CN106830978B - 一种高纯度的多孔钛硅碳陶瓷制备方法 - Google Patents

一种高纯度的多孔钛硅碳陶瓷制备方法 Download PDF

Info

Publication number
CN106830978B
CN106830978B CN201710039810.1A CN201710039810A CN106830978B CN 106830978 B CN106830978 B CN 106830978B CN 201710039810 A CN201710039810 A CN 201710039810A CN 106830978 B CN106830978 B CN 106830978B
Authority
CN
China
Prior art keywords
speed
silicon carbon
powder
titanium silicon
porous titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710039810.1A
Other languages
English (en)
Other versions
CN106830978A (zh
Inventor
倪东恵
周超兰
李烈军
鲁艳军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710039810.1A priority Critical patent/CN106830978B/zh
Publication of CN106830978A publication Critical patent/CN106830978A/zh
Application granted granted Critical
Publication of CN106830978B publication Critical patent/CN106830978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高纯度的多孔钛硅碳陶瓷制备方法,包括步骤:1)将钛硅碳粉末与一定粒径的碳酸氢铵颗粒分别按照9:1~6:4的质量比在混粉机中混合6~12h;2)将干燥的混合粉末倒入钢模中,用100~1000MPa压力压制成生坯;3)将生坯置于管式炉中,通以保护气氛氩气,以1~30℃/min的速度逐步升温至1200℃,保温1~5 h后随炉冷却得到高纯多孔钛硅碳陶瓷。本发明提供的制备方法工艺简单,成本低,对制备设备限制较少,利于工业化生产。

Description

一种高纯度的多孔钛硅碳陶瓷制备方法
技术领域
本发明涉及多孔陶瓷的制备领域,具体涉及一种成分稳定、高纯度的多孔钛硅碳陶瓷制备方法。
背景技术
钛硅碳(Ti3SiC2)是一种兼具了陶瓷和金属材料特点的三元碳化物陶瓷。因其具有质轻、热稳定性和化学稳定性好、优良机械加工性等优点,钛硅碳陶瓷被认为具备应用于生物医用材料的潜质。大多数医用移植材料对材料本身孔隙率的可调节性要求比较高,因为可以通过调节材料的孔隙率对医用材料力学性能进行改变,从而实现医用性植入材料与人体自身骨骼的匹配性。
但是到目前为止,关于多钛硅碳的制备方面的报道尚不多,采用不完全烧结法和热等静压法合成出多孔钛硅碳,孔隙率范围为0~55%。该方法的造孔原理是通过烧结过程中Si元素的挥发以及粉末烧结收缩产生的孔洞。利用元素粉可在不同温度下烧结制备出多孔钛硅碳,并发现不同温度下烧结制备的多孔钛硅碳孔隙率不同,但是其在低于1350℃下烧结出的多孔钛硅碳纯度较低,因此上述方法均无法制备出纯度较高且孔隙率和孔结构可控制的多孔钛硅碳。
发明内容
本发明旨在解决的技术问题包括:无压烧结工艺对生产设备要求低,生产成本低廉,产品成分稳定,多孔陶瓷的孔隙率及孔形貌可控性强。
本发明可通过如下技术方案实现:
一种高纯度的多孔钛硅碳陶瓷制备方法,包括步骤:
1)将钛硅碳粉末与一定粒径的碳酸氢铵(NH4HCO3)颗粒分别按照9:1~6:4的质量比在混粉机中混合6~12h;
2)将干燥的混合粉末倒入钢模中,用100~1000MPa压力压制成生坯;
3)将生坯置于管式炉中,通以保护气氛氩气,以1~30℃/min的速度逐步升温至1200℃,保温1~5h后随炉冷却得到高纯多孔钛硅碳陶瓷。
进一步地,步骤1)中所述的碳酸氢铵颗粒的粒径为1~500微米。
进一步地,步骤3)中,所述的以1~30℃/min的速度逐步升温至1200℃,保温1~5 h后随炉冷却的过程具体包括步骤:
31)以1~30℃/min的速度升温至200℃,保温10~60 min以去除碳酸氢铵颗粒;
32)再以1~30℃/min的速度升温到800℃;
33)最后以1~30℃/min的速度升温至1200℃,保温1~5h后随炉冷却。
本发明将钛硅碳粉末与碳酸氢铵(NH4HCO3)造孔剂混合后压制成坯,将生坯在氩气氛的保护下无压烧结制备出孔结构可控的高纯多孔钛硅碳陶瓷。所制备的多孔钛硅碳陶瓷与烧结前成分几乎相同,多孔钛硅碳陶瓷的纯度取决于原料钛硅碳陶瓷粉本身的纯度,该制备方法易于控制多孔陶瓷的纯度。
本发明与现有技术相比具有如下优点:
(1)造孔剂成本低廉、去除容易,在烧结过程中可以直接去除,简化制备步骤。
(2)生产设备简单,烧结工艺简单。
(3)对烧结原料条件限制少,烧结前后产品成分稳定,利于产品的批量化生产。
附图说明
图1为烧结前后的钛硅碳的XRD分析图谱。
图2为碳酸氢铵含量对多孔钛硅碳的孔隙率的影响示意图。
具体实施方式
为更好理解本发明,下面结合附图和实施例对本发明做进一步的说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
实施例1
一种高纯度的多孔钛硅碳陶瓷制备方法,包括步骤:
1)将钛硅碳粉末与经研磨并过筛的粒径为1微米的碳酸氢铵粉末按照9:1的质量比在V型混粉机中混合12h;
2)将混合粉末倒入钢模中,在CMT5105电子万能试验机上用300MPa压力压制成直径约为20mm,高约为5mm的生坯;
3)将生坯置于管式炉中,用氩气作为保护气氛,以5℃/min的速度升温至200℃,保温40min以去除碳酸氢铵造孔剂,再以5℃/min的速度升温到800℃,最后以2℃/min的速度升温至1200℃,保温2h后随炉冷却,所制备出的多孔钛硅碳陶瓷的孔隙率为39.1%,见图2所示。
实施例2
一种高纯度的多孔钛硅碳陶瓷制备方法,包括步骤:
1)将钛硅碳粉末与经研磨并过筛的粒径为50微米的碳酸氢铵粉末按照8:2的质量比在V型混粉机中混合10h;
2)将混合粉末倒入钢模中,在CMT5105电子万能试验机上用600MPa压力压制成直径约为20mm,高约为5mm的生坯;
3)将生坯置于管式炉中,用氩气作为保护气氛,以5℃/min的速度升温至200℃,保温40min以去除碳酸氢铵造孔剂,再以5℃/min的速度升温到800℃,最后以2℃/min的速度升温至1200℃,保温2h后随炉冷却,所制备出的多孔钛硅碳陶瓷的孔隙率为48.5%。
实施例3
一种高纯度的多孔钛硅碳陶瓷制备方法,包括步骤:
1)将钛硅碳粉末与经研磨并过筛的粒径为75微米的碳酸氢铵粉末按照7:3的质量比在V型混粉机中混合6h;
2)将混合粉末倒入钢模中,在CMT5105电子万能试验机上用1000MPa压力压制成直径约为20mm,高约为5mm的生坯;
3)将生坯置于管式炉中,用氩气作为保护气氛,以5℃/min的速度升温至200℃,保温40min以去除碳酸氢铵造孔剂,再以5℃/min的速度升温到800℃,最后以2℃/min的速度升温至1200℃,保温2h后随炉冷却,所制备出的多孔钛硅碳陶瓷的孔隙率为59.2%。
图1为烧结前后的钛硅碳的XRD分析图谱。如图所示,烧结后多孔钛硅碳块体的XRD图谱与烧结前的钛硅碳粉末的XRD图谱基本一致,未出现新的杂质峰。图2为碳酸氢铵含量对上述实施例1-3所制备出的多孔钛硅碳的孔隙率的影响。
实施例4
一种高纯度的多孔钛硅碳陶瓷制备方法,包括步骤:
1)将钛硅碳粉末与经研磨并过筛的粒径为130微米的碳酸氢铵粉末按照7:3的质量比在V型混粉机中混合6h;
2)将混合粉末倒入钢模中,在CMT5105电子万能试验机上用800MPa压力压制成直径约为20mm,高约为5mm的生坯;
3)将生坯置于管式炉中,用氩气作为保护气氛,以5℃/min的速度升温至200℃,保温40min以去除碳酸氢铵造孔剂,再以5℃/min的速度升温到800℃,最后以2℃/min的速度升温至1200℃,保温2h后随炉冷却,所制备出的多孔钛硅碳陶瓷的孔隙率为62.1%。
实施例5
一种高纯度的多孔钛硅碳陶瓷制备方法,包括步骤:
1)将钛硅碳粉末与经研磨并过筛的粒径为150微米的碳酸氢铵粉末按照9:1的质量比在V型混粉机中混合6h;
2)将混合粉末倒入钢模中,在CMT5105电子万能试验机上用100MPa压力压制成直径约为20mm,高约为5mm的生坯;
3)将生坯置于管式炉中,用氩气作为保护气氛,以1℃/min的速度升温至200℃,保温40min以去除碳酸氢铵造孔剂,再以1℃/min的速度升温到800℃,最后以1℃/min的速度升温至1200℃,保温5h后随炉冷却,所制备出的多孔钛硅碳陶瓷的孔隙率为53.8%。
实施例6
一种高纯度的多孔钛硅碳陶瓷制备方法,包括步骤:
1)将钛硅碳粉末,与经研磨并过筛的粒径为500微米的碳酸氢铵粉末按照6:4的质量比在V型混粉机中混合12h;
2)将混合粉末倒入钢模中,在CMT5105电子万能试验机上用1000MPa压力压制成直径约为20mm,高约为5mm的生坯;
3)将生坯置于管式炉中,用氩气作为保护气氛,以30℃/min的速度升温至200℃,保温40min以去除碳酸氢铵造孔剂,再以30℃/min的速度升温到800℃,最后以30℃/min的速度升温至1200℃,保温1h后随炉冷却,所制备出的多孔钛硅碳陶瓷的孔隙率为63.2%。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (1)

1.一种高纯度的多孔钛硅碳陶瓷制备方法,其特征在于,包括步骤:
1)将钛硅碳粉末与一定粒径的碳酸氢铵颗粒分别按照9:1~6:4的质量比在混粉机中混合6~12h;所述的碳酸氢铵颗粒的粒径为1~500微米;
2)将干燥的混合粉末倒入钢模中,用100~1000MPa压力压制成生坯;
3)将生坯置于管式炉中,通以保护气氛氩气,以1~30℃/min的速度逐步升温至1200℃,保温1~5h后随炉冷却得到高纯多孔钛硅碳陶瓷;所述的以1~30℃/min的速度逐步升温至1200℃,保温1~5h后随炉冷却的过程具体包括步骤:
1)以1~30℃/min的速度升温至200℃,保温1~5 h以去除碳酸氢铵颗粒;
2)再以1~30℃/min的速度升温到800℃;
3)最后以1~30℃/min的速度升温至1200℃,保温1~5 h后随炉冷却。
CN201710039810.1A 2017-01-20 2017-01-20 一种高纯度的多孔钛硅碳陶瓷制备方法 Active CN106830978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710039810.1A CN106830978B (zh) 2017-01-20 2017-01-20 一种高纯度的多孔钛硅碳陶瓷制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710039810.1A CN106830978B (zh) 2017-01-20 2017-01-20 一种高纯度的多孔钛硅碳陶瓷制备方法

Publications (2)

Publication Number Publication Date
CN106830978A CN106830978A (zh) 2017-06-13
CN106830978B true CN106830978B (zh) 2020-02-18

Family

ID=59123908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710039810.1A Active CN106830978B (zh) 2017-01-20 2017-01-20 一种高纯度的多孔钛硅碳陶瓷制备方法

Country Status (1)

Country Link
CN (1) CN106830978B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461989B1 (en) * 1999-12-22 2002-10-08 Drexel University Process for forming 312 phase materials and process for sintering the same
CN101747075A (zh) * 2008-12-10 2010-06-23 中国科学院金属研究所 多孔导电max相陶瓷及其制备方法和用途
CN105801121A (zh) * 2016-03-15 2016-07-27 中南大学 一种三元化合物基柔性多孔陶瓷复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2417441B1 (en) * 2009-04-06 2018-05-30 Sensic Ab Gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461989B1 (en) * 1999-12-22 2002-10-08 Drexel University Process for forming 312 phase materials and process for sintering the same
CN101747075A (zh) * 2008-12-10 2010-06-23 中国科学院金属研究所 多孔导电max相陶瓷及其制备方法和用途
CN105801121A (zh) * 2016-03-15 2016-07-27 中南大学 一种三元化合物基柔性多孔陶瓷复合材料的制备方法

Also Published As

Publication number Publication date
CN106830978A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN110002879B (zh) 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
KR101160140B1 (ko) 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN109400123B (zh) 一种细晶氧化铝陶瓷及其制备方法和应用
CN109305816B (zh) 一种常压烧结制备高热导率氮化硅陶瓷的方法
CN110655407A (zh) 一种电阻可控碳化硅陶瓷的制备方法
CN108838404B (zh) 钛合金低成本近净成形方法
WO2012153645A1 (ja) 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法
CN105294108A (zh) 低成本常压烧结碳化硅陶瓷的制备方法
KR100468299B1 (ko) 산화물 분산강화형 백금재료의 제조방법
CN108610055A (zh) 一种低温液相烧结制备致密氮化硅陶瓷的方法
CN103922743A (zh) 具有球形微孔的碳化硅密封环及其制备方法
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
CN109454231B (zh) 一种铁铝铜合金微孔过滤材料的制备方法
CN106834778A (zh) 硬质合金以及制备方法
CN104072139A (zh) 金属钛碳化物陶瓷的制备方法
CN106830978B (zh) 一种高纯度的多孔钛硅碳陶瓷制备方法
EP2559677A2 (de) Keramikkörper und Verfahren zu dessen Herstellung
Yang et al. Suppression of abnormal grain growth in WC–Co via pre-sintering treatment
CN108892528B (zh) 一种多孔氮化硅陶瓷材料及其制备方法
CN108546131B (zh) 氮化硅多孔陶瓷的制备方法
CN110983142A (zh) 一种碳化钨-镍硬质合金的制备方法
CN105254322A (zh) 一种晶界含有金属相定向多孔SiC陶瓷的制备方法
CN112939606B (zh) 一种多孔碳化硅陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant