CN106870955A - 服务于供水管网节点需水量反演的管网监测点优化布置方法 - Google Patents

服务于供水管网节点需水量反演的管网监测点优化布置方法 Download PDF

Info

Publication number
CN106870955A
CN106870955A CN201710173558.3A CN201710173558A CN106870955A CN 106870955 A CN106870955 A CN 106870955A CN 201710173558 A CN201710173558 A CN 201710173558A CN 106870955 A CN106870955 A CN 106870955A
Authority
CN
China
Prior art keywords
pressure
node
monitoring point
flow
inverting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710173558.3A
Other languages
English (en)
Other versions
CN106870955B (zh
Inventor
邵煜
俞亭超
楚士鹏
张土乔
郑飞飞
程伟平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710173558.3A priority Critical patent/CN106870955B/zh
Publication of CN106870955A publication Critical patent/CN106870955A/zh
Application granted granted Critical
Publication of CN106870955B publication Critical patent/CN106870955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Pressure (AREA)
  • Pipeline Systems (AREA)

Abstract

本发明公开了一种服务于供水管网节点需水量反演的监测点优化布置方法。在改进传统的压力灵敏度矩阵、融合最新的节点需水量反演算法后,建立了服务于节点需水量反演的监测点布置方法。主要步骤如下:(1)选择一个基准工况进行管网平差,得到节点压力与管段流量,获取压力灵敏度矩阵,创建压力影响系数矩阵;(2)以既有监测点的监测值,反演节点需水量,平差获取节点压力与管段流量,创建误差矩阵;(3)将压力影响系数矩阵与压力误差矩阵相乘,将乘积最大元素对应的节点设置为新的压力监测点,将流量误差矩阵最大元素对应的管段设置为新的流量监测点;(4)当监测点数目达到上限时终止迭代,否则返回步骤(2)继续计算,增加监测点。

Description

服务于供水管网节点需水量反演的管网监测点优化布置方法
技术领域
本发明属于城市供水管网类,具体是一种供水管网监测点优化布置方法类。
背景技术
供水管网监测点布置是指在供水管网中安装一定数量的压力、流量传感器,用于管网模型率定,运行工况检测、压力管理,为管网调度分析提供数据支持。
目前关于供水管网监测点优化布置主要包括模糊聚类和灵敏度分析两类。并没有适用于节点需水量反演的监测点优化布置方法。节点需水量反演算法是一种以SCADA监测数据为基础反演节点需水量的方法,其反演的精确程度取决SCADA系统提供的监测数据。节点需水量反演对于解决超大规模管网模型的节点流量校验,管网快速建模,管网在线运行调控具有重要意义。由于节点需水量反演依赖于监测点提供的监测信息,科学合理的监测点布置对于提高反演精度至关重要。
鉴于此,本发明针对节点需水量反演的需要,提出一种服务于节点需水量反演的监测点优化布置方法。
发明内容
本发明旨在提出一种适用于提高城市管网节点需水量反演精度的管网监测点优化布置方法。为实现以上目的,本发明采取以下步骤:
1.选择一个基准工况,计算各节点压力与管段流量,在基准工况下获取压力灵敏度矩阵,计算影响系数,创建影响系数矩阵;
(1)压力灵敏度矩阵
使管网i节点需水量发生微小改变,重新计算管网压力,将节点j压力变化值△Hj与节点i压力变化值△Hi求比值,获得压力灵敏度矩阵X:
其中,Hi、Hj为基准工况下i、j节点水压;Hi′、Hj′为i节点流量改变后i、j节点水压;n为管网节点数目。在压力灵敏度矩阵X中,Xij表示在节点i出增加需水量,节点j处的压力变化值与节点i处压力变化值之比。
(2)计算压力影响系数矩阵
对压力灵敏度矩阵X的第i行求和,表示i节点单位压力变化会导致整个管网所有节点的压力变化总和,形成节点压力影响系数矩阵SH
式中,n为管网节点数。
2.以既有监测点的监测值作为初始监测数据,反演出节点需水量,带入模型平差,获取反演的节点压力与管段流量。对比基准工况下的节点压力与管段流量,创建误差矩阵;
将水厂出水量和既有的监测点作为初始监测数据,反演出所有节点的需水量。并将反演节点需水量带入EPANET进行平差,计算反演的节点压力H'k和管段流量Q'k。反演的压力与流量和基准工况下的节点压力与流量进行对比,计算出各节点压力与各管段流量的误差,创建误差矩阵。
式中,Hk,Qk为基准工况下节点压力与管段流量。H'k,Q'k为反演的节点压力与管段流量。表示节点k反演的压力平差值与基准工况的压力平差值的误差;εQ表示管段k反演的流量平差值与基准工况流量平差值的误差。
3.选取监测点
(1)压力监测点的选取:将压力影响系数矩阵与压力误差矩阵相乘,选择乘积最大的元素对应的节点设置为新增的压力监测点,即查找k节点,使得则k节点作为新增压力监测点;
(2)流量监测点的选取:选择流量误差最大的管段作为新的流量监测点,即查找k管段,使得则k管段作为新增流量监测点。
(3)当需要同时布置压力和流量监测点时,先布置完所有的压力监测点,然后布置流量监测点。
4.监测点数目达到设定上限时,终止迭代,否则,返回步骤2继续计算,新增监测点。
本发明公开了一种适用于提高节点需水量反演精度的监测点优化布置方法。首先创建一个基准工况,作为真实工况的模拟,在基准工况下平差获得节点压力与管段流量。依照基准工况,获得压力影响系数矩阵。选取基准工况的水厂出水量作为既有监测数据,获取反演工况下的节点压力与管段流量,创建误差矩阵。将节点压力误差矩阵与压力影响系数矩阵相乘,选择乘积元素最大的节点设置为新的压力监测点。将新的压力监测点与水源以作为既有监测数据,进行下一个压力监测点布置。在布置一定数目的压力监测点后,在流量误差较大的管道上布置流量监测点,对于降低反演误差可以起到很好的效果。
附图说明
图1为J市供水管网图;
图2为反演压力误差分布图;
图3为反演流量误差分布图;
图4压力监测点分布图
图5节点压力误差随监测点变化示意图;
图6管段流量误差随监测点变化示意图。
具体实施方式
本发明旨在提出一种适用于提高节点需水量反演精度的监测点优化布置方法。创新点易于理解,下面结合附图和实例,对本发明的实现方式进一步详细叙述,具体步骤如下:
步骤1.获取压力影响系数矩阵。
(1)压力灵敏度矩阵
如图1所示,J市共有水源3个,需水节点491个,管段640个,管段总长433.52千米,水厂出水量已知。
表1基准工况下节点需水量
表2基准工况下节点压力
表3基准工况下管段流量
其中,节点编号按照EPANET节点索引排序。调用EPANET程序员工具箱平差函数,进行平差,得到基准工况下各节点水压Hj,再加大i节点流量(其他节点流量不变)重新进行管网平差,得出各节点水压Hj’。
其中,Hi、Hj为基准工况下i、j节点水压;Hi′、Hj′为i节点流量改变后i、j节点水压;n为管网节点数目。在压力灵敏度矩阵X中,Xij表示在节点i出增加需水量,节点j处的压力变化值与节点i处压力变化值之比。
表2、表3给出了基准工况下节点压力与管段流量的向量形式如下。
H=[30.13,30.13,30.35,…,30.4]
Q=[-1220.41,-2004.25,-2210.19,…,-147.54]
压力灵敏度矩阵维数是491×491,这只里给出10×10的矩阵示例:
(2)计算压力影响系数矩阵
对X矩阵第i行求和,表示i节点单位压力变化,整个管网所有节点的压力变化。对于n个节点,有如下形式
表示若节点i产生单位压力变化,整个管网所有节点产生单位的压力变化。
下面给出了该案例压力影响系数矩阵:
SH=[146.04,141.50,107.60… … …17.07]
2.获取误差矩阵
以水源出水量作为初始监测点,反演出节点需水量,然后平差获取反演的节点压力与管段流量。表1给出水源监测点的出水量。
表4水源监测点出水量
根据表4水源出水量数据反演出的节点需水量如表5所示
表5反演出的节点需水量
将表5的节点需水量设置到各节点,平差获取节点压力和管段流量。表6给出了平差后的节点压力,表7给出了管段流量。
表6反演的节点压力
表7反演的管段流量
将表6中反演节点压力数据减去表2中基准工况下节点压力数据,计算出反演的节点压力误差绝对值。同理,计算出管段流量误差绝对值。
表8反演节点压力误差
表9反演管段流量误差
因此压力与流量误差矩阵为:
εH=[0.94,0.93,0.91,…,33.98,…,1.67]T
εQ=[328.62,222.39,230.62,…,1471.48,…,21.01]T
图2为节点压力误差分布示意图,图3为管段流量误差分布示意图。
3.设置新的监测点
(1)压力监测点布置
将节点压力影响系数矩阵与压力误差矩阵相乘,选取乘积最大的元素对应的节点布置压力监测点。节点压力影响系数矩阵与压力误差矩阵相乘结果如表9所示:
表10权重系数与压力误差乘积
由表9可知,应将节点368设置为新增压力监测。
(2)流量监测点布置
由表8可知,新增的流量监测点设置在管道136处。
4.返回步骤2继续计算,增加新监测点,直到达到监测点数目上限。
图4给出了压力监测点分布示意图。随着监测点数目的增加,反演的压力与流量误差越小,越能接近真实值,一般用相对误差反映其精确度。图5为节点压力误差随着监测点数目的变化,图6为管段流量误差随着监测点数目的变化。

Claims (5)

1.服务于供水管网节点需水量反演的管网监测点优化布置方法,其特征在于,包括如下步骤:
(1)选择一个基准工况,计算各节点压力与管段流量,在基准工况下获取压力灵敏度矩阵,计算影响系数,创建压力影响系数矩阵;
(2)以既有监测点的监测值作为初始监测数据,反演出节点需水量,带入模型平差,获取反演的节点压力与管段流量,对比基础工况下的节点压力与管段流量,创建压力误差矩阵与流量误差矩阵;
(3)当需设置压力监测点时,选择压力影响系数矩阵与压力误差矩阵乘积最大值对应的节点设置为新增压力监测点;
当需设置流量监测点时,选择流量误差最大的管段设置为新增流量监测点;
(4)当监测点数目达到设定上限时终止迭代,否则返回步骤(2)继续计算,增加监测点。
2.如权利要求1所述的服务于供水管网节点需水量反演的管网监测点优化布置方法,其特征在于,步骤(1)中,创建压力影响系数矩阵,即:
(1)获取压力灵敏度矩阵
使管网i节点需水量发生微小改变,重新计算管网压力,将节点j压力变化值△Hj与节点i压力变化值△Hi求比值,获得灵敏度矩阵X:
X i k = | H j - H j ′ H i - H i ′ | , ( i , j = 1 , 2 , ... , n )
X = X 11 X 12 ... X 1 n X 21 X 22 ... X 2 n . . . . . . . . . X n 1 X n 2 ... X n n
其中,Hi、Hj为基准工况下i、j节点水压;Hi′、Hj′为i节点流量改变后i、j节点水压;n为管网节点数目;
(2)计算压力影响系数矩阵
对压力灵敏度矩阵X的第i行求和,表示i节点单位压力变化会导致整个管网所有节点的压力变化总和,形成节点压力影响系数矩阵SH
S H = Σ j = 1 n X 1 j Σ j = 1 n X 2 j ......... Σ j = 1 n X n j T
式中,n为管网节点数。
3.如权利要求1所述的服务于供水管网节点需水量反演的管网监测点优化布置方法,其特征在于,步骤(2)中,创建误差矩阵的方法:
将水厂出水量和既有的监测点作为初始监测数据,反演出节点需水量,带入模型平差,获取反演的节点压力H'k与管段流量Q'k,对比基准工况下的节点压力与管段流量,创建压力误差矩阵εH和流量误差矩阵εQ:
ϵ k H = H k - H k ′
ϵ k Q = Q k - Q k ′
ϵ H = ϵ 1 H ... ϵ k H ... ϵ n H T
ϵ Q = ϵ 1 Q ... ϵ k Q ... ϵ m Q T
式中,Hk,Qk为基准工况下节点压力与管段流量。H'k,Q'k为反演的节点压力与管段流量,表示节点k反演的压力平差值与基准工况的压力平差值的误差;εQ表示管段k反演的流量平差值与基准工况流量平差值的误差。
4.如权利要求1所述的服务于供水管网节点需水量反演的管网监测点优化布置方法,其特征在于,步骤(3)中具体为:
(1)压力监测点的选取:将压力影响系数矩阵与压力误差矩阵相乘,选择乘积最大的元素对应的节点设置为新增的压力监测点,即查找k节点,使得则k节点作为新增压力监测点;
(2)流量监测点的选取:选择流量误差最大的管段作为新的流量监测点,即查找k管段,使得则k管段作为新增流量监测点。
5.如权利要求1所述的服务于供水管网节点需水量反演的管网监测点优化布置方法,其特征在于,步骤(3)中,当需要同时布置压力和流量监测点时,先布置完所有的压力监测点,然后布置流量监测点。
CN201710173558.3A 2017-03-22 2017-03-22 服务于供水管网节点需水量反演的管网监测点优化布置方法 Active CN106870955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710173558.3A CN106870955B (zh) 2017-03-22 2017-03-22 服务于供水管网节点需水量反演的管网监测点优化布置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710173558.3A CN106870955B (zh) 2017-03-22 2017-03-22 服务于供水管网节点需水量反演的管网监测点优化布置方法

Publications (2)

Publication Number Publication Date
CN106870955A true CN106870955A (zh) 2017-06-20
CN106870955B CN106870955B (zh) 2019-01-11

Family

ID=59172514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710173558.3A Active CN106870955B (zh) 2017-03-22 2017-03-22 服务于供水管网节点需水量反演的管网监测点优化布置方法

Country Status (1)

Country Link
CN (1) CN106870955B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368648A (zh) * 2017-07-19 2017-11-21 安徽建筑大学 一种面向市政给水管网压力监测点优化布置方法
CN107563007A (zh) * 2017-08-07 2018-01-09 浙江大学 一种节点流量和管道阻力系数同时调整的供水管网模型快速校正方法
CN108197725A (zh) * 2017-12-06 2018-06-22 浙江大学 基于需水量先验信息的供水管网节点需水量校核方法
CN108332059A (zh) * 2018-01-16 2018-07-27 浙江大学 服务于供水管网爆管监测的测压点优化布置方法
CN108647371A (zh) * 2018-03-19 2018-10-12 浙江大学 一种基于图论分解的城镇供水管网工程优化设计方法
CN108664684A (zh) * 2018-03-16 2018-10-16 浙江大学 一种基于瞬变模拟的供水管网串联管道简化方法
CN109376925A (zh) * 2018-10-23 2019-02-22 青岛理工大学 供水管网节点流量动态自适应优化方法
CN109442221A (zh) * 2018-11-21 2019-03-08 同济大学 一种基于压力扰动提取的供水管网爆管侦测方法
CN109783903A (zh) * 2018-12-28 2019-05-21 佛山科学技术学院 一种基于时间序列的工业用水管道故障诊断方法及系统
CN111379975A (zh) * 2018-12-27 2020-07-07 中国石油化工股份有限公司 存储器、氢气系统监测方法、装置和设备
CN112241767A (zh) * 2020-11-03 2021-01-19 广州杰赛科技股份有限公司 管网水压监测节点布置方法、装置、设备及存储介质
CN112632733A (zh) * 2020-12-28 2021-04-09 杭州智云水务科技有限公司 面向监测信息最大化的供水管网新增流量计的布置方法
CN116642138A (zh) * 2023-05-25 2023-08-25 大连智水慧成科技有限责任公司 一种供水管网新增漏损检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164500A (ja) * 1983-03-09 1984-09-17 Hitachi Ltd 管網破断点の推定方式
JPS6337409A (ja) * 1986-08-01 1988-02-18 Fuji Electric Co Ltd 配水圧力設定値の演算方式
US5708195A (en) * 1995-07-06 1998-01-13 Hitachi, Ltd. Pipeline breakage sensing system and sensing method
JP4312059B2 (ja) * 2004-01-15 2009-08-12 株式会社クボタ 管路の評価方法
CN103839190A (zh) * 2014-02-19 2014-06-04 清华大学深圳研究生院 基于压力监测的管网节点流量计量与调度方法
CN105894130A (zh) * 2016-04-25 2016-08-24 杭州电子科技大学 一种用于城市供水管网监测点的优化布置方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164500A (ja) * 1983-03-09 1984-09-17 Hitachi Ltd 管網破断点の推定方式
JPS6337409A (ja) * 1986-08-01 1988-02-18 Fuji Electric Co Ltd 配水圧力設定値の演算方式
US5708195A (en) * 1995-07-06 1998-01-13 Hitachi, Ltd. Pipeline breakage sensing system and sensing method
JP4312059B2 (ja) * 2004-01-15 2009-08-12 株式会社クボタ 管路の評価方法
CN103839190A (zh) * 2014-02-19 2014-06-04 清华大学深圳研究生院 基于压力监测的管网节点流量计量与调度方法
CN105894130A (zh) * 2016-04-25 2016-08-24 杭州电子科技大学 一种用于城市供水管网监测点的优化布置方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘书明等: "多目标大规模供水管网监测点的优化选址", 《清华大学学报(自然科学版)》 *
陈玲俐等: "基于信息最大化准则的供水管网压力监测点布置", 《上海大学学报(自然科学版)》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368648B (zh) * 2017-07-19 2018-07-20 安徽建筑大学 一种面向市政给水管网压力监测点优化布置方法
CN107368648A (zh) * 2017-07-19 2017-11-21 安徽建筑大学 一种面向市政给水管网压力监测点优化布置方法
CN107563007B (zh) * 2017-08-07 2019-08-27 浙江大学 一种供水管网模型快速校正方法
CN107563007A (zh) * 2017-08-07 2018-01-09 浙江大学 一种节点流量和管道阻力系数同时调整的供水管网模型快速校正方法
CN108197725A (zh) * 2017-12-06 2018-06-22 浙江大学 基于需水量先验信息的供水管网节点需水量校核方法
CN108197725B (zh) * 2017-12-06 2021-05-28 浙江大学 基于需水量先验信息的供水管网节点需水量校核方法
CN108332059A (zh) * 2018-01-16 2018-07-27 浙江大学 服务于供水管网爆管监测的测压点优化布置方法
CN108664684A (zh) * 2018-03-16 2018-10-16 浙江大学 一种基于瞬变模拟的供水管网串联管道简化方法
CN108647371A (zh) * 2018-03-19 2018-10-12 浙江大学 一种基于图论分解的城镇供水管网工程优化设计方法
CN108647371B (zh) * 2018-03-19 2021-06-18 浙江大学 一种基于图论分解的城镇供水管网工程优化设计方法
CN109376925A (zh) * 2018-10-23 2019-02-22 青岛理工大学 供水管网节点流量动态自适应优化方法
CN109442221A (zh) * 2018-11-21 2019-03-08 同济大学 一种基于压力扰动提取的供水管网爆管侦测方法
CN111379975A (zh) * 2018-12-27 2020-07-07 中国石油化工股份有限公司 存储器、氢气系统监测方法、装置和设备
CN111379975B (zh) * 2018-12-27 2021-10-08 中国石油化工股份有限公司 存储器、氢气系统监测方法、装置和设备
CN109783903A (zh) * 2018-12-28 2019-05-21 佛山科学技术学院 一种基于时间序列的工业用水管道故障诊断方法及系统
CN109783903B (zh) * 2018-12-28 2023-01-24 佛山科学技术学院 一种基于时间序列的工业用水管道故障诊断方法及系统
CN112241767A (zh) * 2020-11-03 2021-01-19 广州杰赛科技股份有限公司 管网水压监测节点布置方法、装置、设备及存储介质
CN112632733A (zh) * 2020-12-28 2021-04-09 杭州智云水务科技有限公司 面向监测信息最大化的供水管网新增流量计的布置方法
CN112632733B (zh) * 2020-12-28 2024-03-12 杭州智云水务科技有限公司 面向监测信息最大化的供水管网新增流量计的布置方法
CN116642138A (zh) * 2023-05-25 2023-08-25 大连智水慧成科技有限责任公司 一种供水管网新增漏损检测方法

Also Published As

Publication number Publication date
CN106870955B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN106870955A (zh) 服务于供水管网节点需水量反演的管网监测点优化布置方法
CN108332059B (zh) 服务于供水管网爆管监测的测压点优化布置方法
CN105046352B (zh) 基于血管仿生原理的供水管网漏损计算方法
CN105894130B (zh) 一种用于城市供水管网监测点的优化布置方法
CN105608326B (zh) 一种山区复杂地形风场大涡模拟入口边界条件输入方法
CN107886182A (zh) 油田集输系统优化设计方法及装置
BRPI0706805A2 (pt) métodos, sistemas e meio legìvel por computador para atualização rápida de modelos de produção para campo de gás e óleo com simuladores proxy e fìsico
CN103530818B (zh) 一种基于brb系统的供水管网建模方法
MX2013008812A (es) Sistema y metodo para utilizar una red artificial neural para simular tuberias hidraulicas en un simulador de deposito.
CN107091911A (zh) 一种河流水质预测方法
CN109948272A (zh) 基于井间连通性的调堵动态预测方法和系统
Mannington et al. Computer modelling of the Wairakei–Tauhara geothermal system, New Zealand
CN108804382A (zh) 一种参数自动反求方法和装置
CN108843312A (zh) 油田储层层内非均质性综合评价方法
Tsakiris et al. A Newton–Raphson analysis of urban water systems based on nodal head-driven outflow
CN106886649A (zh) 一种多元热流体吞吐注入参数优化方法
CN103617563B (zh) 一种基于地统计空间分析理论的供水管网无监测节点压力确定方法
CN109297077A (zh) 一种中深层无干扰地岩热供热系统梯级利用及监测系统和方法
CN112541571A (zh) 基于双并联神经网络的机器学习的注采连通性确定方法
CN112113146A (zh) 供水管网管道粗糙系数和节点需水量同步自适应校核方法
CN103955607B (zh) 一种提高短波红外卫星二氧化碳反演速度的方法
CN110348176A (zh) 一种页岩气地面集输管网滚动开发方案优化求解器及方法
Gajdica et al. A new method of matching aquifer performance and determining original gas in place
CN107832482A (zh) 致密储层多尺度裂缝网络建模及模拟方法
CN107545112A (zh) 多源无标签数据机器学习的复杂装备性能评估与预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant