CN106784886A - 一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂的应用 - Google Patents

一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂的应用 Download PDF

Info

Publication number
CN106784886A
CN106784886A CN201611076090.8A CN201611076090A CN106784886A CN 106784886 A CN106784886 A CN 106784886A CN 201611076090 A CN201611076090 A CN 201611076090A CN 106784886 A CN106784886 A CN 106784886A
Authority
CN
China
Prior art keywords
cobalt
catalyst
oxygen reduction
reduction reaction
molecular screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611076090.8A
Other languages
English (en)
Inventor
高建
苏昊文
李成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201611076090.8A priority Critical patent/CN106784886A/zh
Publication of CN106784886A publication Critical patent/CN106784886A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种钴基掺氮多孔分子筛的制备以及作为氧还原反应非金属催化剂的应用,传统分子筛多用作载体而本身并不具备催化功能,本发明则利用离子液体的含氮,并能与钴盐络合生成分子筛的特性,制备了钴基掺氮多孔分子筛,并测试了其氧还原催化活性,有望成为一种具有广泛应用前景的具备催化功能的分子筛。

Description

一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂 的应用
1.技术领域
一种掺氮多孔碳纳米片的制备以及作为氧还原反应非金属催化剂的应用。
2.背景技术
氮掺杂多孔炭材料,不仅具有多孔炭材料的较高的比表面积、丰富的孔结构、良好的稳定性及耐高温耐酸碱性等优点,同时氮原子的引入使材料表现出优异的导电性能及电子传输能力使得炭材料具有了一定的碱性及催化性能,是目前多相催化及材料领域的一个研究热点。(Yang Yong,Wang Yan,Lan Guojun,Li Jian,Li Ying Institute ofIndustrial Catalysis,Zhej iang University of Technology,Hangzhou 310014),金属-空气电池以及燃料电池被认为是一种具有较有潜力的替代电源。对于这两种电池,氧还原反应是一种重要的电极反应。在电池反应中都起到关键作用,但其反应难度较大,为克服降低反应活化能,促进电极反应,必须采用大量的贵金属催化剂,特别是Pt催化剂,以保证电池顺利工作。由于这类贵金属价格昂贵,储量稀少,导致这类电源成本较高,成为这类电源技术广泛应用的一大障碍。到目前为止,铂基催化剂仍然是催化氧还原反应中性能最好的催化剂。然而,铂价格昂贵,储量稀少,大量的使用铂基催化剂已经严重的影响了燃料电池的商业化,催化剂技术已经成为了燃料电池技术进一步发展的瓶颈。因此,发展低铂或非铂催化剂,是燃料电池可持续发展的必由之路。本发明表明,掺杂的碳基催化剂,特别是氮和(或)过渡金属掺杂的碳基催化剂具有优异的氧还原催化活性和高的稳定性。(ZhichaoTao~(1,2)Yong Yang~1 Chenghua Zhang~1 Tingzhen Li~(1,2)Mingyue Ding~(1,2)Hongwei Xiang~1 Yongwang Li~1 1.State Key Laboratory of Coal Conversion,Institute of Coal Chemistry,Chinese Academy of Sciences,Taiyuan 030001,Shanxi,China 2.Graduate University of Chinese Academy of Sciences,Beijing100039,China.Study of Manganese Promoter on a Precipitated Iron-BasedCatalyst for Fischer-Tropsch Synthesis[J].Journal of Natural GasChemistry.2007(03))。
自上世纪60年代开始研究非贵金属催化剂以来(Jasinski.A new fuel cellcathode catalyst.Nature 1964,201,1212),已经开发出多种可能的非贵金属催化剂,其中基于金属氧化物的掺氮碳材料成为最有希望的一种非贵金属催化剂,不过这类催化剂的性能还有待进一步提高。除了上述金属催化剂外,另外一类掺氮碳材料的无金属催化剂也受到广泛关注。这类催化剂的性能受到多种因素影响,其中催化剂前驱体、催化剂的微观结构等是影响催化剂性能的重要因素。
掺氮石墨烯在新能源材料领域的最新应用,特别是作为锂离子电池、锂空电池电极、超级电容器以及燃料电池氧还原催化剂等关键材料的应用。(Chen Xu He Daping MuShichun(State Key Laboratory of Advanced Technology for Materials Synthesisand Processing,Wuhan University of Technology,Wuhan 430070,China),但是这些碳材料不易制备,因此价格比较昂贵,开发出一种廉价易得且性能客观的碳材料作为氧还原的催化剂显得尤为重要。
离子液体作为一种新型的催化剂前驱体受到了广泛关注,聚离子液体是一类重要的离子液体,由于结合了离子液体和聚合物的优势,最近也被作为一种催化剂前驱体进行研究(Gao,Jian Ma,Na,Zhai,Junfeng,Li,Tianyan,Qin,Wei,Zhang,Tingting Yin,Zhen,Polymerizable Ionic Liquid as Nitrogen-Doping Precursor for Co-N-C Catalystwith Enhanced Oxygen Reduction Activity,Ind.Eng.Chem.Res,2015,54,7984)。不过已有的研究中聚离子液体基本用作含金属的催化剂。
本专利目的是提出一种功能化的聚离子液体的制备,并作为前驱体制备具有卷曲结构的非金属掺氮炭纳米片。测试明,这种方法制得的样品具有卷曲的微观形貌,不但其比表面得到提高,还具有较好的催化活性。不仅如此,实验还表明此催化剂还具有产氧的催化剂能力,使之成为一种可以催化氧还原和产氧两种反应的双功能催化剂。
3发明内容
本发明目的在于开发一种低成本、环境友好的碳材料,以用作非金属催化剂前驱体。
本发明通过以下方式实现。
一种造孔功能化的聚离子液体,它包括以下步骤:
步骤1.将烯基咪唑与某种酸反应,该酸可以只硝酸、硫酸、碳酸等具有加
热时产生气体的性质,制备聚离子液体单体;
步骤2.将上述固体在400~1200℃环境中、惰性气体保护下进行煅烧1~5h,冷却后获得碳化产物
步骤3.将上述产物研磨成粉末,获得最终产物。
4附图说明
图1为本专利的循环伏安图可见其起实电位可以达到VRHE,已经很接近常用的炭载铂(Pt/C)催化剂的起始电位(~1V)。
5具体实施方式
以下给出本发明的4个最佳实施例。
实施例一:
(1)在单口烧瓶中加入0.1mol乙烯基咪唑,随后加入0.1mol硝酸,常温搅拌2小时候,升温至50℃继续搅拌2h,得粘稠液体。
(2)在单口烧瓶中加入25m mol的硝酸钴和25m mol的2-甲基咪唑,随后加入15ml的甲醇溶液,二者混合均匀后室温下反应24h。
(3)将上述(1)液体与(2)固体取出,放入瓷舟中,将另一瓷舟盖在盛有样品的瓷舟上,在管式炉中煅烧,以N2为保护气,500℃煅烧一个小时后自然降温,得黑色蓬松固体。
(4)将上述固体研磨后,取25mg与50μL Nafion溶液和450μL乙醇溶液混合后超声震荡30分钟后制得催化剂浆液,取10μL浆液滴加到玻碳电极上,干燥1小时候进行电化学测试,主要有循环伏安、线性扫描等。
实施例二:
(1)在单口烧瓶中加入0.1mol乙烯基咪唑,随后加入0.1mol硝酸,常温搅拌2小时候,升温至50℃继续搅拌2h,得粘稠液体。
(2)在单口烧瓶中加入25m mol的硝酸钴和25m mol的2-甲基咪唑,随后加入15ml的甲醇溶液,二者混合均匀后室温下反应24h。
(3)将上述(1)液体与(2)固体取出,放入瓷舟中,将另一瓷舟盖在盛有样品的瓷舟上,在管式炉中煅烧,以N2为保护气,900℃煅烧一个小时后自然降温,得黑色蓬松固体。
(4)将上述固体研磨后,取25mg与50μL Nafion溶液和450μL乙醇溶液混合后超声震荡30分钟后制得催化剂浆液,取10μL浆液滴加到玻碳电极上,干燥1小时候进行电化学测试,主要有循环伏安、线性扫描等。
实施例三:
(1)在单口烧瓶中加入0.1mol乙烯基咪唑,随后加入0.1mol硫酸,常温搅拌2小时候,升温至50℃继续搅拌2h,得粘稠液体。
(2)在单口烧瓶中加入25m mol的硝酸钴和25m mol的2-甲基咪唑,随后加入15ml的甲醇溶液,二者混合均匀后室温磁力搅拌下反应24h。
(3)将上述(1)液体与(2)固体取出,放入瓷舟中,将另一瓷舟盖在盛有样品的瓷舟上,在管式炉中煅烧,以N2为保护气,500℃煅烧一个小时后自然降温,得黑色蓬松固体。
(4)将上述固体研磨后,取25mg与50μL Nafion溶液和450μL乙醇溶液混合后超声震荡30分钟后制得催化剂浆液,取10μL浆液滴加到玻碳电极上,干燥1小时候进行电化学测试,主要有循环伏安、线性扫描等。
实施例四:
(1)在单口烧瓶中加入0.1mol乙烯基咪唑,随后加入0.1mol硫酸,常温搅拌2小时候,升温至50℃继续搅拌2h,得粘稠液体。
(2)在单口烧瓶中加入25m mol的硝酸钴和25m mol的2-甲基咪唑,随后加入15ml的甲醇溶液,二者混合均匀后室温磁力搅拌下反应24h。
(3)将上述(1)液体与(2)固体取出,放入瓷舟中,将另一瓷舟盖在盛有样品的瓷舟上,在管式炉中煅烧,以N2为保护气,900℃煅烧一个小时后自然降温,得黑色蓬松固体。
(4)将上述固体研磨后,取25mg与50μL Nafion溶液和450μL乙醇溶液混合后超声震荡30分钟后制得催化剂浆液,取10μL浆液滴加到玻碳电极上,干燥1小时候进行电化学测试,主要有循环伏安、线性扫描等。

Claims (2)

1.一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂的应用
其特征在于:
阳离子为乙烯基咪唑和2-甲基基咪唑,阴离子采用了硝酸,硝酸功能化的聚离子液体,这种聚离子液体在煅烧过程中由于剧烈放出气体,从而可以获得掺氮的多空纳米碳片,掺氮多孔碳作为一种理想的电极材料,由于其高的比表面积、特殊的孔结构以及大的孔体积可用来制作超级电容器。在电化学、吸附、催化等领域都有着巨大的潜力。电化学测试表明这种产物具有比较高的氧还原催化剂性能。
2.如权利要求1所述,实验步骤如下:
步骤1.合成功能化的可聚合离子液体单体:
步骤2.将上述中间体氮气保护下在400~1200℃高温煅烧,获得最终产物。
CN201611076090.8A 2016-11-30 2016-11-30 一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂的应用 Pending CN106784886A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611076090.8A CN106784886A (zh) 2016-11-30 2016-11-30 一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611076090.8A CN106784886A (zh) 2016-11-30 2016-11-30 一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂的应用

Publications (1)

Publication Number Publication Date
CN106784886A true CN106784886A (zh) 2017-05-31

Family

ID=58900980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611076090.8A Pending CN106784886A (zh) 2016-11-30 2016-11-30 一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂的应用

Country Status (1)

Country Link
CN (1) CN106784886A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586649A (zh) * 2018-05-18 2018-09-28 中国工程物理研究院化工材料研究所 系列含能聚离子液体及其制备方法
CN112259750A (zh) * 2020-10-26 2021-01-22 河北工业大学 一种聚离子液体功能化的钴氮负载泡沫镍复合材料的制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624190A (zh) * 2013-11-12 2015-05-20 华中科技大学 一种钴基过渡金属氧还原催化剂及其制备方法和应用
CN105879895A (zh) * 2016-04-27 2016-08-24 天津工业大学 氮掺杂多孔碳纳米片负载非贵金属催化剂及其制备方法
CN106000438A (zh) * 2016-06-03 2016-10-12 兰州交通大学 一种氮磷共掺杂孔状碳材料的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624190A (zh) * 2013-11-12 2015-05-20 华中科技大学 一种钴基过渡金属氧还原催化剂及其制备方法和应用
CN105879895A (zh) * 2016-04-27 2016-08-24 天津工业大学 氮掺杂多孔碳纳米片负载非贵金属催化剂及其制备方法
CN106000438A (zh) * 2016-06-03 2016-10-12 兰州交通大学 一种氮磷共掺杂孔状碳材料的制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586649A (zh) * 2018-05-18 2018-09-28 中国工程物理研究院化工材料研究所 系列含能聚离子液体及其制备方法
CN112259750A (zh) * 2020-10-26 2021-01-22 河北工业大学 一种聚离子液体功能化的钴氮负载泡沫镍复合材料的制备方法和应用

Similar Documents

Publication Publication Date Title
Sun et al. Co single atoms and Co nanoparticle relay electrocatalyst for rechargeable zinc air batteries
Zhan et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media
CN106207204A (zh) 氮硫双掺杂碳材料双功能氧催化剂及其制备方法和应用
CN104773764B (zh) 一种三维花状钴酸镍纳米片介孔微球的制备方法
CN107346826A (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
Liu et al. Defect-rich (Co, Fe) 3O4 hierarchical nanosheet arrays for efficient oxygen evolution reaction
CN108155392B (zh) 一种还原氧化石墨烯负载Pd-M纳米复合催化剂的制备方法
Zhang et al. Urea electrooxidation-boosted hydrogen production on nitrogen-doped porous carbon nanorod-supported nickel phosphide nanoparticles
CN106252674A (zh) 一种氮掺杂炭载非贵金属氧还原/氧析出双功能催化剂
Shao et al. Oxygen vacancy-rich N-doped carbon encapsulated BiOCl-CNTs heterostructures as robust electrocatalyst synergistically promote oxygen reduction and Zn-air batteries
Chen et al. Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO 2 reduction with high efficiency
Cui et al. Microwave-assisted preparation of PtCu/C nanoalloys and their catalytic properties for oxygen reduction reaction
CN107138172A (zh) 一种电极催化材料的制备方法及其在葡萄糖燃料电池中的应用
Wang et al. A Highly Active Bifunctional Catalyst of Mn–Co–Fe–N/S@ CNT for Rechargeable Zinc-Air Batteries
Zhang et al. Efficiently catalyzed sea urchin-like mixed phase SmMn2O5/MnO2 for oxygen reduction reaction in zinc-air battery
CN106784886A (zh) 一种钴基掺氮多孔分子筛以及作为氧还原反应非金属催化剂的应用
Wang et al. Nonmacrocyclic Iron (II) Soluble Redox Mediators Leading to High-Rate Li–O2 Battery
CN111313042B (zh) 一种双功能氧化电催化剂及其制备方法
CN112321858A (zh) 一种宏量制备具有析氧性能MOFs纳米片的方法
Dai et al. Facile fabrication of self-supporting porous CuMoO 4@ Co 3 O 4 nanosheets as a bifunctional electrocatalyst for efficient overall water splitting
Jiang et al. A molten salt route to binder-free CeO2 on carbon cloth for high performance supercapacitors
Li et al. Strontium doped Fe-based porous carbon for highly efficient electrocatalytic ORR and MOR reactions
CN103400999B (zh) 用于直接甲醇燃料电池的阳极催化剂Pt/CeO2中空球-C的制备方法
Hu et al. CoMoO4 decorated on the surface of Co, N-doped carbon polyhedrons as the support of platinum with excellent electrocatalytic activity and durability
Niu et al. Engineering of heterointerface of ultrathin carbon nanosheet-supported CoN/MnO enhances oxygen electrocatalysis for rechargeable Zn–air batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531