CN106799222B - 一种二氧化钛/铌酸锡复合纳米材料的制备方法 - Google Patents

一种二氧化钛/铌酸锡复合纳米材料的制备方法 Download PDF

Info

Publication number
CN106799222B
CN106799222B CN201710070759.0A CN201710070759A CN106799222B CN 106799222 B CN106799222 B CN 106799222B CN 201710070759 A CN201710070759 A CN 201710070759A CN 106799222 B CN106799222 B CN 106799222B
Authority
CN
China
Prior art keywords
snnb
tio
preparation
titanium dioxide
nano materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710070759.0A
Other languages
English (en)
Other versions
CN106799222A (zh
Inventor
陈敏
金�雨
姜德立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Hongxing Xichen Environmental Protection Technology Co ltd
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710070759.0A priority Critical patent/CN106799222B/zh
Publication of CN106799222A publication Critical patent/CN106799222A/zh
Application granted granted Critical
Publication of CN106799222B publication Critical patent/CN106799222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种二氧化钛/铌酸锡复合纳米材料的制备方法,属于材料制备和光催化的技术领域。称取SnNb2O6纳米片溶于无水乙醇中,超声分散,再加入钛酸四丁酯(TBT)、去离子水,磁力搅拌,将溶液转移至内衬为聚四氟乙烯的反应釜中,将反应釜放入烘箱中,水热反应,待自然冷却至室温后,离心出浅黄色颗粒,水洗和醇洗后离心,烘干得到所述TiO2/SnNb2O6复合材料。本发明制备TiO2/SNO复合材料的反应工艺简单,所得产品光催化活性好,稳定性高,生产过程绿色环保。

Description

一种二氧化钛/铌酸锡复合纳米材料的制备方法
技术领域
本发明涉及一种二氧化钛/铌酸锡复合纳米材料的制备方法,属于材料制备和光催化的技术领域。
技术背景
近年来,由于光驱动半导体光催化材料在有机污染物降解、光解水、太阳能转化和环境进化等普遍应用,寻找和优化高效光催化剂已经引起人们极大的兴趣。到目前为止,大量半导体光催化材料如二氧化钛(TiO2)、硫化铬(CdS)、氧化锌(ZnO)、氧化钨(WO3)已经成功制备,并且被验证具有光催化活性。在众多半导体中,TiO2无毒、廉价、结构稳定,具有优良的光催化性能,是近年研究较多的半导体光催化剂之一。但是由于其禁带较宽(3.2eV),仅能在紫外光区响应,而波长小于380nm的紫外光对应的能量仅占整个太阳能光谱波长范围总能量的3.39%,因此,TiO2能量利用率低;另外,TiO2光生电子-空穴容易复合,光催化效率有待提高。由此许多修饰TiO2半导体催化剂的方法相继产生,改性研究主要有金属/非金属元素掺杂、贵金属沉积、光敏化、结构调控及与其他半导体复合等,其中与其他半导体光催化材料复合构建异质结是最简单高效的方法,能有效的促进光生电子和空穴的分离,抑制光生电子与空穴的复合,提高光电转化的效率,扩展TiO2的吸收范围,从而提高光催化效率。
铌酸锡(SnNb2O6)作为典型的层状铌酸盐半导体材料,由于其独特的晶体结构和合适的能带结构在光催化分解水制氢和光降解有机污染物领域受到广泛关注。Wu以Nb2O5·nH2O为前驱体,通过微波辅助水热法制得SnNb2O6纳米片,有效的提高在可见光下降解RhB的效率。Chao Zhou等通过更为简便的水热法制备出厚度为3nm的超薄纳米片,与传统固相反应所制备的SnNb2O6颗粒相比,这种超薄纳米片具有极佳的降解和制氢效率。Lan Yuan等通过一个简单的表面电荷修饰的自组装方法合成二维SnNb2O6/石墨烯(GR)纳米复合材料,提高光生载流子有效的分离和转移,与单纯的SnNb2O6、GR相比,光催化活性大大提升。实验证明由于SnNb2O6具有优异的光催化性能,是光催化研究领域值得深入探索和研究的方向之一。
迄今为止,尚未发现有人采用水热法制备TiO2/SnNb2O6复合材料,所用的SNO化学和物理性质稳定,原材料廉价易得,无毒,且以其为载体制备TiO2/SNO复合材料的反应工艺简单,所得产品光催化活性好,稳定性高,生产过程绿色环保。
发明内容
本发明目的是提供一种新的在室温条件下,以简单易行的水热沉淀法合成TiO2/SnNb2O6复合材料的方法。
本发明通过以下步骤实现:
(1)制备铌酸锡(SnNb2O6)纳米片:称取五氧化二铌,氢氧化钾于内衬为聚四氟乙烯的反应釜中,向其中加入去离子水,然后将反应釜放入烘箱中,第一次水热反应;待自然冷却至室温后,得到澄清前驱体溶液,用稀盐酸调节溶液pH值,再加入二水合氯化亚锡,再次用稀盐酸调节pH值,将溶液转移至内衬为聚四氟乙烯的反应釜中,将反应釜放入烘箱中,第二次水热反应,待自然冷却至室温后,离心出黄色颗粒,水洗和醇洗数次,离心,烘干;具体可参考Z.Y.Zhang,D.L.Jiang,D.Li,M.He,M.Chen,Appl.Catal.B:Environ.183(2016)113-123。
所述第一次水热反应的温度为180℃,反应时间为48h。
所述稀盐酸溶液的浓度为2mol·L-1
所述第二次水热反应的温度为200℃,反应时间为48h。
(2)称取SnNb2O6纳米片溶于无水乙醇中,超声分散,再加入钛酸四丁酯(TBT)、去离子水,磁力搅拌,将溶液转移至内衬为聚四氟乙烯的反应釜中,将反应釜放入烘箱中,水热反应,待自然冷却至室温后,离心出浅黄色颗粒,水洗和醇洗后离心,烘干得到所述TiO2/SnNb2O6复合材料;颗粒状的TiO2分散在SNO纳米片上。
所述超声分散指采用功率为250W的超声机超声30-60min。
所述磁力搅拌的时间为20min。
所述水热反应的温度为180℃,反应时间为12h。
所述烘干指于真空烘箱中60℃真空干燥12h。
所述无水乙醇、钛酸四丁酯和去离子水的体积比为:400:2:1。
所述TiO2/SnNb2O6复合材料中TiO2与SnNb2O6的质量比为0.1-0.5:1;优选0.2:1。
利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、对产物进行形貌结构分析,以罗丹明B(RhB)溶液为目标染料进行光催化降解实验,通过紫外-可见分光光度计测量吸光度,以评估其光催化活性。
附图说明
图1为所制备单纯TiO2、SnNb2O6、TiO2/SnNb2O6复合材料的XRD衍射谱图;从图中可以看出不同质量比的TiO2/SnNb2O6的XRD图谱主要由TiO2和SnNb2O6的衍射峰构成,且随着TiO2质量分数的增加,TiO2的衍射峰越来越明显。
图2为所制备单纯TiO2、SnNb2O6、TiO2/SnNb2O6复合材料样品的透射电镜照片;图2a为单纯SnNb2O6透射电镜图;图2b为单纯TiO2透射电镜图;图2c-2g分别为10%-50%TiO2/SnNb2O6透射电镜图;图2h为20%TiO2/SnNb2O6高分辨透射电镜图;从图中可以看出超细TiO2颗粒(平均粒径为9.25nm)相对均匀的分散在SnNb2O6薄片表面。
图3为不同质量比的TiO2/SnNb2O6复合材料光催化降解RhB溶液的的时间-降解率关系图,从图中可以看出20%TiO2/SnNb2O6复合材料具有最高的光催化活性。
具体实施方式
实施例1 SnNb2O6纳米片的制备
SnNb2O6的制备采用的是水热反应的方法:称取0.5g五氧化二铌、2.2443g氢氧化钾于50mL内衬为聚四氟乙烯的反应釜中,向其中加入35mL去离子水,将反应釜放入烘箱,180℃水热反应48h,待自然冷却至室温后,得到澄清前驱体溶液,将溶液转移至50mL烧杯中,用浓度为2mol/L稀盐酸调节溶液pH至8,再加入0.4245g二水合氯化亚锡,磁力搅拌10min,再次用浓度为2mol/L稀盐酸调节溶液pH至2,将溶液转移至100mL内衬为聚四氟乙烯的反应釜中,放入烘箱,200℃水热反应48h,冷却至室温,离心得到黄色颗粒,水洗和醇洗各三次,离心,于真空烘箱中60℃真空干燥12h。
实施例2 10%TiO2/SnNb2O6复合材料的制备
TiO2/SnNb2O6复合材料的制备采用的是水热沉淀法:称取0.423g SnNb2O6粉末溶于40mL无水乙醇中,然后在功率为250W的超声机中超声60min,再加入0.2mL TBT、0.1mL去离子水,磁力搅拌20min,将溶液转移至100mL内衬为聚四氟乙烯的反应釜中,放入烘箱,180℃水热反应12h,冷却至室温,离心得到浅黄色颗粒,水洗和醇洗各三次,离心,于真空烘箱中60℃真空干燥12h,得到10%TiO2/SnNb2O6复合材料。
实施例3 20%TiO2/SnNb2O6复合材料的制备
TiO2/SnNb2O6复合材料的制备采用的是水热沉淀法:称取0.188g SnNb2O6粉末溶于40mL无水乙醇中,然后在功率为250W的超声机中超声60min,再加入0.2mL TBT、0.1mL去离子水,磁力搅拌20min,将溶液转移至100mL内衬为聚四氟乙烯的反应釜中,放入烘箱,180℃水热反应12h,冷却至室温,离心得到浅黄色颗粒,水洗和醇洗各三次,离心,于真空烘箱中60℃真空干燥12h,得到20%TiO2/SnNb2O6复合材料。
实施例4 30%TiO2/SnNb2O6复合材料的制备
TiO2/SnNb2O6复合材料的制备采用的是水热沉淀法:称取0.1095g SnNb2O6粉末溶于40mL无水乙醇中,然后在功率为250W的超声机中超声50min,再加入0.2mL TBT、0.1mL去离子水,磁力搅拌20min,将溶液转移至100mL内衬为聚四氟乙烯的反应釜中,放入烘箱,180℃水热反应12h,冷却至室温,离心得到浅黄色颗粒,水洗和醇洗各三次,离心,于真空烘箱中60℃真空干燥12h,得到30%TiO2/SnNb2O6复合材料。
实施例5 40%TiO2/SnNb2O6复合材料的制备
TiO2/SnNb2O6复合材料的制备采用的是水热沉淀法:称取0.0705g SnNb2O6粉末溶于40mL无水乙醇中,然后在功率为250W的超声机中超声40min,再加入0.2mL TBT、0.1mL去离子水,磁力搅拌20min,将溶液转移至100mL内衬为聚四氟乙烯的反应釜中,放入烘箱,180℃水热反应12h,冷却至室温,离心得到浅黄色颗粒,水洗和醇洗各三次,离心,于真空烘箱中60℃真空干燥12h,得到40%TiO2/SnNb2O6复合材料。
实施例6 50%TiO2/SnNb2O6复合材料的制备
TiO2/SnNb2O6复合材料的制备采用的是水热沉淀法:称取0.047g SnNb2O6粉末溶于40mL无水乙醇中,然后在功率为250W的超声机中超声30min,再加入0.2mL TBT、0.1mL去离子水,磁力搅拌20min,将溶液转移至100mL内衬为聚四氟乙烯的反应釜中,放入烘箱,180℃水热反应12h,冷却至室温,离心得到浅黄色颗粒,水洗和醇洗各三次,离心,于真空烘箱中60℃真空干燥12h,得到50%TiO2/SnNb2O6复合材料。
实施例7不同比例TiO2/SnNb2O6复合光催化剂的光催化活性实验
(1)配制浓度为10mg/L的RhB溶液,将配好的溶液置于暗处。
(2)称取不同质量比的TiO2/SnNb2O6复合材料0.05g,分别置于光催化反应器中,加入50mL步骤(1)所配好的目标降解液,磁力搅拌30min待TiO2/SnNb2O6复合材料分散均匀后,打开水源,光源,进行光催化降解实验。
(3)每30min吸取反应器中的光催化降解液,离心后用于紫外-可见吸光度的测量。
(4)由图3可见所制备的20%TiO2/SnNb2O6复合材料具有优异的光催化活性,尤其是20%TiO2/SnNb2O6的样品在催化反应90min后RhB溶液降解率达到100%。

Claims (8)

1.一种二氧化钛/铌酸锡复合纳米材料的制备方法,其特征在于:称取SnNb2O6纳米片溶于无水乙醇中,超声分散,再加入钛酸四丁酯、去离子水,磁力搅拌,将溶液转移至内衬为聚四氟乙烯的反应釜中,将反应釜放入烘箱中,水热反应,待自然冷却至室温后,离心出浅黄色颗粒,水洗和醇洗后离心,烘干得到所述TiO2/SnNb2O6复合材料;所述水热反应的温度为180℃,反应时间为12h。
2.如权利要求1所述的一种二氧化钛/铌酸锡复合纳米材料的制备方法,其特征在于:所述TiO2/SnNb2O6复合材料,颗粒状的TiO2分散在SNO纳米片上。
3.如权利要求1所述的一种二氧化钛/铌酸锡复合纳米材料的制备方法,其特征在于:所述超声分散指采用功率为250 W的超声机超声30-60min。
4.如权利要求1所述的一种二氧化钛/铌酸锡复合纳米材料的制备方法,其特征在于:所述磁力搅拌的时间为20min。
5.如权利要求1所述的一种二氧化钛/铌酸锡复合纳米材料的制备方法,其特征在于:所述烘干指于真空烘箱中60℃真空干燥12h。
6.如权利要求1所述的一种二氧化钛/铌酸锡复合纳米材料的制备方法,其特征在于:所述无水乙醇、钛酸四丁酯和去离子水的体积比为:400:2:1。
7.如权利要求1所述的一种二氧化钛/铌酸锡复合纳米材料的制备方法,其特征在于:所述TiO2/SnNb2O6复合材料中,TiO2与SnNb2O6的质量比为0.1-0.5:1。
8.如权利要求7所述的一种二氧化钛/铌酸锡复合纳米材料的制备方法,其特征在于:所述TiO2/SnNb2O6复合材料中,TiO2与SnNb2O6的质量比为0.2:1。
CN201710070759.0A 2017-02-09 2017-02-09 一种二氧化钛/铌酸锡复合纳米材料的制备方法 Active CN106799222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710070759.0A CN106799222B (zh) 2017-02-09 2017-02-09 一种二氧化钛/铌酸锡复合纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710070759.0A CN106799222B (zh) 2017-02-09 2017-02-09 一种二氧化钛/铌酸锡复合纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN106799222A CN106799222A (zh) 2017-06-06
CN106799222B true CN106799222B (zh) 2019-10-01

Family

ID=58988521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710070759.0A Active CN106799222B (zh) 2017-02-09 2017-02-09 一种二氧化钛/铌酸锡复合纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN106799222B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790142B (zh) * 2017-11-01 2019-09-13 福州大学 一种氢氧化钴/铌酸锡复合材料及其制备方法和应用
CN108435191B (zh) * 2018-04-26 2023-08-18 济南大学 一种SnNb2O6/CoFe-LDH片片复合磁性异质结构催化剂及其制备方法和应用
CN110368963B (zh) * 2019-08-14 2021-12-24 山东理工大学 一种Ti离子掺杂TaO2F纳米材料的制备方法
CN110624543A (zh) * 2019-10-06 2019-12-31 湖北工业大学 一种PtRu-SnNb2O6二维复合材料的制备方法
CN111437810B (zh) * 2020-04-13 2023-06-02 中国科学院山西煤炭化学研究所 一种锡铌共掺杂二氧化钛光催化剂及其制备方法和应用
CN113675388B (zh) * 2021-07-20 2022-06-28 苏州科技大学 一种氮掺杂碳包覆铌酸锡纳米材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095977A (ja) * 1998-09-22 2000-04-04 Toto Ltd 抗菌性光触媒性塗料および抗菌性光触媒性部材
CN103097284A (zh) * 2010-07-16 2013-05-08 特温特大学 光催化水分解

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095977A (ja) * 1998-09-22 2000-04-04 Toto Ltd 抗菌性光触媒性塗料および抗菌性光触媒性部材
CN103097284A (zh) * 2010-07-16 2013-05-08 特温特大学 光催化水分解

Also Published As

Publication number Publication date
CN106799222A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
CN106799222B (zh) 一种二氧化钛/铌酸锡复合纳米材料的制备方法
Zhu et al. New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation
Kumaresan et al. Synthesis, characterization, and photocatalytic activity of Sr2+ doped TiO2 nanoplates
Wang et al. Facile fabrication of highly efficient AgI/ZnO heterojunction and its application of methylene blue and rhodamine B solutions degradation under natural sunlight
Yu et al. Electrochemically assisted photocatalytic inactivation of Escherichia coli under visible light using a ZnIn2S4 film electrode
Feng et al. Postillumination activity in a single-phase photocatalyst of Mo-doped TiO2 nanotube array from its photocatalytic “memory”
Yan et al. Hydrothermal synthesis of CdS/CoWO4 heterojunctions with enhanced visible light properties toward organic pollutants degradation
Haghighatzadeh et al. Improved photocatalytic activity of ZnO-TiO2 nanocomposite catalysts by modulating TiO2 thickness
CN106902810A (zh) 碳量子点修饰的单层钨酸铋纳米片复合光催化剂及其制备方法和应用
CN106881079B (zh) 一种二维氧化钨/铌酸锡纳米片-片复合材料的制备方法
Umer et al. Synergistic effects of single/multi-walls carbon nanotubes in TiO2 and process optimization using response surface methodology for photo-catalytic H2 evolution
CN104646037A (zh) BiOXs光催化剂、石墨烯复合的BiOXs光催化剂、及其制备方法
CN110639620A (zh) 用于降解四环素的复合光催化剂及其制备方法和应用
CN106466604A (zh) 一种Cu2O/TiO2复合光催化材料及其制备方法
CN102600865B (zh) 用于降解有机染料废水污染物的光催化剂及其制备方法
Bashiri et al. Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell
CN106238072A (zh) 硫化钴光催化剂及其制备方法和应用
CN104525167A (zh) 一种二氧化钛纳米管及其制备方法
CN106423223B (zh) 一种饼状多孔结构MoSe2@TiO2光催化剂及其制备方法
Zhu et al. Hydrothermal synthesis of CaFe2O4/α-Fe2O3 composite as photocatalyst and its photocatalytic activity
CN108940281B (zh) 一种新型纳米光催化材料Ag2MoO4-WO3异质结的制备方法
CN107138167A (zh) 一种特殊形貌的混合晶相异质结纳米硫化镉的制备方法
CN103846096A (zh) 一种银/溴化银/偏钒酸银等离子体复合光催化剂及其制备方法
CN103143379A (zh) 一步法制备氮掺杂二氧化钛反蛋白石薄膜光催化剂的方法
Liu et al. Construction of ternary hollow TiO2-ZnS@ ZnO heterostructure with enhanced visible-light photoactivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221107

Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230619

Address after: Room A205-86, Floor 2, Zone A, University Pioneer Park, 99 Daxue Road, Xuzhou Hi tech Industrial Development Zone, Jiangsu Province, 221000

Patentee after: Xuzhou Hongxing Xichen Environmental Protection Technology Co.,Ltd.

Address before: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.