CN106840336A - 基于qmr算法的桥面多轴移动荷载的识别方法 - Google Patents
基于qmr算法的桥面多轴移动荷载的识别方法 Download PDFInfo
- Publication number
- CN106840336A CN106840336A CN201710061164.9A CN201710061164A CN106840336A CN 106840336 A CN106840336 A CN 106840336A CN 201710061164 A CN201710061164 A CN 201710061164A CN 106840336 A CN106840336 A CN 106840336A
- Authority
- CN
- China
- Prior art keywords
- bridge
- equation
- vehicle
- load
- multiaxis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/02—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
- G01G19/03—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing during motion
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G23/00—Auxiliary devices for weighing apparatus
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
本发明公开了一种基于QMR算法的桥面多轴移动荷载的识别方法,包括以下步骤:1)、在桥梁底面对应位置x1,x2,…xm处分别粘贴m个位移传感器,测得桥面多轴移动车辆荷载fk(t)在x位置处t时刻的位移为v(x,t),k=1,2,3…,为车辆轴数;2)、建立振动微分方程;3)、对方程(1)求解;4)、建立桥梁在k轴车辆荷载作用下,由位移响应识别多轴移动荷载系统方程;5)、采用QMR算法求得多轴移动荷载的精确值。本发明只需测量桥梁位移响应即可识别多轴移动荷载,识别方法简单且精度较高,具有良好的可行性,可广泛应用于各种类型桥梁的移动荷载识别。
Description
技术领域
本发明属于桥面移动荷载识别技术领域,尤其涉及一种由桥梁位移识别桥面多轴移动荷载的方法。
背景技术
我国桥梁现状是“重建轻养”,从1999年到2013年,国内媒体公开报道我国因各种原因垮塌的桥梁多达110余座,其中尚不包括汶川地震引起的桥梁垮塌。引起桥梁损伤与破坏原因可归纳为外部因素和内部因素,其中外部因素中由于汽车超载导致桥梁疲劳损伤和耐久性降低占据主导地位,内部因素则主要是桥梁自身承载力降低和材料强度退化。
随着我国公路交通的爆发式增长,许多桥梁实际承受的车流量较早期设计值增加很多,车速和车重的增加均会对桥梁产生不利影响,而大型多轴车辆尤其是超载多轴车辆的出现明显加剧了桥梁破坏的风险。
我国公路超限站在控制车辆超重方法做出许多工作,但目前测量方法多是采用地磅技术,即通过停车称重来实现车辆总重的测量。在发展快速交通的趋势下,如何在车辆行驶过程中精确车辆荷载具有重要的工程实际意义,尤其是对多轴货车各轴荷载的精确测量对保护桥梁的安全性和耐久性都有很大帮助。
现有的移动荷载识别技术多针对常规两轴车辆进行识别,不能对多轴车辆荷载进行识别,因此急需一种能够对桥面多轴移动车辆荷载进行识别的方法。
发明内容
本发明的目的是提供一种仅需测量桥梁位移响应即可快速高效的识别桥面多轴移动车辆荷载,识别精度高且不影响桥面车辆正常通行。
为达到上述目的,本发明采用的技术方案是:一种基于QMR算法的桥面多轴
移动荷载的识别方法,包括以下步骤:
1)、在桥梁底面对应位置x1,x2,…xm处分别粘贴m个位移传感器,测得桥面多轴移动车辆荷载fk(t)在x位置处t时刻的位移为v(x,t),k=1,2,3…,为车辆轴数;
2)、建立车桥系统振动微分方程:取桥梁长度为L,抗弯刚度为EI,桥梁单位长度质量为ρ,考虑粘性阻尼并取阻尼系数为C,忽略桥梁的剪切变形和转动惯量,桥面多轴移动车辆荷载fk(t)以速度c自梁左端支承处向右移动,则车桥系统的振动微分方程为:
其中δ(x-ct)是狄拉克函数;
方程(1)的边界条件为:
v(0,t)=0,v(L,t)=0,v(x,0)=0,
3)、对方程(1)求解;
4)、建立桥梁在k轴车辆荷载作用下,由位移响应识别多轴移动荷载系统方程:v(m×1)=S(m×k)·f(k×1) (2)
v(m×1)为移动荷载fk(t)在x1,x2,…xm处的实际位移,且m≥k;S(m×k)为已知的系统矩阵;f(k×1)为所求的k轴移动荷载;
式(2)的离散形式表示为:
其中
5)、采用QMR算法求得多轴移动荷载的精确值;
对方程(2)的系统矩阵S和位移响应v采用基于Lanczos双A-正交的QRM算法求解:
首先给定f0,f0可以由最小二乘法得到,计算r0=v-Sf0,依次可求得r1=v-Sf1,r2=v-Sf2等,r0、r1、r2分别是残差第一步,第二步,第三步迭代产生的残差。令β=||r0||2,令ε1=r0/β,选取使得标准内积<ω1,Sε1>=1,通过如下迭代产生向量εj和ωj,以及标量δj,βj,j=1,2,…,b
δj+1εj+1=Sεj-βjεj-1-αjεj
βj+1ωj+1=STωj-δjωj-1-αjωj (4)
其中αj=<ωj,S(Sεj)>,
迭代b步后,得到
Eb=[ε1,ε2,...,εb]
其中α1,α2,…,αb以及β1,β2,…,βb均为负值,而δ1,δ2,…,δb均为正值;
对Tb进行一系列的Givens变换Ωb,Ωb-1,...,Ω1,得到
(ΩbΩb-1...Ω1)Tb=Rb,b (6)
计算可得多轴移动荷载fb为
其中gb=ΩbΩb-1...Ω1β1。
所述的步骤3)中对方程(1)求解的具体步骤如下所述:
基于模态叠加原理,假设桥梁的第n阶模态振型函数为则方程(1)的解表示为:
矩阵形式为:
这里n为模态数,qn(t)(n=1,2…∞)是第n阶模态位移,将方程(12)代入方程(1),并在[0,L]内对x进行积分,利用边界条件和狄拉克函数特性,车桥系统振动微分方程用qn(t)表示为:
这里为qn(t)的二阶导数,、为qn(t)的一阶导数, 分别为圆频率、粘性阻尼比和桥面移动车辆荷载模态表达式;
如车辆共有k个车轴,且第k个车轴到第一个车轴的距离为则方程(14)写为:
则对应m个测点处的模态位移可通过方程(13)表示为:
桥梁上x1,x2,…xm处的速度通过位移的一次微分求得:
进一步,桥梁上x1,x2,…xm处的加速度通过位移的二次微分求得:
类似地,梁上x1,x2,…xm处的弯矩可利用关系式求得:
若f1,f2,…,fk为已知k轴车辆各轴对应荷载,忽略阻尼的影响,则方程(1)的解可表示为:
其中
本发明可通过测量桥梁位移响应识别多轴移动荷载,测量桥梁位移响应的方法简单且精度较高,因此通过桥梁位移响应识别桥面移动荷载具有良好的可行性且识别精度能够得到保障,采用本发明提出的方法只需获取位移响应即可识别桥面多轴移动荷载,因此本发明提出的识别方法具有良好的可行性,可广泛应用于各种类型桥梁的移动荷载识别。通过Givens变换实现算法的迭代,在迭代过程中不断减小系统方程残差,使得识别结果逼近真实荷载,最后实现多轴移动荷载的精确识别,识别方法先进识别精度较高,可应用于现场移动荷载识别,因此在识别桥梁移动荷载过程中可有效提高识别效率和识别精度,非常有利于现场桥梁移动荷载识别。
附图说明
图1是本发明的方法流程图。
具体实施方式
如图1所示,本发明公开了一种基于QMR算法的桥面多轴移动荷载的识别方法,包括以下步骤:
1)、在桥梁底面对应位置x1,x2,…xm处分别粘贴m个位移传感器,测得桥面多轴移动车辆荷载fk(t)在x位置处t时刻的位移为v(x,t),k=1,2,3…为车辆轴数;
2)、建立车桥系统振动微分方程:取桥梁长度为L,抗弯刚度为EI,桥梁单位长度质量为ρ,考虑粘性阻尼并取阻尼系数为C,忽略桥梁的剪切变形和转动惯量,桥面多轴移动车辆荷载fk(t)以速度c自梁左端支承处向右移动,则车桥系统的振动微分方程为:
其中δ(x-ct)是狄拉克函数;
方程(1)的边界条件为:
v(0,t)=0,v(L,t)=0,v(x,0)=0,
3)、对方程(1)求解;
基于模态叠加原理,假设梁的第n阶模态振型函数为则方程(1)的解可表示为:
矩阵形式为:
这里n为模态数,qn(t)(n=1,2…∞)是第n阶模态位移,将方程(12)代入方程(1),并在[0,L]内对x进行积分,利用边界条件和狄拉克函数特性,车桥系统振动微分方程用qn(t)表示为:
这里为qn(t)的二阶导数,、为qn(t)的一阶导数, 分别为圆频率、粘性阻尼比和桥面移动车辆荷载模态表达式。
如车辆共有k个车轴,且第k个车轴到第一个车轴的距离为则方程(14)写为:
则对应m个测点处的模态位移可通过方程(13)表示为:
桥梁上x1,x2,…xm处的速度通过位移的一次微分求得:
进一步,桥梁上x1,x2,…xm处的加速度通过位移的二次微分求得:
类似地,梁上x1,x2,…xm处的弯矩可利用关系式求得:
若f1,f2,…,fk为已知k轴车辆各轴对应荷载,忽略阻尼的影响,则方程(1)的解可表示为:
其中
4)、建立桥梁在k轴车辆荷载作用下,由位移响应识别多轴移动荷载系统方程:
v(m×1)=S(m×k)·f(k×1) (2)
v(m×1)为移动荷载fk(t)在x1,x2,…xm处的实际位移(就是步骤(1)中所测得的位移),且m≥k;S(m×k)为已知的系统矩阵;f(k×1)为所求的k轴移动荷载;
式(2)的离散形式表示为
其中
5)、采用QMR算法求得多轴移动荷载的精确值;
在对方程(2)进行求解过程中,需要求解系统矩阵S的逆,为避免系统矩阵病态导致的识别精度降低,特引入QMR算法提高多轴车辆时程荷载的识别精度。对方程(2)的系统矩阵S和位移响应v采用基于Lanczos双A-正交的QRM算法求解:
首先给定f0,f0可以由最小二乘法得到,计算r0=v-Sf0,依次可求得r1=v-Sf1,r2=v-Sf2等,r0、r1、r2分别是残差第一步,第二步,第三步迭代产生的残差。令β=||r0||2,令ε1=r0/β,选取使得标准内积<ω1,Sε1>=1,通过如下迭代产生向量εj和ωj,以及标量δj,βj,j=1,2,…,b
δj+1εj+1=Sεj-βjεj-1αjεj
βj+1ωj+1=STωj-δjωj-1-αjωj(4)
其中αj=<ωj,S(Sεj)>,
迭代b步后,得到
Eb=[ε1,ε2,...,εb]
其中α1,α2,…,αb以及β1,β2,…,βb均为负值,而δ1,δ2,…,δb均为正值;
对Tb进行一系列的Givens变换Ωb,Ωb-1,...,Ω1,得到
(ΩbΩb-1...Ω1)Tb=Rb,b (6)
计算可得多轴移动荷载fb为
其中gb=ΩbΩb-1...Ω1β1。
Claims (2)
1.一种基于QMR算法的桥面多轴移动荷载的识别方法,其特征在于:包括以下步骤:
1)、在桥梁底面对应位置x1,x2,…xm处分别粘贴m个位移传感器,测得桥面多轴移动车辆荷载fk(t)在x位置处t时刻的位移为v(x,t),k=1,2,3…,为车辆轴数;
2)、建立车桥系统振动微分方程:取桥梁长度为L,抗弯刚度为EI,桥梁单位长度质量为ρ,考虑粘性阻尼并取阻尼系数为C,忽略桥梁的剪切变形和转动惯量,桥面多轴移动车辆荷载fk(t)以速度c自梁左端支承处向右移动,则车桥系统的振动微分方程为:
其中δ(x-ct)是狄拉克函数;
方程(1)的边界条件为:
v(0,t)=0,v(L,t)=0,v(x,0)=0,
3)、对方程(1)求解;
4)、建立桥梁在k轴车辆荷载作用下,由位移响应识别多轴移动荷载系统方程:
v(m×1)=S(m×k)·f(k×1) (2)
v(m×1)为移动荷载fk(t)在x1,x2,…xm处的实际位移,且m≥k;S(m×k)为已知的系统矩阵;f(k×1)为所求的k轴移动荷载;
式(2)的离散形式表示为:
其中
5)、采用QMR算法求得多轴移动荷载的精确值;
对方程(2)的系统矩阵s和位移响应v采用基于Lanczos双A-正交的QRM算法求解:
首先给定f0,f0可以由最小二乘法得到,计算r0=v-Sf0,依次可求得r1=v-Sf1,r2=v-Sf2等,r0、r1、r2分别是残差第一步,第二步,第三步迭代产生的残差。令β=||r0||2,令ε1=r0/β,选取使得标准内积(ω1,Sε1)=1,通过如下迭代产生向量εj和ωj,以及标量δj,βj,j=1,2,…,b
δj+1εj+1=Sεj-βjεj-1-αjεj
βj+1ωj+1=STωj=δjωj-1=αjωi (4)
其中αj=<ωj,S(Sεj)>,
迭代b步后,得到
Eb=[ε1,ε2,...,εb]
其中α1,α2,…,αb以及β1,β2,…,βb均为负值,而δ1,δ2,…,δb均为正值;
对Tb进行一系列的Givens变换Ωb,Ωb-1,...,Ω1,得到
(ΩbΩb-1...Ω1)Tb=Rb,b (6)
计算可得多轴移动荷载fb为
其中gb=ΩbΩb-1...Ω1β1。
2.如权利要求1所述的基于QMR算法的桥面多轴移动荷载的识别方法,其特征在于:所述的步骤3)中对方程(1)求解的具体步骤如下所述:
基于模态叠加原理,假设桥梁的第n阶模态振型函数为则方程(1)的解表示为:
矩阵形式为:
这里n为模态数,qn(t)(n=1,2…∞)是第n阶模态位移,将方程(12)代入方程(1),并在[0,L]内对x进行积分,利用边界条件和狄拉克函数特性,车桥系统振动微分方程用qn(t)表示为:
这里为qn(t)的二阶导数,、为qn(t)的一阶导数, 分别为圆频率、粘性阻尼比和桥面移动车辆荷载模态表达式;
如车辆共有k个车轴,且第k个车轴到第一个车轴的距离为则方程(14)写为:
则对应m个测点处的模态位移可通过方程(13)表示为:
桥梁上x1,x2,…xm处的速度通过位移的一次微分求得:
进一步,桥梁上x1,x2,…xm处的加速度通过位移的二次微分求得:
类似地,梁上x1,x2,…xm处的弯矩可利用关系式求得:
若f1,f2,…,fk为已知k轴车辆各轴对应荷载,忽略阻尼的影响,则方程(1)的解可表示为:
其中
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710061164.9A CN106840336A (zh) | 2017-01-25 | 2017-01-25 | 基于qmr算法的桥面多轴移动荷载的识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710061164.9A CN106840336A (zh) | 2017-01-25 | 2017-01-25 | 基于qmr算法的桥面多轴移动荷载的识别方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106840336A true CN106840336A (zh) | 2017-06-13 |
Family
ID=59121471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710061164.9A Pending CN106840336A (zh) | 2017-01-25 | 2017-01-25 | 基于qmr算法的桥面多轴移动荷载的识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106840336A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108520099A (zh) * | 2018-03-12 | 2018-09-11 | 榆林学院 | 一种坡道上货车所受动力载荷的测量方法 |
CN109063338A (zh) * | 2018-08-03 | 2018-12-21 | 华北水利水电大学 | 基于完全正交化算法识别预应力桥梁现存预应力的方法 |
CN109948254A (zh) * | 2019-03-21 | 2019-06-28 | 华东交通大学 | 一种在移动荷载激励下桥梁位移极值响应分析方法 |
CN115574906A (zh) * | 2022-10-12 | 2023-01-06 | 湖南科技大学 | 一种基于迭代加权最小二乘的桥梁动态称重算法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100873744B1 (ko) * | 2008-07-03 | 2008-12-18 | 에이치앤티코리아(주) | 강재교량용 이동식 안전진단 장치 |
CN104090977A (zh) * | 2014-07-22 | 2014-10-08 | 东南大学 | 一种桥面移动车辆载荷的随机识别方法 |
CN104615888A (zh) * | 2015-02-06 | 2015-05-13 | 华北水利水电大学 | 一种基于广义最小残差方法的桥梁移动车辆荷载识别方法 |
US9417154B2 (en) * | 2014-05-20 | 2016-08-16 | Trimble Navigation Limited | Monitoring a response of a bridge based on a position of a vehicle crossing the bridge |
-
2017
- 2017-01-25 CN CN201710061164.9A patent/CN106840336A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100873744B1 (ko) * | 2008-07-03 | 2008-12-18 | 에이치앤티코리아(주) | 강재교량용 이동식 안전진단 장치 |
US9417154B2 (en) * | 2014-05-20 | 2016-08-16 | Trimble Navigation Limited | Monitoring a response of a bridge based on a position of a vehicle crossing the bridge |
CN104090977A (zh) * | 2014-07-22 | 2014-10-08 | 东南大学 | 一种桥面移动车辆载荷的随机识别方法 |
CN104615888A (zh) * | 2015-02-06 | 2015-05-13 | 华北水利水电大学 | 一种基于广义最小残差方法的桥梁移动车辆荷载识别方法 |
Non-Patent Citations (2)
Title |
---|
T.H.T.CHAN 等: "《AN INTERPRETIVE METHOD FOR MOVING FORCE IDENTIFICATION》", 《JOURNAL OF SOUND AND VIBRATION》 * |
张晋 等: "《基于 Lanczos双A - 正交的一种修正的QMR算法》", 《数学杂志》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108520099A (zh) * | 2018-03-12 | 2018-09-11 | 榆林学院 | 一种坡道上货车所受动力载荷的测量方法 |
CN109063338A (zh) * | 2018-08-03 | 2018-12-21 | 华北水利水电大学 | 基于完全正交化算法识别预应力桥梁现存预应力的方法 |
CN109063338B (zh) * | 2018-08-03 | 2023-06-09 | 华北水利水电大学 | 基于完全正交化算法识别预应力桥梁现存预应力的方法 |
CN109948254A (zh) * | 2019-03-21 | 2019-06-28 | 华东交通大学 | 一种在移动荷载激励下桥梁位移极值响应分析方法 |
CN109948254B (zh) * | 2019-03-21 | 2022-11-25 | 华东交通大学 | 一种在移动荷载激励下桥梁位移极值响应分析方法 |
CN115574906A (zh) * | 2022-10-12 | 2023-01-06 | 湖南科技大学 | 一种基于迭代加权最小二乘的桥梁动态称重算法 |
CN115574906B (zh) * | 2022-10-12 | 2023-09-26 | 湖南科技大学 | 一种基于迭代加权最小二乘的桥梁动态称重算法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106840336A (zh) | 基于qmr算法的桥面多轴移动荷载的识别方法 | |
CN104077459B (zh) | 一种基于悬架kc特性的汽车底盘操稳性能分析模型建立方法 | |
CN104615888B (zh) | 一种基于广义最小残差方法的桥梁移动车辆荷载识别方法 | |
CN106908128A (zh) | 基于Landweber迭代法的桥面多轴移动荷载的识别方法 | |
CN105946858A (zh) | 基于遗传算法的四驱电动汽车状态观测器参数优化方法 | |
CN103162905B (zh) | 一种车辆质心高度测量方法 | |
CN105069261B (zh) | 低速轨道车辆二系横向减振器最优阻尼系数的设计方法 | |
CN111976731B (zh) | 基于车辆频域响应的路面不平度识别方法 | |
CN106768234A (zh) | 基于经典行作用法的桥面多轴移动荷载的识别方法 | |
Zhu et al. | Influence of implement's mass on vibration characteristics of tractor-implement system | |
Li et al. | Effects of parameters on dynamic responses for a heavy vehicle-pavement-foundation coupled system | |
CN106844982A (zh) | 基于求解最大熵的桥面多轴移动荷载的识别方法 | |
CN106595932A (zh) | 基于截断完全最小二乘法的桥面多轴移动荷载的识别方法 | |
CN112798089B (zh) | 一种车辆的动态称重方法及动态称重装置 | |
CN106909776A (zh) | 基于主元加权迭代法的桥面多轴移动荷载的识别方法 | |
CN106874584A (zh) | 基于成分平均迭代算法的桥面多轴移动荷载的识别方法 | |
CN106679780A (zh) | 基于Cimmino算法的桥面多轴移动荷载的识别方法 | |
CN201784417U (zh) | 汽车车轮测力装置 | |
CN113449378B (zh) | 一种基于车辆悬架变形量的横向载荷转移率计算方法 | |
CN103364140A (zh) | 一种无需起吊的汽车总成转动惯量动态逆向测试方法 | |
Pan et al. | Lightweight design of an electric tricycle frame considering dynamic stress in driving conditions | |
Shu-Yi et al. | Research of chassis torsional stiffness on vehicle handling performence | |
CN106874583A (zh) | 基于对角松弛正交投影迭代算法的桥面多轴移动荷载的识别方法 | |
CN106909777A (zh) | 基于广义共轭残量法的桥面多轴移动荷载的识别方法 | |
CN104122022B (zh) | 车辆轮轴动荷载测量仪及测评方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170613 |
|
RJ01 | Rejection of invention patent application after publication |