CN106783976A - 一种GaN沟道MOS界面结构 - Google Patents

一种GaN沟道MOS界面结构 Download PDF

Info

Publication number
CN106783976A
CN106783976A CN201611141138.9A CN201611141138A CN106783976A CN 106783976 A CN106783976 A CN 106783976A CN 201611141138 A CN201611141138 A CN 201611141138A CN 106783976 A CN106783976 A CN 106783976A
Authority
CN
China
Prior art keywords
nanometers
layer
interfacial structure
gan channel
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611141138.9A
Other languages
English (en)
Inventor
刘丽蓉
王勇
丁超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Guangxin Intellectual Property Services Ltd
Dongguan South China Design and Innovation Institute
Original Assignee
Dongguan Guangxin Intellectual Property Services Ltd
Dongguan South China Design and Innovation Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Guangxin Intellectual Property Services Ltd, Dongguan South China Design and Innovation Institute filed Critical Dongguan Guangxin Intellectual Property Services Ltd
Priority to CN201611141138.9A priority Critical patent/CN106783976A/zh
Publication of CN106783976A publication Critical patent/CN106783976A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公布了一种GaN沟道MOS界面结构,其结构依次为:一P型掺杂的氮化镓沟道层,一在氮化镓沟道层上生长的AlON界面层;一在该AlON界面层上生长的HfAlON介质过渡层;一在该HfAlON介质过渡层上沉积的20纳米HfO2高介电常数栅介质层;以及在该HfO2高介电常数栅介质层上沉积的WSi栅金属层。

Description

一种GaN沟道MOS界面结构
技术领域
本发明涉及半导体集成电路制造技术领域,具体涉及一种GaN沟道MOS界面结构,应用于高性能、高功率、高击穿电压的第三代半导体MOS技术。
背景技术
氮化镓半导体材料相对硅、砷化镓和磷化铟半导体材料而言,被称为第三代半导体材料,它固有的高击穿场强和高场强下具有的高饱和漂移速度等优良特性决定了它将在未来的高频、高温、特大功率器件中居领先地位。GaN材料是一种宽禁带(3.49eV)半导体,它具有电子饱和漂移速度快(2.7×107cm/s)、临界击穿场强高(3.3MV/cm)、二维电子气密度高(15×1012cm‐2)、热导率高(>1.7W/cm.k)的特点。最新研究报道表明:在GaN‐HEMT器件栅槽表面制作栅介质,提高HEMT器件的栅极击穿电压,可以使得GaN‐MOSHEMT器件应用领域向大电压的电能电源领域不断拓展。然而,GaN表面生长高质量的栅介质一直以来都是一项具有挑战性的技术,通过技术研发,提高GaN‐MOS界面特性和介质特性成为必需,以满足高性能GaN MOS器件的技术要求。
发明内容
(一)要解决的技术问题
本发明的主要目的是提供一种氮化镓MOS器件界面结构,以实现以氮化镓为沟道材料的功率型MOSFET器件,与GaN功率型MOSFET器件要求的高源漏击穿电压、低沟道导通电阻和快速开关特性相匹配,满足高性能GaN‐MOS技术的要求。
(二)技术方案
为达到上述目的,本发明提供了一种GaN沟道MOS界面结构,其结构依次是:
一P型掺杂的氮化镓沟道层(101);
一在该氮化镓沟道层上生长的AlON界面层(102);
一在该AlON界面层上生长的HfAlON介质过渡层(103);
一在该HfAlON介质过渡层上沉积的20纳米HfO2高介电常数栅介质层(104);
以及在该HfO2高介电常数栅介质层上沉积的WSi栅金属层(105)。
根据上述方案,其特征在于P型掺杂的氮化镓沟道层的掺杂浓度为2×1017cm-3
根据上述方案,其特征在于AlON界面层的厚度为1-2纳米。
根据上述方案,其特征在于HfAlON介质过渡层厚度是3纳米。
根据上述方案,其特征在于20纳米后的HfO2高介电常数栅介质层是结晶的,并且通过500-600℃的高温退火过程。
根据上述方案,其特征在于WSi栅金属的厚度为100纳米。
(三)有益效果
从上述技术方案可以看出,本发明具有以下有益效果:
本发明提供的一种GaN沟道MOS界面结构,利用AlON界面层技术钝化界面处的悬挂键,实现低界面态密度,并降低沟道中载流子的散射,利用HfAlON介质过渡层实现界面层与介质层的良好过渡,采用HfO2作为介质,并通过高温结晶的方法,使得HfO2介质结晶,从而提高栅介质质量。所以发明这种GaN沟道MOS界面结构,以满足高性能GaN基高击穿电压MOS技术的要求。
附图说明
图1是本发明提供的GaN沟道MOS界面结构的示意图;
图2是本发明提供的GaN沟道MOS界面结构的实施例图;
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图2,对本发明进一步详细说明。
如图2所示,本实施例提供了一种GaN沟道MOS界面结构,其结构依次是:
一P型掺杂的氮化镓沟道层(201);
一在该氮化镓沟道层上生长的AlON界面层(202);
一在该AlON界面层上生长的HfAlON介质过渡层(203);
一在该HfAlON介质过渡层上沉积的20纳米HfO2高介电常数栅介质层(204);
以及在该HfO2高介电常数栅介质层上沉积的WSi栅金属层(205)。
在本实施例中,所述的P型掺杂的氮化镓沟道层的厚度为15纳米,该氮化镓沟道的掺杂浓度为2×1017cm-3
在本实施例中,所述的AlON界面层的厚度为2纳米。
在本实施例中,所述的HfAlON介质过渡层厚度是3纳米。
在本实施例中,所述的20纳米后的HfO2高介电常数栅介质层是结晶的,并且通过550℃的高温退火合金过程。
在本实施例中,所述的栅金属层的WSi厚度为100纳米,采用磁控溅射的方法在HfO2栅介质上形成。

Claims (6)

1.一种GaN沟道MOS界面结构,其结构依次是:
一P型掺杂的氮化镓沟道层(101);
一在该氮化镓沟道层上生长的AlON界面层(102);
一在该AlON界面层上生长的HfAlON介质过渡层(103);
一在该HfAlON介质过渡层上沉积的20纳米HfO2高介电常数栅介质层(104);
以及在该HfO2高介电常数栅介质层上沉积的WSi栅金属层(105)。
2.根据权利要求1所示的一种GaN沟道MOS界面结构,其特征在于:P型掺杂的氮化镓沟道层的掺杂浓度为2×1017cm-3
3.根据权利要求1所述的一种GaN沟道MOS界面结构,其特征在于:AlON界面层的厚度为1-2纳米。
4.根据权利要求1所述的一种GaN沟道MOS界面结构,其特征在于:HfAlON介质过渡层厚度是3纳米。
5.根据权利要求1所述的一种GaN沟道MOS界面结构,其特征在于:20纳米后的HfO2高介电常数栅介质层是结晶的,并且通过500-600℃的高温退火过程。
6.根据权利要求1所述的一种GaN沟道MOS界面结构,其特征在于:WSi栅金属的厚度为100纳米。
CN201611141138.9A 2016-12-12 2016-12-12 一种GaN沟道MOS界面结构 Pending CN106783976A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611141138.9A CN106783976A (zh) 2016-12-12 2016-12-12 一种GaN沟道MOS界面结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611141138.9A CN106783976A (zh) 2016-12-12 2016-12-12 一种GaN沟道MOS界面结构

Publications (1)

Publication Number Publication Date
CN106783976A true CN106783976A (zh) 2017-05-31

Family

ID=58881048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611141138.9A Pending CN106783976A (zh) 2016-12-12 2016-12-12 一种GaN沟道MOS界面结构

Country Status (1)

Country Link
CN (1) CN106783976A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1619819A (zh) * 2003-11-22 2005-05-25 海力士半导体有限公司 具有氧化铪与氧化铝合成介电层的电容器及其制造方法
CN1714434A (zh) * 2003-01-17 2005-12-28 富士通株式会社 电介质膜的形成方法
US20080070395A1 (en) * 2006-09-15 2008-03-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods with bilayer dielectrics
CN102299155A (zh) * 2010-06-22 2011-12-28 中国科学院微电子研究所 一种半导体器件及其制造方法
US8163620B2 (en) * 2010-04-21 2012-04-24 Institute of Microelectronics, Chinese Academy of Sciences Method for etching Mo-based metal gate stack with aluminium nitride barrier
CN102683217A (zh) * 2012-05-24 2012-09-19 中国科学院上海微系统与信息技术研究所 一种基于石墨烯的双栅mosfet的制备方法
CN103858007A (zh) * 2011-04-01 2014-06-11 基因泰克公司 用于预测对癌症治疗的敏感性的生物标记
CN103855012A (zh) * 2012-11-30 2014-06-11 中国科学院微电子研究所 N型mosfet的制造方法
CN103887163A (zh) * 2014-04-03 2014-06-25 中国科学院半导体研究所 用于SiC基MOS器件栅介质薄膜的制备方法
CN105514168A (zh) * 2016-01-12 2016-04-20 清华大学 半导体结构、形成方法以及场效应晶体管

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714434A (zh) * 2003-01-17 2005-12-28 富士通株式会社 电介质膜的形成方法
CN1619819A (zh) * 2003-11-22 2005-05-25 海力士半导体有限公司 具有氧化铪与氧化铝合成介电层的电容器及其制造方法
US20080070395A1 (en) * 2006-09-15 2008-03-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods with bilayer dielectrics
US8163620B2 (en) * 2010-04-21 2012-04-24 Institute of Microelectronics, Chinese Academy of Sciences Method for etching Mo-based metal gate stack with aluminium nitride barrier
CN102299155A (zh) * 2010-06-22 2011-12-28 中国科学院微电子研究所 一种半导体器件及其制造方法
CN103858007A (zh) * 2011-04-01 2014-06-11 基因泰克公司 用于预测对癌症治疗的敏感性的生物标记
CN102683217A (zh) * 2012-05-24 2012-09-19 中国科学院上海微系统与信息技术研究所 一种基于石墨烯的双栅mosfet的制备方法
CN103855012A (zh) * 2012-11-30 2014-06-11 中国科学院微电子研究所 N型mosfet的制造方法
CN103887163A (zh) * 2014-04-03 2014-06-25 中国科学院半导体研究所 用于SiC基MOS器件栅介质薄膜的制备方法
CN105514168A (zh) * 2016-01-12 2016-04-20 清华大学 半导体结构、形成方法以及场效应晶体管

Similar Documents

Publication Publication Date Title
TWI520337B (zh) 階梯溝渠式金氧半場效電晶體及其製造方法
Meyer et al. High electron velocity submicrometer AlN/GaN MOS-HEMTs on freestanding GaN substrates
JP7052322B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
CN102364688B (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
CN101924128B (zh) 场效应晶体管
JP5736683B2 (ja) 電力用半導体素子
CN104167445B (zh) 具有埋栅结构的氮化镓基增强耗尽型异质结场效应晶体管
CN104269433B (zh) 具有复合沟道层的氮化镓基增强型异质结场效应晶体管
CN104952917B (zh) 一种碳化硅vdmos器件
WO2019242100A1 (zh) 氧化镓垂直结构半导体电子器件及其制作方法
US11164967B2 (en) Power silicon carbide based MOSFET transistors with improved short circuit capabilities and methods of making such devices
WO2021246060A1 (ja) パワー半導体素子及びその製造方法
CN103337517B (zh) 基于iii族氮化物材料含多层背势垒的器件结构
CN210897283U (zh) 一种半导体器件
CN106783976A (zh) 一种GaN沟道MOS界面结构
Tao et al. Kilovolt GaN MOSHEMT on silicon substrate with breakdown electric field close to the theoretical limit
JPWO2018135146A1 (ja) 半導体装置および半導体装置の製造方法
JP6335717B2 (ja) 半導体デバイス
JP6182921B2 (ja) Mos型半導体装置
CN103606560A (zh) 减小微裂缝的影响,且用在微波集成电路和交换电路的高电荷迁移率晶体管
CN106653591A (zh) 一种在GaN表面生长高K介质的方法
Wang et al. Investigation of Lateral Gallium Oxide MOSFET with Discrete Field Plate by Calibrated Numerical Simulation
CN108346687A (zh) 一种氮化镓基高电子迁移率晶体管
JP7276407B2 (ja) 炭化珪素半導体装置
CN111599865B (zh) 一种GaN基P沟道MOSFET及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531