CN108490790A - 一种基于多目标优化的过热汽温自抗扰串级控制方法 - Google Patents

一种基于多目标优化的过热汽温自抗扰串级控制方法 Download PDF

Info

Publication number
CN108490790A
CN108490790A CN201810436145.4A CN201810436145A CN108490790A CN 108490790 A CN108490790 A CN 108490790A CN 201810436145 A CN201810436145 A CN 201810436145A CN 108490790 A CN108490790 A CN 108490790A
Authority
CN
China
Prior art keywords
disturbance rejection
steam temperature
solution
frequency
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810436145.4A
Other languages
English (en)
Inventor
孙立
符灏
李东海
潘凤萍
胡康涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810436145.4A priority Critical patent/CN108490790A/zh
Publication of CN108490790A publication Critical patent/CN108490790A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

本发明公开了一种基于多目标优化的过热汽温自抗扰串级控制方法,采用双回路控制,内回路为PI控制器,外回路为多目标优化的自抗扰控制器;所述多目标优化的自抗扰控制器分别以过热汽温系统的阀门开度和出口温度为输入和输出,根据保证系统稳定的计算方法得到频率稳定区域,采用多目标智能优化算法在频率稳定区域内优化寻找扩增状态观测器的频率,通过扩增状态观测器观测扰动状态,实现快速消除扰动。本发明能够精准调节减温水的流量,快速抑制负荷变化对主蒸汽温度的影响,提高锅炉发电效率,同时保证金属设备的寿命和电站的安全运行。

Description

一种基于多目标优化的过热汽温自抗扰串级控制方法
技术领域
本发明属于能源利用自动控制技术领域,特别涉及了一种基于多目标优化的过热汽温自抗扰串级控制方法。
背景技术
近年来,电力市场中的可再生能源如太阳能、风能和潮汐发电的蓬勃发展。然而,可再生能源的间歇性不可避免地给公用电网的可靠性带来了巨大的挑战。因此,快速调整燃煤电厂的功率以平衡实时负载是成熟可行的解决方案,且重点关注在不违反过热器蒸汽温度操作约束的条件下改变负载需求的安全范围。通常,较宽范围的功率调节会导致过热汽温与其设定点之间的较大偏差,因此必须控制其差值在安全范围内。发电厂负载灵活性依赖于过热器控制回路的控制性能,它将使发电厂能够更灵活地参与更宽范围的负荷调节任务,从而接纳更多的可再生能源。
但是由于过热汽温系统的强非线性、高阶次、多干扰和实验的高昂费用,仍然具有挑战性。传统的串联PI控制策略不能同时克服上述困难,特别是在面临大范围负载调节时。因此,许多先进的控制算法被使用,如模糊逻辑控制器,神经模糊广义预测控制器,神经网络PID控制器,模糊模型预测控制器和预测前馈控制器。尽管仿真结果表明效果良好,但由于计算复杂性,这些方法最终得不到实际应用,且它们难以通过分布式控制系统的功能块实现。
发明内容
为了解决上述背景技术提出的技术问题,本发明旨在提供一种基于多目标优化的过热汽温自抗扰串级控制方法,能够快速地处理过热气温系统的强非线性、高阶次、多干扰等问题,具有良好的稳定性和鲁棒性,且在实际运用过程中便于实现。
为了实现上述技术目的,本发明的技术方案为:
一种基于多目标优化的过热汽温自抗扰串级控制方法,该控制方法采用双回路控制,内回路为PI控制器,外回路为多目标优化的自抗扰控制器;所述多目标优化的自抗扰控制器分别以过热汽温系统的阀门开度和出口温度为输入和输出,根据保证系统稳定的计算方法得到频率稳定区域,采用多目标智能优化算法在频率稳定区域内优化寻找扩增状态观测器的频率,通过扩增状态观测器观测扰动状态,实现快速消除扰动。
进一步地,得到频率稳定区域的方法如下:
自抗扰控制器的传递函数:
其中,s为拉布拉斯算子,b0为预设模型参数,ωco为扩张状态观测器的可调频率;
自抗扰控制器的频率特性:
其中,GC表示控制器的传递函数,N、D分别为分子、分母上的传递函数多项式,j表示复数坐标轴,ω表示频率;
GC(jω)P(jω)=-1
其中,P(jω)表示对象的频率特性;
其中,a,b为实数;
让上式实部和虚部均等于0,有:
通过求解正实数解的(ωoc)组获得频率稳定区域的边界。
进一步地,多目标智能优化算法考虑如下的多目标优化问题:
其中,在优化区域Ω中代表决定矢量,为约束项,是两个优化性能指标,e(t)为参考值与被控对象之间的误差,L(jω)为闭环控制系统的开环传递函数。
进一步地,所述多目标智能优化算法为粒子群优化算法。
进一步地,采用多目标智能优化算法在频率稳定区域内优化寻找扩张状态观测器的频率的步骤如下:
(1)将求得的频率稳定区域作为优化区域Ω,设置粒子数目M、最大迭代次数N,迭代次数k=1;
(2)设计两个性能指标:
(3)将粒子群带入模型进行仿真计算,并根据性能指标最小以及约束条件:
将所有粒子群的解根据性能指标分为主导解和非主导解;
(4)主导解与历史解通过性能指标的对比更新第k+1次迭代的个体最优解非主导解在评估后选择部分解与主导解计算得到全局最优解gbest
(5)根据如下公式更新第i+1次迭代的粒子群:
其中,下标i表示第i个粒子,上标k、k+1表示第k次、第k+1次迭代,为速度矢量,x为粒子当前位置,w、c1和c2分别代表运动惯性、个体分量和群体记忆的权重;
(6)如果i<N,则重复执行步骤(4)~(5);否则重复执行步骤(2)~(6),直到解(ωoc)的性能指标最优为止。
进一步地,采用多目标智能优化算法在频率稳定区域内寻找到的最优频率建立扩增状态观测器:
其中,z1,z2和z3为状态量的估计值,y为对象输出,b0为预设模型参数,控制律u0=k1(r-z1)-k2z2k2=2ωc,r为过热汽温设定值。
采用上述技术方案带来的有益效果:
本发明解决了电站锅炉随着负荷变化过热汽温系统调节的非线性、高阶次、多扰动等问题,并且在运行过程中兼顾了控制系统的稳定性和鲁棒性,其无论是从运行的高效,稳定还是模型的适应性都优于现存的比例-积分-微分控制的过热汽温系统,并且在可实施性上优于现存的其他算法。
本发明中的基于多目标优化的自抗扰控制器能够完成抗扰和优化两大任务,同时降低了控制器实现的难度,节约了成本。自抗扰控制器只需要输入输出数据,不依赖于模型,其鲁棒性较其他算法有较大的提高,通过扩张观测器的设计能够快速消除扰动,实现系统的高效、稳定的运行。
本发明采用的多目标粒子群优化算法,不仅提出了稳定域的求解方法,保证求解的频率的有效性,同时均衡了积分绝对误差和系统鲁棒性两个性能指标,得到最优的频率设计扩张状态观测器以保障系统的稳定性和鲁棒性。
附图说明
图1是本发明自抗扰串级控制框图;
图2是本发明自抗扰控制器二自由度结构图;
图3是本发明中多目标粒子群算法的步骤图;
图4是实施例中多目标粒子群算法的稳定区域、最终粒子群及非主导解示意图;
图5是实施例中帕累托线的结果图。
图6是实施例中控制效果图。
图7是实施例中中恒定负荷情况下的传统控制方法的效果图。
图8是实施例中恒定负荷情况下的多目标优化的自抗扰控制方法的效果图。
图9是实施例中变负荷情况下的传统控制方法的效果图。
图10是实施例中变负荷情况下的多目标优化的自抗扰控制方法的效果图。
图11是实施例中恒定负荷情况下控制误差的概率密度函数的分布图。
图12是实施例中变负荷情况下控制误差的概率密度函数的分布图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
如图1所示,为本发明的自抗扰串级控制框图,其中内回路采用传统的PI控制器,能够满足快速消除扰动的作用。外回路的控制器是基于多目标优化的自抗扰控制器,通过扩张状态观测器观测扰动状态,能够达到快速消除扰动,保证系统高效稳定的运行,同时,利用多目标优化粒子群优化算法求解扩张状态观测器设计频率,均衡了鲁棒性和稳定性两个指标,达到优化控制器性能和提高运行效率的作用。其中,r是过热汽温设定值,u1是PI控制器的输出,u2是自抗扰控制器的输出,y1为一级过热器出口温度,y2为二级过热器出口温度,d1、d2是扰动。
以中国广东省300MW锅炉汽机系统为例,让它稳定运行在80%负荷下获得开环阶跃响应的数据,通过MATALB辨识得到一级过热器和二级过热器相应的传递函数如下所示:
分别对应图1所在的位置。
图2为自抗扰二自由度控制等效结构图,其中GF(s)为设定值滤波器,P(s)为被控过程,控制器GC(s)为:
定义控制器的频率特性为:
假设传递函数能斯特曲线经过点(-1,0),有:
GC(jω)P(jω)=-1
改写得到:
其中,a,b为常数。
使上式的虚部和实部都等于0,可以得到:
根据稳态分析,所有存在正实数解的(ωoc)构成稳定区域Ω的边界。
所述多目标粒子群寻优方法如图3所示,其步骤如下:
步骤1,将上述求得的稳定区域作为优化区域Ω,设置粒子数目80、最大迭代次数N,迭代次数k=1;
步骤2,设计两个性能指标:
其中,e(t)为参考值与被控对象之间的误差,L(jω)为闭环控制系统的开环传递函数。
步骤3,将粒子群带入模型进行仿真计算,并根据性能指标最小以及约束条件:
将所有粒子群的解根据上述指标分为主导、非主导解;
步骤4,主导解与历史解通过性能指标的对比更新第k+1次迭代的个体最优解非主导解在评估后选择部分解与主导解计算得到全局最优解gbest
步骤5,根据如下公式更新第i+1次迭代的粒子群:
其中,i表示第i个粒子,为速度矢量,x为粒子当前位置,w,c1和c2分别代表运动惯性、个体分量和群体记忆的权重。
步骤6,如果i<N,则重复执行步骤4~5;否则重复执行步骤2~6,直到解(ωoc)的性能指标最优为止。
图4展示了实例中多目标粒子群算法的稳定区域、最终粒子群及非主导解。在不同的频率下,粒子向最优的均衡鲁棒性和稳定性的方向靠拢。
图5是实例中多目标参数优化的帕累托线图。粒子群组成帕累托优化线,选取其中代表性的粒子点“A”,“B”,“C”,通过性能指标的比较,选择折中的“B”点处的频率作为扩张状态观测器的设计频率。
自抗扰控制器的扩增状态观测器的频率参数选择上述结果,具体设计方法如下:
将不确定系统设计为如下的二阶形式:
其中,y,分别是对象输出、对象输出的一阶导数、对象输出的二阶导数,u为控制量,d为外部扰动,g表示未知动态,由于b是不确定随着时间变化的数。
将对象改写成:
其中,b0是一个可操纵参数,f=g+(b-b0)u包含了外部扰动和内部动态。
将估计值作为扩增状态x3,构建系统为如下的稳态模型:
其中,x为状态量,为状态量的导数,为扰动量的导数。
基于上述模型,扩增状态观测器可以设计为:
其中,z1,z2和z3为状态量的估计值,为状态量估计值的导数,β1=3ωo,
根据如下的控制律:
简化不确定系统:
使用如下简单的稳态反馈控制:
u0=k1(r-z1)-k2z2
其中,k2=2ωc
图6为本发明控制效果图,可以看出,控制效果明显好于现存的比例积分控制器,它的帕累托优化更加靠近原点,意味着积分绝对误差减少而鲁棒性能值提高,在跟踪目标值和稳定性上都有更好的效果。
图7为恒定负荷情况下的传统控制方法的效果图,图8是恒定负荷情况下的多目标优化的自抗扰控制方法的效果图。根据结果进行分析,在传统比例积分控制器下过热汽温误差在-4.59~4.42之间,而优化的自抗扰串级控制方式将过热汽温的误差控制在-1.91~2.32之间,保障了过热器的安全稳定的运行,同时从图中可以得到在设定值的快速跟踪性能上,本发明提出的多目标优化的自抗扰控制优于传统控制方式。
图9是变负荷情况下的传统控制方法的效果图,图10是变负荷情况下的多目标优化的自抗扰控制方法的效果图。根据结果分析,将负荷从5MW上升至10MW和15MW,虽然两种控制器的控制效果都有所下降,但是本发明所采用的基于多目标优化的自抗扰控制运行中的误差在-2.96~3.36之间远优于传统比例积分控制器产生的-6.27~5.91,从而防止热应力对过热汽温系统造成的危害,保证更多的可持续能源并网供能。
图11是恒定负荷情况下控制误差的概率密度函数的分布图,图12是变负荷情况下控制误差的概率密度函数的分布图。由概率密度函数的分布可以看出,本发明所采用的基于多目标优化的自抗扰控制不论是在恒定功率还是变化功率下,控制效果都优于现存的比例积分调节作用,在火电机组过热汽温系统中能够发挥重要的作用。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (6)

1.一种基于多目标优化的过热汽温自抗扰串级控制方法,其特征在于:该控制方法采用双回路控制,内回路为PI控制器,外回路为多目标优化的自抗扰控制器;所述多目标优化的自抗扰控制器分别以过热汽温系统的阀门开度和出口温度为输入和输出,根据保证系统稳定的计算方法得到频率稳定区域,采用多目标智能优化算法在频率稳定区域内优化寻找扩增状态观测器的频率,通过扩增状态观测器观测扰动状态,实现快速消除扰动。
2.根据权利要求1所述基于多目标优化的过热汽温自抗扰串级控制方法,其特征在于,得到频率稳定区域的方法如下:
自抗扰控制器的传递函数:
其中,s为拉布拉斯算子,b0为预设模型参数,ωco为扩张状态观测器的可调频率;
自抗扰控制器的频率特性:
其中,GC表示控制器的传递函数,N、D分别为分子、分母上的传递函数多项式,j表示复数坐标轴,ω表示频率;
GC(jω)P(jω)=-1
其中,P(jω)表示对象的频率特性;
其中,a,b为实数;
让上式实部和虚部均等于0,有:
通过求解正实数解的(ωoc)组获得频率稳定区域的边界。
3.根据权利要求2所述基于多目标优化的过热汽温自抗扰串级控制方法,其特征在于,多目标智能优化算法考虑如下的多目标优化问题:
其中,在优化区域Ω中代表决定矢量,为约束项,是两个优化性能指标,e(t)为参考值与被控对象之间的误差,L(jω)为闭环控制系统的开环传递函数。
4.根据权利要求3所述基于多目标优化的过热汽温自抗扰串级控制方法,其特征在于,所述多目标智能优化算法为粒子群优化算法。
5.根据权利要求4所述基于多目标优化的过热汽温自抗扰串级控制方法,其特征在于,采用多目标智能优化算法在频率稳定区域内优化寻找扩张状态观测器的频率的步骤如下:
(1)将求得的频率稳定区域作为优化区域Ω,设置粒子数目M、最大迭代次数N,迭代次数k=1;
(2)设计两个性能指标:
(3)将粒子群带入模型进行仿真计算,并根据性能指标最小以及约束条件:
将所有粒子群的解根据性能指标分为主导解和非主导解;
(4)主导解与历史解通过性能指标的对比更新第k+1次迭代的个体最优解非主导解在评估后选择部分解与主导解计算得到全局最优解gbest
(5)根据如下公式更新第i+1次迭代的粒子群:
其中,下标i表示第i个粒子,上标k、k+1表示第k次、第k+1次迭代,为速度矢量,x为粒子当前位置,w、c1和c2分别代表运动惯性、个体分量和群体记忆的权重;
(6)如果i<N,则重复执行步骤(4)~(5);否则重复执行步骤(2)~(6),直到解(ωoc)的性能指标最优为止。
6.根据权利要求5所述基于多目标优化的过热汽温自抗扰串级控制方法,其特征在于,采用多目标智能优化算法在频率稳定区域内寻找到的最优频率建立扩增状态观测器:
其中,z1,z2和z3为状态量的估计值,β1=3ωo,y为对象输出,b0为预设模型参数,控制律u0=k1(r-z1)-k2z2k2=2ωc,r为过热汽温设定值。
CN201810436145.4A 2018-05-09 2018-05-09 一种基于多目标优化的过热汽温自抗扰串级控制方法 Pending CN108490790A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810436145.4A CN108490790A (zh) 2018-05-09 2018-05-09 一种基于多目标优化的过热汽温自抗扰串级控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810436145.4A CN108490790A (zh) 2018-05-09 2018-05-09 一种基于多目标优化的过热汽温自抗扰串级控制方法

Publications (1)

Publication Number Publication Date
CN108490790A true CN108490790A (zh) 2018-09-04

Family

ID=63354424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810436145.4A Pending CN108490790A (zh) 2018-05-09 2018-05-09 一种基于多目标优化的过热汽温自抗扰串级控制方法

Country Status (1)

Country Link
CN (1) CN108490790A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794688A (zh) * 2020-01-06 2020-02-14 汉谷云智(武汉)科技有限公司 一种燃气锅炉机组智能操作优化方法、系统及存储介质
CN111413865A (zh) * 2020-03-05 2020-07-14 清华大学 一种扰动补偿的单回路过热汽温自抗扰控制方法
CN111736464A (zh) * 2020-05-19 2020-10-02 东南大学 一种基于广义扩增状态观测器的热工过程h无穷控制方法
CN112394643A (zh) * 2020-11-27 2021-02-23 大连理工大学 钢铁企业热电系统调度方法、系统及计算机可读存储介质
CN112578670A (zh) * 2020-12-01 2021-03-30 东南大学 一种热工过程自抗扰时滞控制器的参数整定方法及控制器
CN112764346A (zh) * 2020-12-24 2021-05-07 暨南大学 分散式自抗扰多变量控制方法
CN114063451A (zh) * 2021-10-13 2022-02-18 东南大学 优化燃料电池过氧量的数据驱动控制方法
CN114167909A (zh) * 2021-07-05 2022-03-11 山西大学 基于改进细菌菌落的主蒸汽温度线性自抗扰串级控制方法
CN114895567A (zh) * 2022-05-24 2022-08-12 国家能源集团科学技术研究院有限公司 一种基于pso-elm的超临界机组过热预测控制方法
TWI794865B (zh) * 2020-07-06 2023-03-01 日商Jfe鋼鐵股份有限公司 鐵水溫度之控制方法、作業指導方法、高爐之作業方法、鐵水之製造方法、鐵水溫度之控制裝置以及作業指導裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727071A (zh) * 2009-11-13 2010-06-09 上海电力学院 神经网络模型与二次型单神经元pid并行控制方法
CN101950156A (zh) * 2010-09-06 2011-01-19 重庆大学 一种自适应串级pid控制方法
CN102360176A (zh) * 2011-07-21 2012-02-22 山东省电力学校 基于简化二阶自抗扰控制器的电厂主汽温度控制方法
CN106765052A (zh) * 2016-11-21 2017-05-31 华北电力大学(保定) 一种电站锅炉蒸汽温度的智能计算预测控制方法
CN107479389A (zh) * 2017-09-30 2017-12-15 东南大学 一种火电机组过热汽温预测模糊自适应pid控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727071A (zh) * 2009-11-13 2010-06-09 上海电力学院 神经网络模型与二次型单神经元pid并行控制方法
CN101950156A (zh) * 2010-09-06 2011-01-19 重庆大学 一种自适应串级pid控制方法
CN102360176A (zh) * 2011-07-21 2012-02-22 山东省电力学校 基于简化二阶自抗扰控制器的电厂主汽温度控制方法
CN106765052A (zh) * 2016-11-21 2017-05-31 华北电力大学(保定) 一种电站锅炉蒸汽温度的智能计算预测控制方法
CN107479389A (zh) * 2017-09-30 2017-12-15 东南大学 一种火电机组过热汽温预测模糊自适应pid控制方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H.FU*等: "Cascaded PI Controller Tuning for Power Plant Superheated Steam Temperature based on Multi-Objective Optimization", 《IFAC PAPERSONLINE》 *
LI SUN等: "Multi-objective optimization for advanced superheater steam temperature control in a 300 MW power plant", 《APPLIED ENERGY》 *
MAKEXIMU等: "Active Disturbance Rejection Control for Boiler Superheated Steam Temperature", 《INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION AND SYSTEMS》 *
吴振龙等: "基于多目标遗传算法的过热汽温建模与仿真", 《系统仿真学报》 *
陆颖等: "基于强化学习的锅炉过热汽温控制优化", 《工业控制计算机》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794688B (zh) * 2020-01-06 2020-05-05 汉谷云智(武汉)科技有限公司 一种燃气锅炉机组智能操作优化方法、系统及存储介质
CN110794688A (zh) * 2020-01-06 2020-02-14 汉谷云智(武汉)科技有限公司 一种燃气锅炉机组智能操作优化方法、系统及存储介质
CN111413865B (zh) * 2020-03-05 2021-07-13 清华大学 一种扰动补偿的单回路过热汽温自抗扰控制方法
CN111413865A (zh) * 2020-03-05 2020-07-14 清华大学 一种扰动补偿的单回路过热汽温自抗扰控制方法
CN111736464A (zh) * 2020-05-19 2020-10-02 东南大学 一种基于广义扩增状态观测器的热工过程h无穷控制方法
CN111736464B (zh) * 2020-05-19 2022-04-26 东南大学 一种基于广义扩增状态观测器的热工过程h无穷控制方法
TWI794865B (zh) * 2020-07-06 2023-03-01 日商Jfe鋼鐵股份有限公司 鐵水溫度之控制方法、作業指導方法、高爐之作業方法、鐵水之製造方法、鐵水溫度之控制裝置以及作業指導裝置
CN112394643A (zh) * 2020-11-27 2021-02-23 大连理工大学 钢铁企业热电系统调度方法、系统及计算机可读存储介质
CN112394643B (zh) * 2020-11-27 2021-11-09 大连理工大学 钢铁企业热电系统调度方法、系统及计算机可读存储介质
CN112578670B (zh) * 2020-12-01 2022-05-24 东南大学 一种热工过程自抗扰时滞控制器的参数整定方法及控制器
CN112578670A (zh) * 2020-12-01 2021-03-30 东南大学 一种热工过程自抗扰时滞控制器的参数整定方法及控制器
CN112764346B (zh) * 2020-12-24 2022-04-01 暨南大学 分散式自抗扰多变量控制方法
CN112764346A (zh) * 2020-12-24 2021-05-07 暨南大学 分散式自抗扰多变量控制方法
CN114167909A (zh) * 2021-07-05 2022-03-11 山西大学 基于改进细菌菌落的主蒸汽温度线性自抗扰串级控制方法
CN114167909B (zh) * 2021-07-05 2022-05-27 山西大学 基于改进细菌菌落的主蒸汽温度线性自抗扰串级控制方法
CN114063451A (zh) * 2021-10-13 2022-02-18 东南大学 优化燃料电池过氧量的数据驱动控制方法
CN114063451B (zh) * 2021-10-13 2023-09-01 东南大学 优化燃料电池过氧量的数据驱动控制方法
CN114895567A (zh) * 2022-05-24 2022-08-12 国家能源集团科学技术研究院有限公司 一种基于pso-elm的超临界机组过热预测控制方法

Similar Documents

Publication Publication Date Title
CN108490790A (zh) 一种基于多目标优化的过热汽温自抗扰串级控制方法
Mohanty et al. Differential evolution algorithm based automatic generation control for interconnected power systems with non-linearity
Fang et al. Backstepping-based nonlinear adaptive control for coal-fired utility boiler–turbine units
CN103576553B (zh) 一种燃煤锅炉蒸汽温度的分数阶自整定控制方法
CN107515598A (zh) 基于多参数动态矩阵控制的火电机组分布式协调控制系统
Khamies et al. An efficient control strategy for enhancing frequency stability of multi-area power system considering high wind energy penetration
CN104534507A (zh) 一种锅炉燃烧优化控制方法
CN110879620B (zh) 一种核电站立式蒸汽发生器液位控制方法以及系统
WO2020062806A1 (zh) 一种用于燃烧后co 2捕集系统的改进ina前馈控制方法
CN105119543B (zh) 一种发电机组调速系统远端线路甩负荷的控制方法及系统
CN107270283B (zh) 一种基于循环流化床机组的多变量约束预测控制方法
CN101556038A (zh) 循环流化床锅炉稳定运行与经济燃烧优化控制系统
Sambariya et al. A robust PID controller for load frequency control of single area re-heat thermal power plant using elephant herding optimization techniques
WO2022121446A1 (zh) 控制系统、无功电压控制方法和装置、介质以及计算装置
CN105573123A (zh) 一种基于改进的t-s模糊预测建模的火电机组机炉协调控制方法
CN109116724A (zh) 一种基于粒子群改进细菌觅食算法的负荷频率控制方法
CN108762086B (zh) 基于模型预测控制的二次再热蒸汽温度控制装置及控制系统
Zheng et al. Deep reinforcement learning based active disturbance rejection load frequency control of multi-area interconnected power systems with renewable energy
Elhosseini et al. Heat recovery steam generator (HRSG) three-element drum level control utilizing Fractional order PID and fuzzy controllers
CN111245032B (zh) 一种计及风电场集电线路降损优化的电压预测控制方法
CN113852098B (zh) 一种基于多目标蜻蜓算法的自动发电控制调度方法
CN113189871B (zh) 一种面向火电机组灵活性运行的协调控制策略
CN114547983A (zh) 一种基于改进的多种群遗传算法的反应堆运行优化方法
CN109506248A (zh) 一种基于可在线寻优的案例推理查询式锅炉燃烧优化方法
Sheng et al. Sliding mode controller with AGA for drum water level of ship boiler

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180904