN106932766A (zh) * 2017-04-27 2017-07-07 中国人民解放军海军航空工程学院 基于变参数广义结构的距离扩展目标自适应检测方法
CN107102302A (zh) * 2017-04-27 2017-08-29 中国人民解放军海军航空工程学院 基于非高斯参数的雷达目标融合检测方法
CN107677997A (zh) * 2017-09-28 2018-02-09 杭州电子科技大学 基于GLMB滤波和Gibbs采样的扩展目标跟踪方法
CN107526070A (zh) * 2017-10-18 2017-12-29 中国航空无线电电子研究所 天波超视距雷达的多路径融合多目标跟踪算法
CN108318877A (zh) * 2017-11-27 2018-07-24 西安电子科技大学 基于多基地雷达的杂波子空间下目标检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Generalised parametric Rao test for multi-channel adaptive detection of range-spread targets;P. Wang等;《IET Signal Processing》;20120731;第6卷(第5期);404-412 *
Generalised persymmetric parametric adaptive coherence estimator for multichannel adaptive signal detection;Yongchan Gao等;《IET Radar, Sonar & Navigation》;20150430;第9卷(第5期);550-558 *
均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法;丁昊等;《雷达学报》;20150831;第4卷(第4期);418-430 *
辅助数据缺失环境下结构化自适应目标检测器;简涛等;《系统工程与电子技术》;20170228;第39卷(第2期);277-281 *

Also Published As

Publication number Publication date
CN108919225A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108919225B (zh) 部分均匀环境下距离扩展目标多通道融合检测方法
CN108919223B (zh) 宽带雷达目标自适应结构化匹配滤波方法
US7193558B1 (en) Radar processor system and method
CN108919224B (zh) 基于斜对称结构的宽带雷达目标自适应融合检测方法
CN111999716B (zh) 基于杂波先验信息的目标自适应融合检测方法
CN109444869B (zh) 一种用于信号失配的雷达扩展目标参数可调检测器
CN110531327B (zh) 一种基于自动增益控制的雷达抗干扰探测方法
CN106054153A (zh) 一种基于分数阶变换的海杂波区目标检测与自适应杂波抑制方法
CN111126318A (zh) 一种信号失配下的参数可调双子空间信号检测方法
CN107942324B (zh) 基于多普勒引导的多帧联合小目标双重检测方法
CN108646249B (zh) 一种适用于部分均匀混响背景的参数化泄露目标检测方法
CN111999714A (zh) 基于多散射点估计和杂波知识辅助的自适应融合检测方法
CN115508828B (zh) 子空间干扰下雷达目标智能融合检测方法
CN107229040B (zh) 基于稀疏恢复空时谱估计的高频雷达目标检测方法
CN112255608A (zh) 一种基于正交投影的雷达杂波自适应抑制方法
CN111999715B (zh) 异质杂波下目标知识辅助自适应融合检测方法
CN108196238B (zh) 高斯背景下基于自适应匹配滤波的杂波图检测方法
CN111090089B (zh) 一种基于两类辅助数据的空时自适应检测方法
CN116106829B (zh) 部分均匀杂波加干扰下目标智能检测方法
CN111583267B (zh) 基于广义模糊c均值聚类的快速sar图像旁瓣抑制方法
CN107132532B (zh) 基于海尖峰抑制和多帧联合的小目标检测方法
Zhao et al. A modified matrix CFAR detector based on maximum eigenvalue for target detection in the sea clutter
CN115575906A (zh) 非均匀背景下干扰智能抑制的融合检测方法
CN115524672A (zh) 结构化干扰与杂波下目标鲁棒智能检测方法
CN112612007B (zh) 基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant