CN112612007B - 基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法 - Google Patents

基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法 Download PDF

Info

Publication number
CN112612007B
CN112612007B CN202011340647.0A CN202011340647A CN112612007B CN 112612007 B CN112612007 B CN 112612007B CN 202011340647 A CN202011340647 A CN 202011340647A CN 112612007 B CN112612007 B CN 112612007B
Authority
CN
China
Prior art keywords
distance
target
detected
space
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011340647.0A
Other languages
English (en)
Other versions
CN112612007A (zh
Inventor
段克清
杨兴家
李想
谢洪途
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202011340647.0A priority Critical patent/CN112612007B/zh
Publication of CN112612007A publication Critical patent/CN112612007A/zh
Application granted granted Critical
Publication of CN112612007B publication Critical patent/CN112612007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • G01S7/2927Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods by deriving and controlling a threshold value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一种基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,方法如下:对空时回波数据进行模数转换;根据得到的数据计算所对应的真实距离,计算出不同距离对应稀疏阵列目标空域导向矢量,再结合目标时域导向矢量得到目标空时导向矢量集合;利用待检测距离门相邻距离门数据作为训练样本,得到相应的杂波协方差矩阵;利用杂波协方差矩阵和目标空时导向矢量集合构造出空时自适应权值,实现对杂波抑制和目标积累后的数据集分别进行恒虚警检测,完成对运动目标的检测;比较所检测目标的功率大小,选择功率最大时目标空域导向矢量所对应的真实距离为目标解模糊后距离。本发明有利于机载雷达在约束数据率前提下增大相参脉冲积累时间,提升对运动目标有效探测。

Description

基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法
技术领域
本发明涉及雷达信号处理技术领域,更具体地,涉及一种基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法。
背景技术
目前,雷达系统一般采用大孔径的天线阵列来增加探测覆盖范围和提高参数估计精度的要求。然而,采用大孔径的天线阵列(满足半波长间距要求)会使得系统成本骤增,且阵元间耦合加剧。超稀疏大孔径阵列在提升阵列孔径的同时可大幅减少阵元数目,有效地解决了系统成本和探测性能间的矛盾。
当前较为典型的超稀疏阵列机载雷达形式为无人机集群协同探测模式。无人机系统经过几十年的发展,已经逐步从安全性空域执行情报侦查任务向对抗性空域执行主流作战任务发展。同时,无人机的作战样式已逐步从单平台作战向多平台集群作战方向发展。如将雷达布置于无人机集群系统上,便形成分布式无人机集群雷达协同探测系统。与传统有人单基预警雷达相比,无人机集群预警探测具备显著优势。首先,超稀疏大阵列天线具有更大的天线孔径和空域自由度,可实现更高的目标空间分辨率和更好的杂波抑制性能,同时更窄的主瓣波束可有效对抗主瓣干扰;其次,多架无人机进行探测可大大提升预警探测系统的生存能力,即使单架或多架无人机被摧毁,其集群整体探测性能几乎不受影响;最后,采用无人机集群探测可完全通过无人驾驶执行任务,因此可深入到更接近于高威胁区域的前沿进行有效探测,既可保证无人机安全可靠的完成任务,又可向外大大延伸探测空间。
在实际应用中,为更好的探测运动目标,机载雷达往往工作在中/高重频,因此存在严重距离模糊。为了得到动目标的真实距离,当前机载雷达系统工作于多脉冲重复频率模式,通过多重频来实现对动目标的距离解模糊。采用这种方式,一方面需要在单个波位以多个重频模式发射脉冲,且重频间脉冲无法相参积累,使得单一重频工作期间目标积累脉冲数受限,不利于对弱小目标的检测;另一方面,多重频解模糊算法需要较多运算量,占用较多硬件计算资源。
发明内容
本发明为克服上述现有技术中机载雷达存在严重距离模糊,不能对弱小目标检测的问题,提供了一种基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,其给出了更为简单有效的动目标距离解模糊方法,有利于机载雷达在约束数据率前提下增大相参脉冲积累时间,从而提升对运动目标特别是弱小运动目标的有效探测。
为解决上述技术问题,本发明的技术方案如下:一种基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,所述的方法包括步骤如下:
S1:超稀疏阵列机载雷达采用相控阵天线,对各阵元接收数据进行模数转换;
S2:根据模数转换后得到的各距离门不同模糊次数计算相应距离,并分别计算出不同距离所对应稀疏阵列目标空域导向矢量,再结合目标时域导向矢量得到目标空时导向矢量集合;
S3:利用待检测距离门相邻距离门数据作为训练样本,通过最大似然估计得到待检测距离门数据的杂波协方差矩阵;
S4:根据线性约束最小输出功率准则,利用步骤S3得到的杂波协方差矩阵和步骤S2得到的目标空时导向矢量集合构造出多个空时自适应权值,并分别作用于当前待检测距离门数据,实现对抑制杂波和目标积累;
S5:对抑制杂波和积累目标后的数据集分别进行恒虚警检测,完成对运动目标的检测;
S6:比较不同空时自适应权值作用后所检测目标的功率大小,选择功率最大时目标空域导向矢量所对应的真实距离为目标解模糊后距离。
优选地,通过待检测距离门、模糊次数和最大不模糊距离计算所对应的真实距离。
进一步地,根据待检测距离门、模糊次数和最大不模糊距离计算对应的真实距离,其计算公式如下:
Rp=l*ΔR+(p-1)*Ru p=1,2,...,P
式中,p表示模糊次数;l表示待检测距离门、ΔR表示雷达距离分辨率、Ru表示最大不模糊距离。
进一步地,所述的稀疏阵列目标空域导向矢量的计算公式如下:
其中,d表示无人机间距,λ表示雷达波长,ψ0表示目标空间锥角,n表示超稀疏大孔径阵列的通道。
再进一步地,所述的目标空时导向矢量集合,计算公式如下:
式中,Ss,p表示稀疏阵列目标空域导向矢量,St表示目标时域导向矢量,p表示模糊次数。
再进一步地,步骤S3,选择2倍阵列阵元数的相邻距离门数据作为训练样本,同时将待检测距离门左右各2~3个相邻距离门数据作为保护单元从训练样本中剔除,然后将剩余训练样本基于最大似然估计得到待检测距离门数据的杂波协方差矩阵。
再进一步地,通过最大似然估计得到待检测距离门数据的杂波协方差矩阵,具体公式如下:
式中,R表示由多个距离门经最大似然估计得到的杂波协方差矩阵,L为训练样本个数,Xl表示第l距离门接收的空时回波数据。
再进一步地,步骤S4,构造出空时自适应权值,具体公式如下:
Wp=μR-1Sp p=1,2,...,P
式中,
与现有技术相比,本发明技术方案的有益效果是:
本发明利用超稀疏阵列在其探测区域内存在严重近场效应的特点,即回波空域导向矢量与回波距离存在严格对应关系,构造出待检测距离门在不同模糊距离情况下所对应的目标空时导向矢量集合,并基于该集合构造出相应空时自适应权系数集合分别作用于待检测距离门数据,最后将作用后的各数据结果分别进行动目标恒虚警检测并比较目标功率,选择出功率最大者所对应权系数反推出目标真实距离。该方法适用于采用超稀疏大阵列体制的各类多通道相控阵机载雷达。
附图说明
图1是本实施例所述的基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法的流程框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,仅用于示例性说明,不能理解为对本专利的限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
如图1所示,一种基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,所述的方法包括步骤如下:
S1:超稀疏阵列机载雷达采用相控阵天线,对各阵元接收的空时回波数据X进行模数转换;
S2:根据模数转换后得到的数据计算相应距离,并分别计算出不同距离所对应稀疏阵列目标空域导向矢量,再结合目标时域导向矢量得到目标空时导向矢量集合;
S3:利用待检测距离门相邻距离门数据作为训练样本,通过最大似然估计得到待检测距离门数据的杂波协方差矩阵;
S4:根据线性约束最小输出功率准则,利用步骤S3得到的杂波协方差矩阵和步骤S2得到的目标空时导向矢量集合构造出多个空时自适应权值,并分别作用于当前待检测距离门数据,实现对抑制杂波和目标积累;
S5:对抑制杂波和积累目标后的数据集分别进行恒虚警检测处理,完成对运动目标的检测;
S6:比较不同空时自适应权值作用后所检测目标的功率大小,选择功率最大时目标空域导向矢量所对应的真实距离为目标解模糊后距离,从而实现了超稀疏阵列雷达的动目标距离解模糊。
本实施例,假设8架无人机并排飞行,飞行间距为100米,各架无人机载4阵元且阵元间距半波长的相控阵阵列天线,在接收端各无人机相控阵天线微波合成一个通道,因此整个阵列为N=8通道的超稀疏大孔径阵列,一个相干脉冲重复间隔内接收到M=16个脉冲,雷达距离分辨率ΔR=50米,最大不模糊距离Ru=50千米,距离模糊次数为P=5次,待检测距离门为l=100,下面结合附图和实例说明一下整个发明的详细步骤:
步骤S1,超稀疏阵列机载雷达中的阵列天线接收单元将接收到的空时回波数据进行下变频处理,然后经超稀疏阵列机载雷达中的模数转换单元进行模数转换,并将数字化后的空时回波数据X存储到超稀疏阵列机载雷达中。
在一个具体的实施例中,具体根据模数转换得到的待检测距离门、模糊次数和最大不模糊距离计算所对应的真实距离。
根据待检测距离门、模糊次数和最大不模糊距离计算对应的真实距离,其计算公式如下:
Rp=l*ΔR+(p-1)*Ru p=1,2,...,P
式中,p表示模糊次数;l表示待检测距离门、ΔR表示雷达距离分辨率、Ru表示最大不模糊距离。
模糊次数为p时,所对应的稀疏阵列目标空域导向矢量的计算公式如下:
其中,d表示无人机间距,λ表示雷达波长,ψ0表示目标空间锥角,n表示超稀疏大孔径阵列的通道。
根据模数转换后得到的数据计算相应距离,并分别计算出不同距离所对应稀疏阵列目标空域导向矢量,再结合目标时域导向矢量得到目标空时导向矢量集合;所述的目标空时导向矢量集合,计算公式如下:
式中,Ss,p表示稀疏阵列目标空域导向矢量,St表示目标时域导向矢量,p表示模糊次数。
步骤S3,选择2倍阵列阵元数的相邻距离门数据作为训练样本,同时将待检测距离门左右各2~3个相邻距离门数据作为保护单元从训练样本中剔除,然后将剩余训练样本基于最大似然估计得到待检测距离门数据的杂波协方差矩阵,其中所述的杂波协方差矩阵的公司如下:
式中,Xl表示第l距离门接收的空时回波数据,L为训练样本个数,R表示表示由多个距离门经最大似然估计得到的杂波协方差矩阵。
步骤S4,根据线性约束最小输出功率准则,利用估计所得待检测距离门数据杂波协方差矩阵和步骤S2得到的目标空时导向矢量集合构造空时自适应权值集合,并分别作用于当前待检测距离门数据,实现对抑制杂波和目标积累;其中,构造空时自适应权值集合具体公式如下:
Wp=μR-1Sp p=1,2,...,P
式中,
步骤S5:对抑制杂波和积累目标后的数据集分别进行恒虚警检测处理,完成对运动目标的检测;
步骤S6:比较不同空时自适应权值作用后所检测目标的功率大小,选择功率最大时目标空域导向矢量所对应的真实距离为目标解模糊后距离,从而实现了超稀疏阵列雷达的动目标距离解模糊。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (5)

1.一种基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,其特征在于:所述的方法包括步骤如下:
S1:超稀疏阵列机载雷达采用相控阵天线,对各阵元接收的空时回波数据X进行模数转换;
S2:根据模数转换后得到的数据计算所对应的真实距离,并分别计算出不同距离所对应稀疏阵列目标空域导向矢量,再结合目标时域导向矢量得到目标空时导向矢量集合;
S3:利用待检测距离门相邻距离门数据作为训练样本,通过最大似然估计得到待检测距离门数据的杂波协方差矩阵;
S4:根据线性约束最小输出功率准则,利用步骤S3得到的杂波协方差矩阵和步骤S2得到的目标空时导向矢量集合构造出多个空时自适应权值,并分别作用于当前待检测距离门数据,实现对杂波抑制和目标积累;
S5:对杂波抑制和积累目标后的数据集分别进行恒虚警检测,完成对运动目标的检测;
S6:比较不同空时自适应权值作用后所检测目标的功率大小,选择功率最大时目标空域导向矢量所对应的真实距离为目标解模糊后距离;
步骤S2,具体根据模数转换得到的待检测距离门、模糊次数和最大不模糊距离计算所对应的真实距离;
通过待检测距离门、模糊次数和最大不模糊距离计算所对应的真实距离,其计算公式如下:
Rp=l*ΔR+(p-1)*Ru p=1,2,...,P
式中,p表示模糊次数,l表示待检测距离门、ΔR表示雷达距离分辨率、Ru表示最大不模糊距离;
所述的稀疏阵列目标空域导向矢量的计算公式如下:
其中,d表示无人机间距,λ表示雷达波长,ψ0表示目标空间锥角,n表示超稀疏大孔径阵列的通道。
2.根据权利要求1所述的基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,其特征在于:所述的目标空时导向矢量集合,计算公式如下:
式中,Ss,p表示稀疏阵列目标空域导向矢量,St表示目标时域导向矢量,p表示模糊次数。
3.根据权利要求2所述的基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,其特征在于:步骤S3,选择2倍阵列阵元数的相邻距离门数据作为训练样本,同时将待检测距离门左右各2~3个相邻距离门数据作为保护单元从训练样本中剔除,然后将剩余训练样本基于最大似然估计得到待检测距离门数据的杂波协方差矩阵。
4.根据权利要求3所述的基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,其特征在于:通过最大似然估计得到待检测距离门数据的杂波协方差矩阵,具体公式如下:
式中,R表示由多个距离门经最大似然估计得到的杂波协方差矩阵,Xl表示第l距离门接收的空时回波数据,L为训练样本个数。
5.根据权利要求4所述的基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法,其特征在于:步骤S4,构造出空时自适应权值,具体公式如下:
Wp=μR-1Sp p=1,2,...,P
式中,
CN202011340647.0A 2020-11-25 2020-11-25 基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法 Active CN112612007B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011340647.0A CN112612007B (zh) 2020-11-25 2020-11-25 基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011340647.0A CN112612007B (zh) 2020-11-25 2020-11-25 基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法

Publications (2)

Publication Number Publication Date
CN112612007A CN112612007A (zh) 2021-04-06
CN112612007B true CN112612007B (zh) 2023-08-22

Family

ID=75225176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011340647.0A Active CN112612007B (zh) 2020-11-25 2020-11-25 基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法

Country Status (1)

Country Link
CN (1) CN112612007B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115902881B (zh) * 2022-12-29 2024-03-29 中国人民解放军空军预警学院 一种分布式无人机载雷达扩展目标检测方法与系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045567A1 (zh) * 2016-09-09 2018-03-15 深圳大学 一种基于存在测量误差的阵列流形先验知识的稳健stap方法
WO2018049595A1 (zh) * 2016-09-14 2018-03-22 深圳大学 一种基于交替方向乘子法的稳健稀疏恢复stap方法及其系统
CN108761417A (zh) * 2018-05-31 2018-11-06 西安电子科技大学 基于知识辅助最大似然的机载雷达杂波抑制方法
CN109116311A (zh) * 2018-09-19 2019-01-01 西安电子科技大学 基于知识辅助稀疏迭代协方差估计的杂波抑制方法
CN109375179A (zh) * 2018-10-29 2019-02-22 中国电子科技集团公司第十四研究所 一种基于稀疏表示的机载雷达近程强杂波抑制方法
CN109375178A (zh) * 2018-10-29 2019-02-22 中国电子科技集团公司第十四研究所 一种基于稀疏重构的机会阵机载雷达非均匀杂波检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045594A1 (zh) * 2016-09-12 2018-03-15 深圳大学 一种基于互质脉冲重复间隔的空时自适应处理方法及装置
CN114185007A (zh) * 2021-12-02 2022-03-15 西安电子科技大学 基于多核dsp的空时联合降维自适应杂波抑制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045567A1 (zh) * 2016-09-09 2018-03-15 深圳大学 一种基于存在测量误差的阵列流形先验知识的稳健stap方法
WO2018049595A1 (zh) * 2016-09-14 2018-03-22 深圳大学 一种基于交替方向乘子法的稳健稀疏恢复stap方法及其系统
CN108761417A (zh) * 2018-05-31 2018-11-06 西安电子科技大学 基于知识辅助最大似然的机载雷达杂波抑制方法
CN109116311A (zh) * 2018-09-19 2019-01-01 西安电子科技大学 基于知识辅助稀疏迭代协方差估计的杂波抑制方法
CN109375179A (zh) * 2018-10-29 2019-02-22 中国电子科技集团公司第十四研究所 一种基于稀疏表示的机载雷达近程强杂波抑制方法
CN109375178A (zh) * 2018-10-29 2019-02-22 中国电子科技集团公司第十四研究所 一种基于稀疏重构的机会阵机载雷达非均匀杂波检测方法

Also Published As

Publication number Publication date
CN112612007A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN101881822B (zh) 一种针对共享谱雷达同频干扰的抑制方法
CN112612005B (zh) 基于深度学习的雷达抗主瓣干扰方法
CN109765529B (zh) 一种基于数字波束形成的毫米波雷达抗干扰方法及系统
CN112612006B (zh) 基于深度学习的机载雷达非均匀杂波抑制方法
Lapierre et al. Foundation for mitigating range dependence in radar space-time adaptive processing
Zhang et al. Weak target detection within the nonhomogeneous ionospheric clutter background of HFSWR based on STAP
RU2735216C2 (ru) Способ пространственно-временной адаптивной обработки сигналов в моноимпульсной корабельной радиолокационной станции с активной фазированной антенной решеткой
CN112612007B (zh) 基于近场效应的超稀疏阵列机载雷达动目标距离解模糊方法
CN113376607B (zh) 机载分布式雷达小样本空时自适应处理方法
Vijaykumar Mahamuni Space-time adaptive processing techniques (STAP) for mitigation of jammer interference and clutter suppression in airborne radar systems: A MATLAB implementation-based study
Yang et al. Hybrid direct data domain sigma-delta space–time adaptive processing algorithm in non-homogeneous clutter
Guan et al. A CFAR detector for MIMO array radar based on adaptive pulse compression-Capon filter
Jagadesh et al. Modeling Target Detection and Performance Analysis of Electronic Countermeasures for Phased Radar.
Mahamuni Space-Time Adaptive Processing (STAP) Techniques for Mitigation of Jammer Interference and Clutter Suppression in Airborne Radar Systems: A MATLAB Implementation-Based Study
CN113093174B (zh) 基于phd滤波雷达起伏微弱多目标的检测前跟踪方法
CN114152918A (zh) 基于压缩感知的抗间歇式主瓣干扰方法
CN114779199A (zh) 端射阵机载雷达自适应互耦补偿与杂波抑制方法
Pandey et al. Space Time Adaptive Processing for High Signal to Clutter Ratio Target's Detection Radar System
CN114355324A (zh) 一种航迹生成方法
Guo et al. An improved range deception jamming recognition method for bistatic MIMO radar
Xiong et al. Space time adaptive processing for airborne MIMO radar based on space time sampling matrix
CN113406593A (zh) 一种外辐射源雷达自适应分时杂波图恒虚警检测方法
Aboutanios et al. Evaluation of the single and two data set STAP detection algorithms using measured data
CN114578311B (zh) 天波超视距雷达特征域抗杂波和干扰方法与装置
Heng et al. Modified JDL with Doppler compensation for airborne bistatic radar

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant