CN106773649A - 一种基于pso‑pid算法的燃气自动控制阀门智能调控方法 - Google Patents

一种基于pso‑pid算法的燃气自动控制阀门智能调控方法 Download PDF

Info

Publication number
CN106773649A
CN106773649A CN201611192138.1A CN201611192138A CN106773649A CN 106773649 A CN106773649 A CN 106773649A CN 201611192138 A CN201611192138 A CN 201611192138A CN 106773649 A CN106773649 A CN 106773649A
Authority
CN
China
Prior art keywords
pid
formula
parameter
fitness
pso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611192138.1A
Other languages
English (en)
Inventor
周鑫浩
张海军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Qianjia Technology Co Ltd
Original Assignee
Chengdu Qianjia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Qianjia Technology Co Ltd filed Critical Chengdu Qianjia Technology Co Ltd
Priority to CN201611192138.1A priority Critical patent/CN106773649A/zh
Publication of CN106773649A publication Critical patent/CN106773649A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于PSO‑PID算法的燃气自动控制阀门智能调控方法,以燃气自动控制阀门为研究对象,充分考虑PID控制系统的特征,并建立了被控对象的传递函数模型;同时,引入人工智能技术,采用带有收敛因子的改进型粒子群算法搜索PID参数最优解,实现对燃气流量的自动控制。本发明克服了传统PID燃气控制阀人工调整参数的缺点,实现了PID参数的自整定;此方法具有耗时短、精确度高、自适应能力强、适用性好等优点,具有良好的应用前景和商业价值。

Description

一种基于PSO-PID算法的燃气自动控制阀门智能调控方法
技术领域
本发明涉及燃气自动阀优化控制领域,具体地说涉及一种基于PSO-PID算法的燃气自动控制阀门智能调控方法。
背景技术
城市燃气管网是为城镇居民和工商业用户提供燃气需求的管道网络,是燃气用户日常生活生产过程中赖以生存的“生命线”。由于城市燃气用户的需求随季节、月份、时日均有变化,为解决气源供应与用户需求之间的矛盾,燃气公司需要实时监控管网流量和压力,并根据实际工况做出相应调整。其中,调压阀是实现流量和压力控制的必备元件。在城市燃气实际的输配过程中,通常是调度中心根据管网系统实时监测数据的变化向各个场站发出调度指令,场站工人接收到指令后通过人为的方式调节管道阀门,改变场站相关设备进出口流量和压力。
随着“工业4.0”等概念的不断深化以及物联网技术在燃气领域的成功应用,燃气公司不断加大管网智能升级的改革力度,而实现对各个场站压力和流量的自动化控制是建设智能场站必要途径。目前,针对燃气阀门自动控制的算法有PID、LQR、LQG等,其中PID算法由于结构简单、鲁棒性强,不依赖于被控对象的精确模型,被广泛应用于工业生产中。
但是,基于PID的传统燃气控制阀没有自适应能力,针对某一种特殊工况其参数调整多采用试凑方式,往往依赖于操作人员的技巧和经验,当控制目标变化时需要重新作出参数的调整;此种人工参数整定的手段耗时长、精确度低,限制了PID控制阀的应用。
发明内容
本发明的目的在于提供一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,解决传统燃气控制阀门参数整定过程中存在人为误差、耗时长、精度低的问题,实现提高阀门对不同燃气流量和压力系统的调控能力及适应能力的目的。
本发明通过下述技术方案实现:
一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,包括以下步骤:
(1)建立燃气阀门被控对象的传递函数模型,所述传递函数模型为
(2)在传递函数模型的基础上,进行PID算法控制器的设置;
(3)在进行PID算法控制器设置的同时,初始化PSO算法中的粒子群参数;
(4)利用粒子群算法对PID控制器的参数进行优化,比较计算结果是否达到精度或迭代次数,记录最佳Kp、Ki、Kd参数值;
(5)若计算结果达到性能目标,则结束计算,输出Kp、Ki、Kd参数值作为最佳控制参数;若计算结果达不到性能要求,则重复第(3)步、第(4)步,在K时步的结果基础上更新粒子群的速度和位置,输出最佳Kp、Ki、Kd参数值。
进一步的,随着人工智能技术的发展,出现了很多基于智能算法整定PID参数的方法,而PSO算法具有逼近任意连续有界非线性函数的能力,对于PID参数整定过程中的非线性和不确定性,无疑是一种有效的解决途径。所以本发明人将带有收敛因子的粒子群算法能迅速搜索最优可行解的特点与PID控制相结合,建立燃气自动控制阀被控对象传递函数模型;初始化PSO算法粒子群数量、位置等参数,通过将Kp、Ki、Kd三个参数作为PSO算法的空间解集,以适应度函数为评价指标并通过循环迭代的方式获取PID参数的全局最优解,然后将最优解作为PID控制器输入参数实现燃气阀门对流量的自动控制。具体是指通过比例项(Kp)、积分项(Ki)和微分项(Kd)三个参数的合理配置,用以控制燃气自动阀门电机的输出信号。因为根据采集时步前后误差项的实际情况,参数Kp能快速调节输出信号的变化幅度、参数Ki能减小稳定误差、参数Kd能增强系统稳定性,预防超调现象,所以用此方式提高了阀门对不同燃气流量和压力系统的调控能力及适应能力。
所述步骤(1)中燃气阀门被控对象的传递函数模型建模是依据如下步骤完成的:
首先,设定电动机的初始转速为ω,减速后的转速为ω,,将电磁惯性和机械惯性均设置为0,其减速输出:
ω,=k1k2Ur 公式(1)
其中,k1为电机转换系数,k2为减速比,Ur为电动机的工作电压;
其次,根据阀门联轴器的传递作用,使电机减速后的速度与阀门转轴的速度相等,电机减速后的转速为ω,与阀门转角的关系为:
接着,将公式(1)和公式(2)联立,积分可得:
其中,t0为电磁惯性和机械惯性;
最后,对公式(3)进行拉普拉斯变换可得到传递函数G(s)为:
其中,s为复数。
进一步的,燃气自动阀的结构主要是将电动机通过减速器和联轴器与阀门对接,依靠改变电动机转速的方式实现对阀门开闭程度的控制,因此过阀流量与阀门转轴的转角相关;被控对象传递函数推导过程可参看公式(1)-公式(4)。
所述步骤(2)中的PID算法控制器的设置,包括如下步骤:
首先,根据给定的目标值r(t)与实际输出值y(t)构成的偏差e(t),将偏差的Kp、Ki和Kd通过线性组合构成控制项,对被控对象进行控制,其控制规律为:
e(t)=r(t)-y(t) 公式(5)
然后,对公式(6)进行离散化处理,即得到燃气自动控制阀增量型PID算法函数Δu(k):
Δu(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)+e(k-2)-2e(k-1)公式(8)
其中,比例系数积分系数微分系数
进一步的,PID算法实质是一种线性控制算法,给定的目标值r(t)与实际输出值y(t)构成的偏差e(t),将偏差的比例、积分、微分通过线性组合构成控制项,对被控对象进行控制。这里的r(t)指的是t时刻要求阀门达到的开度,y(t)指的是阀门实际的开度。
所述步骤(4)中利用粒子群算法对PID控制器的参数进行优化,包括如下步骤:
首次,将初始化的粒子群参数赋值到PID控制器的Kp、Ki、Kd参数数组中;
其次,根据系统偏差与时间的关系,在此以时间绝对偏差积分ITAE的倒数作为适应度函数,适应度函数变化过程如下:
对于增量型的PID控制器,将适应度函数进行离散化处理,处理后适应度函数如下:
然后,根据适应度函数公式(10)和公式(11)计算每一粒子的适应度值,并找出粒子群中适应度最佳个体的Kp、Ki、Kd参数值。
进一步的,初始化粒子群参数包括粒子群个数和维度等,由于Kp、Ki、Kd参数作为PSO优化的对象,因此粒子群的维度为三维;参数名称及符号可参看表1。
表1初始化粒子群参数
PSO算法的基本思想是随机初始化一定个数和维度的粒子群,每一个粒子就是优化问题的一个可行解,粒子的优劣由适应度函数作为评判标准;粒子群在可行空间中的位置随速度变化,通过对粒子群位置的追踪并进过迭代搜索寻找全局最优解,即Kp、Ki、Kd参数值。
初始化粒子群参数后,粒子i在初始时刻状态的数学表达式可参看表2。
表2粒子群中任意粒子初始状态表
所述的更新粒子群的速度和位置的步骤如下:
根据公式(10)和公式(11)计算粒子新位置及更新后的适应度值,然后根据公式(12)进行适应度比对:
若当前粒子适应度优于粒子本身前一时刻的最优适应度,则把当前粒子位置作为自身最优位置
若粒子当前适应度优于整个粒子群前一时刻的最优适应度,则把当前位置粒子群作为全局最优
其中,
在公式(12)中,r1和r2是在(0,1)之间均匀分布的随机数,ωstart和ωend分别为起始权重和终止权重,tmax是最大迭代次数,t是当前迭代次数。
进一步的,这个参数实际就是KPI参数数组Kp、Ki、Kd,而就是这个数组里面最优的一组参数。将计算出的全局最优位置的个体的进行循环迭代,不断计算粒子群适应度值和粒子群位置,判断是否达到收敛精度或最大迭代次数,最后输出全局最优粒子,即为最优的PID参数;以整定后的PID参数(Kp、Ki、Kd参数值)作为阀门控制器最终的参数,实现对燃气流量和压力的自动化控制。通过以上方法解决了传统燃气控制阀门参数整定过程中存在人为误差、耗时长、精度低的问题,实现了提高阀门对不同燃气流量和压力系统的调控能力及适应能力的目的。
本发明与现有技术相比,具有如下的优点和有益效果:
本发明一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,以燃气自动控制阀门为研究对象,充分考虑PID控制系统的特征,并建立了被控对象的传递函数模型;同时,引入人工智能技术,采用带有收敛因子的改进型粒子群算法搜索PID参数最优解,实现对燃气流量的自动控制,克服了传统PID燃气控制阀人工调整参数的缺点,实现了PID参数的自整定;此方法具有耗时短、精确度高、自适应能力强、适用性好等优点,具有良好的应用前景和商业价值。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明基于PSO参数整定的PID控制阀原理框图;
图2为本发明带有收敛因子改进型PSO算法流程图;
图3为本发明基于PSO算法优化PID参数的逻辑框图;
图4为本发明基于PSO参数整定的PID参数的电路结构图;
图5为本发明基于PSO参数整定的PID参数的Simulik仿真模块设计图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
如图1~图3所示的一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,包括以下步骤:
(1)建立燃气阀门被控对象的传递函数模型,所述传递函数模型为
(2)在传递函数模型的基础上,进行PID算法控制器的设置;
(3)在进行PID算法控制器设置的同时,初始化PSO算法中的粒子群参数;
(4)利用粒子群算法对PID控制器的参数进行优化,比较计算结果是否达到精度或迭代次数,记录最佳Kp、Ki、Kd参数值;
(5)若计算结果达到性能目标,则结束计算,输出Kp、Ki、Kd参数值作为最佳控制参数;若计算结果达不到性能要求,则重复第(3)步、第(4)步,在K时步的结果基础上更新粒子群的速度和位置,输出最佳Kp、Ki、Kd参数值。
实施例2:
如图1~图3所示的一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,在实时例1的基础上,本发明的具体实施步骤如下:
(A)、所述步骤(1)中燃气阀门被控对象的传递函数模型建模是依据如下步骤完成的:
首先,设定电动机的初始转速为ω,减速后的转速为ω,,将电磁惯性和机械惯性均设置为0,其减速输出:
ω,=k1k2Ur 公式(1)
其中,k1为电机转换系数,k2为减速比,Ur为电动机的工作电压;
其次,根据阀门联轴器的传递作用,使电机减速后的速度与阀门转轴的速度相等,电机减速后的转速为ω,与阀门转角的关系为:
接着,将公式(1)和公式(2)联立,积分可得:
其中,t0为电磁惯性和机械惯性;
最后,对公式(3)进行拉普拉斯变换可得到传递函数G(s)为:
其中,s为复数。
(B)、所述步骤(2)中的PID算法控制器的设置,包括如下步骤:
首先,根据给定的目标值r(t)与实际输出值y(t)构成的偏差e(t),将偏差的Kp、Ki和Kd通过线性组合构成控制项,对被控对象进行控制,其控制规律为:
e(t)=r(t)-y(t) 公式(5)
然后,对公式(6)进行离散化处理,即得到燃气自动控制阀增量型PID算法函数Δu(k):
Δu(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)+e(k-2)-2e(k-1)公式(8)
其中,比例系数积分系数微分系数
(C)、初始化PSO算法中的粒子群参数,对粒子群的个数N赋值,并调用随机数函数自动生成粒子群位置随机数列、粒子群速度随机数列,初始参数表详见表2。
(D)、所述步骤(4)中利用粒子群算法对PID控制器的参数进行优化,包括如下步骤:
首次,将初始化的粒子群参数赋值到PID控制器的Kp、Ki、Kd参数数组中;
其次,根据系统偏差与时间的关系,在此以时间绝对偏差积分ITAE的倒数作为适应度函数,适应度函数变化过程如下:
对于增量型的PID控制器,将适应度函数进行离散化处理,处理后适应度函数如下:
然后,根据适应度函数公式(10)和公式(11)计算每一粒子的适应度值,并找出粒子群中适应度最佳个体的Kp、Ki、Kd参数值。
(E)、所述的更新粒子群的速度和位置的步骤如下:
根据公式(10)和公式(11)计算粒子新位置及更新后的适应度值,然后根据公式(12)进行适应度比对:
若当前粒子适应度优于粒子本身前一时刻的最优适应度,则把当前粒子位置作为自身最优位置
若粒子当前适应度优于整个粒子群前一时刻的最优适应度,则把当前位置粒子群作为全局最优
其中,
在公式(12)中,r1和r2是在(0,(1)之间均匀分布的随机数,ωstart和ωend分别为起始权重和终止权重,tmax是最大迭代次数,t是当前迭代次数。
(F)、根据步骤(D)和步骤(E)进行循环迭代,不断计算粒子群适应度值和粒子群位置,判断是否达到收敛精度或最大迭代次数,最后输出全局最优粒子,即为最优的PID参数,即最佳Kp、Ki、Kd参数值。
实施例3:
如图1~图5所示的一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,在实时例2的基础上,随机生成一组粒子群,初始化PSO算法中的粒子群参数,维度是3维,数量是30个,那么这个粒子群矩阵即为30*3,每一个粒子都代表一个KPI参数,将这个粒子群带入适应度函数中进行计算,然后通过速度位置的更新,再带入适应度函数中进行计算,比较前后两个时步的适应度值,自动将适应度值最优的粒子群位置参数记录为个体最优,自动将个体最优矩阵里面的最优个体记录为全局最优。其中,图5表示Step信号源要求控制项输出为1,实际输出曲线在8次迭代计算后达到控制要求。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,其特征在于,包括以下步骤:
(1)建立燃气阀门被控对象的传递函数模型,所述传递函数模型为
(2)在传递函数模型的基础上,进行PID算法控制器的设置;
(3)在进行PID算法控制器设置的同时,初始化PSO算法中的粒子群参数;
(4)利用粒子群算法对PID控制器的参数进行优化,比较计算结果是否达到精度或迭代次数,记录最佳Kp、Ki、Kd参数值;
(5)若计算结果达到性能目标,则结束计算,输出Kp、Ki、Kd参数值作为最佳控制参数;若计算结果达不到性能要求,则重复第(3)步、第(4)步,在K时步的结果基础上更新粒子群的速度和位置,输出最佳Kp、Ki、Kd参数值。
2.根据权利要求1所述的一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,其特征在于,所述步骤(1)中燃气阀门被控对象的传递函数模型建模是依据如下步骤完成的:
首先,设定电动机的初始转速为ω,减速后的转速为ω’,将电磁惯性和机械惯性均设置为0,其减速输出:
ω’=k1k2Ur 公式(1)
其中,k1为电机转换系数,k2为减速比,Ur为电动机的工作电压;
其次,根据阀门联轴器的传递作用,使电机减速后的速度与阀门转轴的速度相等,电机减速后的转速为ω’与阀门转角的关系为:
接着,将公式(1)和公式(2)联立,积分可得:
其中,t0为电磁惯性和机械惯性;
最后,对公式(3)进行拉普拉斯变换可得到传递函数G(s)为:
其中,s为复数。
3.根据权利要求1所述的一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,其特征在于,所述步骤(2)中的PID算法控制器的设置,包括如下步骤:
首先,根据给定的目标值r(t)与实际输出值y(t)构成的偏差e(t),将偏差的Kp、Ki和Kd通过线性组合构成控制项,对被控对象进行控制,其控制规律为:
e(t)=r(t)-y(t) 公式(5)
然后,对公式(6)进行离散化处理,即得到燃气自动控制阀增量型PID算法函数Δu(k):
Δu(k)=Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)+e(k-2)-2e(k-1)公式(8)
其中,比例系数积分系数微分系数
4.根据权利要求1所述的一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,其特征在于,所述步骤(4)中利用粒子群算法对PID控制器的参数进行优化,包括如下步骤:
首次,将初始化的粒子群参数赋值到PID控制器的Kp、Ki、Kd参数数组中;
其次,根据系统偏差与时间的关系,在此以时间绝对偏差积分ITAE的倒数作为适应度函数,适应度函数变化过程如下:
对于增量型的PID控制器,将适应度函数进行离散化处理,处理后适应度函数如下:
然后,根据适应度函数公式(10)和公式(11)计算每一粒子的适应度值,并找出粒子群中适应度最佳个体的Kp、Ki、Kd参数值。
5.根据权利要求4所述的一种基于PSO-PID算法的燃气自动控制阀门智能调控方法,其特征在于,所述的更新粒子群的速度和位置的步骤如下:
根据公式(10)和公式(11)计算粒子新位置及更新后的适应度值,然后根据公式(12)进行适应度比对:
若当前粒子适应度优于粒子本身前一时刻的最优适应度,则把当前粒子位置作为自身最优位置
若粒子当前适应度优于整个粒子群前一时刻的最优适应度,则把当前位置粒子群作为全局最优
其中,
ω = ω s t a r t - ω s t a r t - ω e n d t max t ;
x i d t + 1 = x i d t + v i d t + 1 ;
在公式(12)中,r1和r2是在(0,(1)之间均匀分布的随机数,ωstart和ωend分别为起始权重和终止权重,tmax是最大迭代次数,t是当前迭代次数。
CN201611192138.1A 2016-12-21 2016-12-21 一种基于pso‑pid算法的燃气自动控制阀门智能调控方法 Pending CN106773649A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611192138.1A CN106773649A (zh) 2016-12-21 2016-12-21 一种基于pso‑pid算法的燃气自动控制阀门智能调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611192138.1A CN106773649A (zh) 2016-12-21 2016-12-21 一种基于pso‑pid算法的燃气自动控制阀门智能调控方法

Publications (1)

Publication Number Publication Date
CN106773649A true CN106773649A (zh) 2017-05-31

Family

ID=58893642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611192138.1A Pending CN106773649A (zh) 2016-12-21 2016-12-21 一种基于pso‑pid算法的燃气自动控制阀门智能调控方法

Country Status (1)

Country Link
CN (1) CN106773649A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108628177A (zh) * 2018-07-02 2018-10-09 大唐环境产业集团股份有限公司 一种基于模型自适应pid的scr脱硝智能喷氨优化方法及系统
CN108803309A (zh) * 2018-07-02 2018-11-13 大唐环境产业集团股份有限公司 一种基于软测量和模型自适应的scr脱硝智能喷氨优化方法及系统
CN109039173A (zh) * 2018-08-09 2018-12-18 沈阳工业大学 一种基于杂交粒子群优化的pmlsm迭代学习控制方法及系统
CN109143857A (zh) * 2018-08-14 2019-01-04 上海电力学院 一种超超临界机组协调控制系统的解耦控制方法
CN109709795A (zh) * 2018-12-24 2019-05-03 东华大学 一种基于天牛须搜索算法的pid控制器参数整定方法
CN113341689A (zh) * 2021-04-29 2021-09-03 中国人民解放军海军工程大学 基于优化算法改进的微型燃气轮机模糊pid控制方法
CN113759697A (zh) * 2021-08-21 2021-12-07 天津工业大学 基于pso智能整定带式输送机pid控制器参数的优化方法
CN115629537A (zh) * 2022-12-22 2023-01-20 南京净环热冶金工程有限公司 基于子群改进粒子群优化pid的加热炉燃烧控制方法及系统
CN117930633A (zh) * 2024-03-21 2024-04-26 山东和光智慧能源科技有限公司 一种燃气输送系统自动控制优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201866014U (zh) * 2010-11-30 2011-06-15 沈阳理工大学 一种电液伺服阀测控系统
CN204065695U (zh) * 2014-09-02 2014-12-31 南阳汉冶特钢有限公司 一种基于pid控制的轧机对中系统
CN105892292A (zh) * 2014-12-31 2016-08-24 国家电网公司 基于粒子群算法的鲁棒控制优化方法
CN106154836A (zh) * 2016-08-29 2016-11-23 西安西热控制技术有限公司 一种在线动态粒子群pid优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201866014U (zh) * 2010-11-30 2011-06-15 沈阳理工大学 一种电液伺服阀测控系统
CN204065695U (zh) * 2014-09-02 2014-12-31 南阳汉冶特钢有限公司 一种基于pid控制的轧机对中系统
CN105892292A (zh) * 2014-12-31 2016-08-24 国家电网公司 基于粒子群算法的鲁棒控制优化方法
CN106154836A (zh) * 2016-08-29 2016-11-23 西安西热控制技术有限公司 一种在线动态粒子群pid优化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吕琳: ""结合学习策略的粒子群优化算法及应用研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
姜万强: ""基于现场总线的加药机控制系统设计与实现"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
李兵等: ""基于粒子群算法的PID控制器研究"", 《唐山学院学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108628177A (zh) * 2018-07-02 2018-10-09 大唐环境产业集团股份有限公司 一种基于模型自适应pid的scr脱硝智能喷氨优化方法及系统
CN108803309A (zh) * 2018-07-02 2018-11-13 大唐环境产业集团股份有限公司 一种基于软测量和模型自适应的scr脱硝智能喷氨优化方法及系统
CN109039173A (zh) * 2018-08-09 2018-12-18 沈阳工业大学 一种基于杂交粒子群优化的pmlsm迭代学习控制方法及系统
CN109143857A (zh) * 2018-08-14 2019-01-04 上海电力学院 一种超超临界机组协调控制系统的解耦控制方法
CN109709795A (zh) * 2018-12-24 2019-05-03 东华大学 一种基于天牛须搜索算法的pid控制器参数整定方法
CN113341689A (zh) * 2021-04-29 2021-09-03 中国人民解放军海军工程大学 基于优化算法改进的微型燃气轮机模糊pid控制方法
CN113759697A (zh) * 2021-08-21 2021-12-07 天津工业大学 基于pso智能整定带式输送机pid控制器参数的优化方法
CN113759697B (zh) * 2021-08-21 2023-03-10 天津工业大学 基于pso智能整定带式输送机pid控制器参数的优化方法
CN115629537A (zh) * 2022-12-22 2023-01-20 南京净环热冶金工程有限公司 基于子群改进粒子群优化pid的加热炉燃烧控制方法及系统
CN117930633A (zh) * 2024-03-21 2024-04-26 山东和光智慧能源科技有限公司 一种燃气输送系统自动控制优化方法
CN117930633B (zh) * 2024-03-21 2024-06-07 山东和光智慧能源科技有限公司 一种燃气输送系统自动控制优化方法

Similar Documents

Publication Publication Date Title
CN106773649A (zh) 一种基于pso‑pid算法的燃气自动控制阀门智能调控方法
CN101861552B (zh) 带有执行器饱和控制的极值搜索控制
Sun et al. Direct energy balance based active disturbance rejection control for coal-fired power plant
CN106647283A (zh) 一种基于改进cpso的自抗扰位置伺服系统优化设计方法
CN103115243B (zh) 一种天然气管道分输电动调节阀的控制设备及其方法
CN108490790A (zh) 一种基于多目标优化的过热汽温自抗扰串级控制方法
US11893518B2 (en) Methods and systems of optimizing pressure regulation at intelligent gas gate stations based on internet of things
CN112560240A (zh) 基于大数据分析技术的供热管网水力计算方法
CN107800157A (zh) 含聚合温控负荷和新能源的虚拟发电厂双层优化调度方法
Zou et al. Practical predefined-time output-feedback consensus tracking control for multiagent systems
CN104534507A (zh) 一种锅炉燃烧优化控制方法
CN109445287A (zh) 一种基于plc板卡的内置pid模糊控制方法
CN103576711B (zh) 基于定量单参数pid控制的化工反应器温度控制方法
CN203396032U (zh) 基于模糊自适应pid的室温控制装置
WO2020062806A1 (zh) 一种用于燃烧后co 2捕集系统的改进ina前馈控制方法
CN114265306A (zh) 海洋平台通风系统在线风平衡控制方法及控制系统
CN113253779A (zh) 一种基于粒子群模糊pid算法的热泵温度控制系统
CN115494892B (zh) 高空模拟试车台进气环境模拟系统解耦控制方法
CN105276561A (zh) 一种锅炉主蒸汽压力的自适应预测控制方法
CN109827073B (zh) 一种天然气管道自动分输实现方法
CN104483832B (zh) 基于t‑s模型的气动比例阀模糊滑模自适应控制方法
CN109869634B (zh) 一种天然气管道自动分输实现系统及自动分输实现方法
CN105159097A (zh) 炼油加热炉炉膛压力的多变量预测控制pid控制方法
CN102588648B (zh) 一种采用切断阀调节煤气压力的方法
CN108828932B (zh) 一种单元机组负荷控制器参数优化整定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531