CN106647283A - 一种基于改进cpso的自抗扰位置伺服系统优化设计方法 - Google Patents

一种基于改进cpso的自抗扰位置伺服系统优化设计方法 Download PDF

Info

Publication number
CN106647283A
CN106647283A CN201710049423.6A CN201710049423A CN106647283A CN 106647283 A CN106647283 A CN 106647283A CN 201710049423 A CN201710049423 A CN 201710049423A CN 106647283 A CN106647283 A CN 106647283A
Authority
CN
China
Prior art keywords
particle
chaos
disturbance rejection
value
active disturbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710049423.6A
Other languages
English (en)
Inventor
黄文俊
白瑞林
朱渊渤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINJE ELECTRONIC CO Ltd
Original Assignee
XINJE ELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINJE ELECTRONIC CO Ltd filed Critical XINJE ELECTRONIC CO Ltd
Priority to CN201710049423.6A priority Critical patent/CN106647283A/zh
Publication of CN106647283A publication Critical patent/CN106647283A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于CPSO的自抗扰位置伺服系统优化设计方法。针对永磁同步电机伺服系统要求位置控制精度高、响应快和稳定性能好等问题,采用双环控制结构,建立了PMSM自抗扰位置伺服控制系统,并针对自抗扰位置控制器参数整定困难的问题,提出一种改进的混沌粒子群算法(CPSO),该算法根据混沌立方映射来初始化粒子位置,并采用参数可调的指数自适应方式非线性调整惯性权重,同时采用混沌与稳定之间交替运动的方式更新粒子位置,有效提高了算法的收敛速度和全局寻优能力,将其用于自抗扰位置控制器参数的寻优,结合包含位置控制要求的适应度函数,实现PMSM位置伺服控制系统的优化设计,提高了伺服系统的位置控制精度和响应速度,具有较强抗扰动能力。

Description

一种基于改进CPSO的自抗扰位置伺服系统优化设计方法
技术领域
本发明属于高精度位置伺服控制系统的技术领域,具体涉及一种基于CPSO的自抗扰位置伺服系统优化设计方法,适用于永磁同步电机的高精度位置控制。
背景技术
在高精度位置伺服系统中,由于永磁同步电机(PMSM)性能优越,广泛应用于各种工业领域,逐渐成为高精度伺服系统执行电机的主流。目前在传统的PMSM位置伺服系统中,最常见的形式是三环线性结构,控制环中一般都采用PID控制器,实现较为简单,然而永磁同步电机作为一个多变量、非线性、强耦合的被控对象,在伺服系统实际运行过程中,存在着电机本体参数时变、负载对象具有不确定性以及应用环境存在干扰等诸多扰动因素,这种控制结构存在控制器较多,适用范围较小,系统抗扰能力较差等缺点,难以满足PMSM位置伺服系统追求的定位的快速性、准确性和无超调等性能指标。
为了获得高性能的PMSM位置伺服系统,很多先进的非线性控制算法被应用于永磁同步电机的控制研究中,如自抗扰控制、内膜控制、模糊控制、神经网络控制、滑模变结构控制等。其中,由于自抗扰控制技术(ADRC)不依赖于被控对象的内部机理和外扰规律,通过对总扰动量的实时估计并给予及时主动补偿,具有抗扰动能力强、精度高、响应速度快等特点,同时算法简单易实现,成为了PMSM伺服控制系统控制策略的研究热点。然而ADRC参数较多,调节繁杂,参数整定过程和效果在很大程度上依赖于人们的经验,因此,参数整定问题成为ADRC实际应用所要解决的一个最基本问题。
目前,对自抗扰控制器的参数优化的研究成果,主要是结合各种智能参数寻优算法对ADRC的参数进行寻优,如基于时间尺度ADRC整定方法、自适应遗传算法(AGA)、小生境粒子群优化算法等,取得了一定效果。针对自抗扰位置控制器,有研究者将模糊控制理论引入到位置自抗扰控制器的设计中,减少了可调参数,然而模糊控制规则的设计较为困难,并且只是整定ADRC中非线性误差反馈的参数,依然没有解决参数整定的问题。
发明内容
本发明的目的是提供一种基于CPSO的自抗扰位置伺服系统优化设计方法,旨在实现位置控制精度高、响应速度快、抗扰动能力强和稳定性能好的永磁同步电机位置伺服系统。
为实现上述技术目的,本发明将采取以下的技术方案:一种基于改进混沌粒子群算法的自抗扰位置伺服控制系统的优化设计方法,其特征在于:采用位置外环,电流内环的双环控制结构,建立了二阶自抗扰位置伺服控制系统,然后从采用混沌立方映射对粒子位置进行初始化、指数自适应非线性的调整惯性权重和混沌与稳定之间交替运动的粒子位置更新方式三个方面,提出一种改进的混沌粒子群算法来对自抗扰位置控制器进行参数寻优,解决其参数整定问题。其具体步骤如下:
步骤1:采用位置外环和电流内环的双环控制结构,根据位置给定值θ*和位置反馈值θ设计二阶自抗扰位置控制器,电流环任然仍采用PI调节器,搭建永磁同步电机二阶自抗扰位置伺服控制闭环回路。
步骤2:初始化粒子群算法参数,包括粒子总个数n设为20,粒子的搜索空间维数D设置为5,加速度常数c1、c2的值都设置为2,惯性权重ω的最小值ωmin设置为0.4,最大值ωmax设置为0.9,最大迭代次数T设置为100。第i(i=1,2,…,n)个粒子的位置Xi=(xi1,xi2,…,xiD)代表着二阶自抗扰位置控制器中需要整定的5个参数{β01020312},确定每一个参数的调节范围,即第d维的范围[xdmin,xdmax],粒子i第d维的速度vid的最大值vdmax=0.2×xdmax,初始化自抗扰位置控制器其它不需要整定的参数,给出终止条件。
步骤3:初始化粒子种群,采用混沌立方映射对粒子位置进行初始化,并采用随机过程初始化粒子速度。
步骤4:将初始种群中每个粒子的位置向量依次作为自抗扰位置控制器待优化的5个参数{β01020312},对永磁同步电机自抗扰位置伺服控制系统进行仿真,计算每个初始粒子的适应度函数并存储其适应度函数值,将适应度函数值作为衡量粒子位置优劣的依据。将粒子自身最优位置Pi=(Pi1,Pi2,…,PiD)设为其当前位置,全局最优位置Pg=(Pg1,Pg2,…,PgD)设为初始种群中最优粒子的位置。
步骤5:在迭代过程中,根据适应度函数计算每一个粒子的适应度函数值,如果该粒子的适应度值小于该粒子自身之前的适应度值,则用该粒子当前的位置替换Pi,如果该粒子的适应度值小于当前粒子种群全局最优的适应度值,则用该粒子当前的位置替换Pg
步骤6:采用参数可调的指数自适应方式非线性的调整惯性权重,并按照标准粒子群中的速度更新公式对每个粒子的速度进行更新。
步骤7:采用将混沌融入到粒子的运动过程中,使粒子群在混沌与稳定之间交替运动的粒子位置更新公式分别对每个粒子的位置进行更新。
步骤8:将群体适应度方差σ2引入到混沌与稳定之间交替运动的混沌粒子群中,根据σ2来判断算法是否处于局部最优,进而进行混沌变量cid的设置。
步骤9:判断是否满足终止条件,若满足则输出最终的全局最优粒子gbest,即自抗扰位置控制器的最优参数,和相对应的适应度值并退出程序;反之转向步骤5。
步骤1中,所述二阶自抗扰位置控制器包括跟踪微分器(TD)、扩张状态观测器(ESO)以及非线性状态误差反馈控制律(NLSEF)。
所述跟踪微分器为给定的位置信号θ*安排过渡过程,得到对θ*快速无超调的跟踪值v1,并给出其品质良好的微分信号v2,其具体表达式为:
式中,v1是位置给定值θ*的跟踪信号;v2是θ*的微分信号;e01为跟踪信号与位置给定值之间的差值;r0为速度因子,决定跟踪速度;h为滤波因子,决定滤波效果。其中函数fhan(x1,x2,r,h)是快速最优控制综合函数,其表达式为:
所述扩张状态观测器跟踪位置伺服系统的位置反馈值θ,同时给出系统的状态变量的估计值z1、z2以及系统总扰动的实时估计z3,其具体表达式为:
式中,θ为转子位置反馈信号;z1为实际位置θ的估计跟踪值;z2为z1的微分信号;z3为位置伺服系统总扰动的观测值;e02为z1跟踪输出值θ的误差;b0为扰动补偿因子,是控制器系数b的估计值,iq *为给定的q电流指令值;β01、β02、β03为一组可调参数,是ESO重点调整参数;α11、α12分别是2个最优控制函数非线性因子;δ1是滤波因子;最优控制函数是在原点附近具有线性连续的幂次函数,α为非线性因子,δ为滤波因子。
所述非线性状态误差反馈控制将跟踪微分器给出的跟踪信号v1和微分信号v2与扩张状态观测器得到的状态变量估计z1和z1之间的误差经过非线性处理得到初级的控制作用u0,再经过扰动补偿得到自抗扰控制器的控制作用输出:
式中,β1、β2为需要参数;iq *为自抗扰位置控制器的输出,即电流给定值;α21、α22分别是2个最优控制函数非线性因子;δ2是滤波因子。
步骤3中,所述混沌立方映射对粒子位置进行初始化,是首先随机产生一个各分量值均在0~1之间的D维混沌初值z0=(z01,z02,...,z0D),根据混沌立方映射的迭代公式zm+1=4zm 3-3zm(m=0,1,2,…),经过n次迭代运算,得到n个混沌变量z1,z2,…,zn,然后将产生的混沌变量zi的各个分量采用映射到优化变量的取值区间。其中,-1≤zm≤1,zm≠0,i=1,2,…,n,d=1,2,…,D,xid是第i个粒子第d维的位置,xdmin和xdmax分别是粒子第d维的最大值和最小值。
步骤4中,所述适应度函数设置为:
式中,e(t)为系统误差;Mp为超调量;u(t)为控制输入量;ke,ku和kM为权值。适应度函数J值越小,表明相应粒子越靠近全局最优解。
步骤6中,所述参数可调的指数自适应方式非线性的调整惯性权重,是采用如下的惯性权重表达式:
式中,ωmin和ωmax分别是惯性因子的最大值和最小值;参数τ根据经验选取,τ∈[20,55];S为大于1的整数,这里取S∈[1,10];t为当前迭代次数。
所述标准粒子群算法中速度更新公式为:
vid(t+1)=ω·vid(t)+c1·rand[Pid(t)-xid(t)]+c2·rand[Pgd(t)-xid(t)]
式中,Pid为粒子i第d维的个体最优值;Pgd为种群在第d维的全局最优值;rand为[0,1]之间的随机数;vid为粒子i第d维的速度,限定在[-vdmax,vdmax]内;xid为粒子i第d维的位置,限定在[xdmin,xdmax]内。
步骤7中,所述混沌与稳定之间交替运动的粒子位置更新公式为:
式中,t表示迭代次数;ψd为搜索测度,表示第d维的收索空间大小;Mi表示粒子i的搜索空间向负方向移动的比例;rid为第i个粒子第d维的混沌因子,是一个小于1的正常数,用来调节混沌粒子群算法的混沌程度;是影响粒子混沌程度的混沌变量,当混沌变量cid(t)→1时,主要是粒子个体的混沌在发挥作用。当cid(t)→0时,采用的是标准粒子群算法中的位置更新方式,这时是粒子群算法起主要作用。
步骤8中,所述粒子群算法的群体适应度方差定义为:
式中,fi表示第i个粒子的当代适应度值;表示当前粒子群体的平均适应度值;n表示群体粒子个数;f=max{1,max(|fi-favg|)},表示归一化因子。群体适应度方差σ2反映了粒子群的收敛程度,σ2越小表示粒子群算法越趋于收敛状态,反之,粒子群处于随机搜索阶段。
为了判定算法是否处于局部最优,对σ2设定一判断阈值σ2 set,当σ2<σ2 set且t<0.9T,即群体适应度方差小于早熟判断阈值时,粒子群已处于局部最优状态,此时令cid=0.999。不满足此条件时,即算法处于不稳定状态或者已经接近尾声,此时令cid=0。
根据以上的技术方案,可以实现以下的有益效果:
(1)本发明方法采用位置外环,电流内环的双环控制结构,同传统位置伺服系统中采用的三环控制结构相比,不仅减少了控制环节,优化了控制策略,而且增强了整个控制系统抗扰性,提高了系统稳定性。
(2)本发明针采用遍历性较好的混沌立方映射对粒子种群进行初始化,提高了初始种群的多样性和粒子的遍历性;提出一种参数可调的指数自适应惯性权重,适应范围广、调节更加灵活,有效提高了对复杂搜索过程的适应以及调节能力;利用混沌与稳定之间交替运动的粒子位置更新方式,有效避免早熟收敛和局部最优,提高算法的收敛速度和全局寻优能力,达到了优于其它混沌粒子群优化算法的效果。
(3)本发明将所提出的改进的混沌粒子群算法用于自抗扰位置控制器的参数优化,解决了其参数整定困难的问题,可自动获得控制性能高的最优位置控制参数,得到响应快、无超调、控制精度高和抗扰能力强的PMSM自抗扰位置控制系统。
附图说明
图1为本发明的伺服系统结构图
图2为本发明的算法流程图
图3为本发明中的自抗扰位置控制器
图4为本发明的算法结构图
具体实施方式
以下结合附图,具体说明本发明的实施方式。
本发明提供的基于改进混沌粒子群算法的永磁同步电机自抗扰位置伺服系统的结构如图1所示,首先将传统三环结构中的位置环和速度环合并,采用双环控制结构,对位置环设计二阶自抗扰控制器,建立了二阶自抗扰位置伺服控制系统。其次针对所设计的自抗扰位置控制器参数整定困难的问题,提出一种改进的混沌粒子群算法,该算法根据混沌立方映射来初始化粒子位置,并采用参数可调的指数自适应方式非线性的调整惯性权重,同时采用混沌与稳定之间交替运动的方式更新粒子位置,有效提高了算法的收敛速度和全局寻优能力,将其用于自抗扰位置控制器5个参数的寻优,解决其参数整定问题。本发明具体算法流程如图2所示,包含以下步骤:
步骤1:采用位置外环和电流内环的双环控制结构,根据位置给定值θ*和位置反馈值θ设计二阶自抗扰位置控制器,电流环任然仍采用PI调节器,搭建永磁同步电机二阶自抗扰位置伺服控制闭环回路。
永磁同步电机伺服控制系统中,为使转速和电流解耦,常采用id≡0的矢量控制方式。由PMSM的数学模型可得其位置环的二阶动态方程为:
式中,θ为转子位置;TL为负载转矩;J为电机与负载转动惯量之和;B为粘滞摩擦系数;Ω为电机转子机械角速度;pn为电机极对数;ψf为转子磁动势;iq为转矩电流;为综合扰动项;系统控制量的增益
根据位置给定值θ*和反馈值θ设计二阶自抗扰位置控制器,二阶自抗扰位置控制器包括跟踪微分器、扩张状态观测器以及非线性状态误差反馈控制律,其结构如图3所示,各部分设计如下。
所述跟踪微分器为给定的位置信号θ*安排过渡过程,得到对θ*快速无超调的跟踪值v1,并给出其品质良好的微分信号v2,其具体表达式为:
式中,v1是位置给定值θ*的跟踪信号;v2是θ*的微分信号;e01为跟踪信号与位置给定值之间的差值;r0为速度因子,决定跟踪速度;h为滤波因子,决定滤波效果。
所述扩张状态观测器跟踪位置伺服系统的位置反馈值θ,同时给出系统的状态变量的估计值z1、z2以及系统总扰动的实时估计z3,其具体表达式为:
式中,θ为转子位置反馈信号;z1为实际位置θ的估计跟踪值;z2为z1的微分信号;z3为位置伺服系统总扰动的观测值;e02为z1跟踪输出值θ的误差;b0为扰动补偿因子,是控制器系数b的估计值,iq *为给定的q电流指令值;β01、β02、β03为一组可调参数,是ESO重点调整参数;α11、α12分别是2个最优控制函数非线性因子,δ1是滤波因子。
所述非线性状态误差反馈控制将跟踪微分器给出的跟踪信号v1和微分信号v2与扩张状态观测器得到的状态变量估计z1和z1之间的误差经过非线性处理得到初级的控制作用u0,再经过扰动补偿得到自抗扰控制器的控制作用输出:
式中,β1、β2为可调参数;iq *为自抗扰位置控制器的输出,即电流给定值;α21、α22分别是2个最优控制函数非线性因子;δ2是滤波因子。
步骤2:初始化粒子群算法的相关参数,包括粒子总个数n设为20,粒子的搜索空间维数D设置为5,加速度常数c1、c2的值都设置为2,惯性权重ω的最小值ωmin设置为0.4,最大值ωmax设置为0.9,最大迭代次数T设置为100。第i(i=1,2,…,n)个粒子的位置Xi=(xi1,xi2,…,xiD)代表着二阶自抗扰位置控制器中需要整定的5个参数{β01020312},确定每一个参数的调节范围,即第d维的范围[xdmin,xdmax],粒子i第d维的速度vid的最大值vdmax=0.2×xdmax,初始化自抗扰位置控制器其它不需要整定的参数并给出终止条件。
步骤3:初始化粒子种群,采用混沌立方映射对粒子位置进行初始化,并采用随机过程初始化粒子速度。粒子群优化算法对初值较为敏感,初始种群在决策空间分布越均匀,搜索效果就越好。利用混沌运动能在一定范围内按自身的规律不重复地遍历所有状态的特点,采用混沌立方映射对初始种群进行赋值,利用混沌机制提高初始种群的多样性和粒子的遍历性。
所述混沌立方映射对粒子位置进行初始化,是首先随机产生一个各分量值均在0~1之间的D维混沌初值z0=(z01,z02,...,z0D),根据式(5)中混沌立方映射的迭代公式,经过n次迭代运算,得到n个混沌变量z1,z2,…,zn,然后将产生的混沌变量zi的各个分量采用式(6)映射到优化变量的取值区间。
zm+1=4zm 3-3zm m=0,1,2,… (5)
式中,-1≤zm≤1;zm≠0。
式中,i=1,2,…,n;d=1,2,…,D,本文需要优化的参数有5个,故这里D=5;xid是第i个粒子第d维的位置;xd min和xd max分别是粒子第d维的最大值和最小值。
步骤4:将初始种群中每个粒子的位置向量依次作为自抗扰位置控制器待优化的5个参数{β01020312},对永磁同步电机自抗扰位置伺服控制系统进行仿真,计算每个初始粒子的适应度函数并存储其适应度函数值,将适应度函数值作为衡量粒子位置优劣的依据。将粒子自身最优位置Pi=(Pi1,Pi2,…,PiD)设为其当前位置,全局最优位置Pg=(Pg1,Pg2,…,PgD)设为初始种群中最优粒子的位置。
在设置适应度函数时,为使位置伺服系统获得满意的控制性能,实现较快的系统响应,平稳的运行以及较小的超调,将系统误差e(t)、超调量Mp以不同形式综合到性能指标中。同时,为防止控制能量过大,在适应度函数中加入控制输入量u(t)的绝对值项,所述适应度函数表达式为
式中,ke,ku和kM为权值。适应度函数J值越小,表明相应粒子越靠近全局最优解。
步骤5:在迭代过程中,根据适应度函数计算每一个粒子的适应度函数值,如果该粒子的适应度值小于该粒子自身之前的适应度值,则用该粒子当前的位置替换Pi,如果该粒子的适应度值小于当前粒子种群全局最优的适应度值,则用该粒子当前的位置替换Pg
步骤6:采用参数可调的指数自适应方式非线性的调整惯性权重,并按照式(9)的速度更新公式对每个粒子的速度进行更新。
在粒子群算法中,惯性权重ω是一个很重要的参数,可以用来控制算法的全局开发和局部寻优能力,ω较大时算法具有较强的全局搜索能力,较小时则具有较强的局部开发能力,适当的选择惯性权重将显著提高算法的性能。
所述参数可调的指数自适应方式非线性的调整惯性权重,是采用如下的惯性权重表达式:
式中,ωmin和ωmax分别是惯性因子的最大值和最小值;参数τ根据经验选取,τ∈[20,55];S为大于1的整数,这里取S∈[1,10];t为当前迭代次数。具有可调参数τ和S的惯性权重ω可以根据文中位置伺服系统不同的工况,更加灵活的调整,对复杂的非线性搜索过程具有更强的适应以及调节能力,进而获得比线性调整和固定值更好的搜索效果。
所述速度更新公式为
vid(t+1)=ω·vid(t)+c1·rand[Pid(t)-xid(t)]+c2·rand[Pgd(t)-xid(t)] (9)
式中,Pid为粒子i第d维的个体最优值;Pgd为种群在第d维的全局最优值;rand为[0,1]之间的随机数;vid为粒子i第d维的速度,限定在[-vdmax,vdmax]内;xid为粒子i第d维的位置,限定在[xd min,xd max]内。
步骤7:采用将混沌融入到粒子的运动过程中,使粒子群在混沌与稳定之间交替运动的粒子位置更新公式分别对每个粒子的位置进行更新。
所述混沌与稳定之间交替运动的粒子位置更新公式为
式中,t表示迭代次数;ψd为搜索测度,表示第d维的收索空间大小;Mi表示粒子i的搜索空间向负方向移动的比例;rid为第i个粒子第d维的混沌因子,是一个小于1的正常数,用来调节混沌程度;是影响粒子混沌程度的混沌变量,当混沌变量cid(t)→1时,主要是粒子个体的混沌在发挥作用。当cid(t)→0时,采用的是标准粒子群算法中的位置更新方式,这时是粒子群算法起主要作用。这种位置更新方式不同于其它混沌粒子群算法中的简单粒子序列替换,而是模拟粒子群混沌与稳定的交替运动过程,达到了优于其它混沌粒子群优化算法的效果。
步骤8:将群体适应度方差σ2引入到混沌与稳定之间交替运动的混沌粒子群中,根据σ2来判断算法是否处于局部最优。
所述粒子群算法的群体适应度方差定义为:
式中,fi表示第i个粒子的当代适应度值;表示当前粒子群体的平均适应度值;n表示群体粒子个数;f=max{1,max(|fi-favg|)},表示归一化因子。
群体适应度方差σ2反映了粒子群的收敛程度,σ2越小表示粒子群算法越趋于收敛状态,反之,粒子群处于随机搜索阶段。为σ2设定一判断阈值σ2 set,用于判定算法是否处于局部最优,当σ2<σ2 set且t<0.9T,即群体适应度方差小于早熟判断阈值时,粒子群已陷入停滞状态,算法处于局部最优状态,此时令cid=0.999。不满足此条件时,即算法处于不稳定状态或者已经接近尾声,此时令cid=0。
步骤9:判断是否满足终止条件,若满足则输出最终的全局最优粒子gbest,即自抗扰位置控制器的最优参数,和相对应的适应度值并退出程序,将最优参数用于永磁同步电机自抗扰位置伺服控制系统的控制,本发明的算法结构如图4所示;反之转向步骤5。
所述终止条件,是种群最优适应度函数值小于所设定的适应度阈值Jset或者迭代次数达到最大迭代次数T。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (7)

1.一种基于CPSO的自抗扰位置伺服系统优化设计方法,其特征在于包含如下步骤:
步骤1:采用位置外环和电流内环的双环控制结构,搭建永磁同步电机二阶自抗扰位置伺服控制闭环回路;
步骤2:初始化粒子群算法参数,包括粒子总个数n,粒子的搜索空间维数D,加速度常数c1、c2,惯性权重ω的最小值ωmin和最大值ωmax,最大迭代次数T;第i(i=1,2,…,n)个粒子的位置Xi=(xi1,xi2,…,xiD)代表着二阶自抗扰位置控制器中需要整定的5个参数{β01020312},确定每一个参数的调节范围,即第d维的范围[xdmin,xdmax],粒子i第d维的速度vid的最大值vdmax=0.2×xdmax,初始化自抗扰位置控制器其它不需要整定的参数,给出终止条件;
步骤3:初始化粒子种群,采用混沌立方映射对粒子位置进行初始化,并采用随机过程初始化粒子速度;
步骤4:将初始种群中每个粒子的位置向量依次作为自抗扰位置控制器待优化的5个参数{β01020312},对永磁同步电机自抗扰位置伺服控制系统进行仿真,计算每个初始粒子的适应度函数并存储其适应度函数值,将适应度函数值作为衡量粒子位置优劣的依据;将粒子自身最优位置Pi=(Pi1,Pi2,…,PiD)设为其当前位置,全局最优位置Pg=(Pg1,Pg2,…,PgD)设为初始种群中最优粒子的位置;
步骤5:在迭代过程中,根据适应度函数计算每一个粒子的适应度函数值,如果该粒子的适应度值小于该粒子自身之前的适应度值,则用该粒子当前的位置替换Pi,如果该粒子的适应度值小于当前粒子种群全局最优粒子的适应度值,则用该粒子当前的位置替换Pg
步骤6:采用参数可调的指数自适应方式非线性的调整惯性权重,并按照标准粒子群中的速度更新公式对每个粒子的速度进行更新;
步骤7:采用将混沌融入到粒子的运动过程中,使粒子群在混沌与稳定之间交替运动的粒子位置更新公式分别对每个粒子的位置进行更新;
步骤8:将群体适应度方差σ2引入到混沌与稳定之间交替运动的混沌粒子群中,根据σ2来判断算法是否处于局部最优,进而进行混沌变量cid的设置;
步骤9:判断是否满足终止条件,若满足则输出最终的全局最优粒子gbest,即自抗扰位置控制器的最优参数,和相对应的适应度值并退出程序;反之转向步骤5。
2.根据权利要求1所述的一种基于CPSO的自抗扰位置伺服系统优化设计方法,其特征在于,所述步骤1中,采用位置外环和电流内环的双环控制结构,根据位置给定值θ*和位置反馈值θ,对所述位置外环设计了二阶自抗扰位置控制器,所述电流内环采用PI调节器,建立永磁同步电机的二阶自抗扰位置伺服控制系统。
3.根据权利要求1所述的一种基于CPSO的自抗扰位置伺服系统优化设计方法,其特征在于,所述步骤3中,混沌立方映射对粒子位置进行初始化,首先是随机产生一个各分量值均在0~1之间的D维混沌初值z0=(z01,z02,...,z0D),根据混沌立方映射的迭代公式zm+1=4zm 3-3zm(m=0,1,2,…),经过n次迭代运算,得到n个混沌变量z1,z2,…,zn,然后将产生的混沌变量zi的各个分量采用映射到优化变量的取值区间;其中,-1≤zm≤1,zm≠0,i=1,2,…,n,d=1,2,…,D,xid是第i个粒子第d维的位置,xdmin和xdmax分别是粒子第d维的最大值和最小值。
4.根据权利要求1所述的基于改进混沌粒子群算法的自抗扰位置伺服控制系统的优化设计方法,其特征在于,所述步骤4中,设置的适应度函数是系统误差e(t)、超调量Mp和控制输入量u(t)不同形式的综合,其表达式为其中ke,ku和kM为权值。
5.根据权利要求1所述的一种基于CPSO的自抗扰位置伺服系统优化设计方法,其特征在于,所述步骤6中是采用一种参数可调的指数自适应方式非线性的调整惯性权重,该惯性权重具有两个可调参数τ和S,其具体的表达式为
ω = ω min + ( ω max - ω min ) e ( - τ ( t / T ) S )
其中,ωmin和ωmax分别是惯性因子的最大值和最小值,取值为0.4和0.9,参数τ具体为τ∈[20,55],S为大于1的整数,具体为S∈[1,10],t为当前迭代次数。
6.根据权利要求1所述的一种基于CPSO的自抗扰位置伺服系统优化设计方法,其特征在于,所述步骤7中,粒子的位置更新方式是采用将混沌融入到粒子的运动过程中的混沌与稳定之间交替运动的粒子位置更新公式:
x i d ( t ) = ( x i d ( t - 1 ) + ψ d × M i ) × exp ( ( 1 - exp ( - 200 × c i d ( t ) ) ) × ( 3 - 7.5 ψ d ( x i d ( t - 1 ) + ψ d × M i ) ) ) - ψ d × M i + exp ( - 400 × c i d ( t ) ) × v i d ( t )
其中,t表示迭代次数;ψd为搜索测度,表示第d维的收索空间大小;Mi表示粒子i的搜索空间向负方向移动的比例;rid为第i个粒子第d维的混沌因子,是一个小于1的正常数,用来调节混沌程度;是影响粒子混沌程度的混沌变量,当混沌变量cid(t)→1时,主要是粒子个体的混沌在发挥作用;当cid(t)→0时,采用的是标准粒子群算法中的位置更新方式,这时是粒子群算法起主要作用。
7.根据权利要求1所述的一种基于CPSO的自抗扰位置伺服系统优化设计方法,其特征在于,所述步骤8中,为判定粒子是否陷入局部最优状态,将群体适应度方差σ2引入到混沌与稳定之间交替运动的混沌粒子群中,根据σ2来判断算法是否处于局部最优;粒子群算法的群体适应度方差定义为:
σ 2 = Σ i = 1 n ( f i - f a v g f ) 2
其中,fi表示第i个粒子的当代适应度值;表示当前粒子群体的平均适应度值;n表示群体粒子个数;f=max{1,max(|fi-favg|)},表示归一化因子;
为了判定算法是否处于局部最优,对σ2设定一判断阈值σ2 set,当σ2<σ2 set且t<0.9T,即群体适应度方差小于早熟判断阈值时,粒子群已处于局部最优状态,此时令cid=0.999;不满足此条件时,即算法处于不稳定状态或者已经接近尾声,此时令cid=0。
CN201710049423.6A 2017-01-23 2017-01-23 一种基于改进cpso的自抗扰位置伺服系统优化设计方法 Pending CN106647283A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710049423.6A CN106647283A (zh) 2017-01-23 2017-01-23 一种基于改进cpso的自抗扰位置伺服系统优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710049423.6A CN106647283A (zh) 2017-01-23 2017-01-23 一种基于改进cpso的自抗扰位置伺服系统优化设计方法

Publications (1)

Publication Number Publication Date
CN106647283A true CN106647283A (zh) 2017-05-10

Family

ID=58841998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710049423.6A Pending CN106647283A (zh) 2017-01-23 2017-01-23 一种基于改进cpso的自抗扰位置伺服系统优化设计方法

Country Status (1)

Country Link
CN (1) CN106647283A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490961A (zh) * 2017-07-26 2017-12-19 东华大学 一种用于控制不稳定滞后对象的双闭环结构的控制器
CN108171241A (zh) * 2018-01-22 2018-06-15 大连大学 基于IFCS/Otsu的IOFR火焰识别方法
CN109799703A (zh) * 2018-12-20 2019-05-24 广西师范大学 一种粒子群自抗扰控制方法、装置及存储介质
CN109901383A (zh) * 2019-03-01 2019-06-18 江苏理工学院 一种交流伺服电机驱动器控制方法
CN110095981A (zh) * 2019-04-02 2019-08-06 南京交通职业技术学院 一种自抗扰控制器参数的整定方法、装置和电子设备
CN110275441A (zh) * 2019-07-02 2019-09-24 武汉科技大学 一种psorbfd快速自适应解耦控制方法
CN110378057A (zh) * 2019-07-26 2019-10-25 大连海事大学 一种内置式永磁同步电机抗干扰控制器及其设计方法
CN110794877A (zh) * 2019-11-22 2020-02-14 北京理工大学 一种车载摄像头云台伺服系统及控制方法
CN110802589A (zh) * 2019-10-23 2020-02-18 山东科技大学 一种工业机器人单关节伺服控制的迟滞补偿方法
CN111211718A (zh) * 2020-01-14 2020-05-29 浙江大学 一种用于永磁同步电机矢量控制的自抗扰控制器参数自动调节系统
CN111628687A (zh) * 2020-05-28 2020-09-04 武汉理工大学 一种基于熵权法的永磁同步电机多目标参数优化方法
CN112486100A (zh) * 2020-12-11 2021-03-12 华中科技大学 一种交流伺服系统控制参数稳定域求解方法
CN112671291A (zh) * 2020-11-06 2021-04-16 北京工业大学 一种基于改进粒子群的电机串级自抗扰控制参数优化方法
CN113726240A (zh) * 2020-05-21 2021-11-30 北京机械设备研究所 一种基于二阶自抗扰控制的永磁同步电机控制方法及系统
CN114167909A (zh) * 2021-07-05 2022-03-11 山西大学 基于改进细菌菌落的主蒸汽温度线性自抗扰串级控制方法
CN114879502A (zh) * 2022-05-23 2022-08-09 中国科学院光电技术研究所 一种位置环自抗扰控制器参数自整定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980470A (zh) * 2010-10-03 2011-02-23 鲁东大学 一种基于混沌粒子群优化的ofdm系统资源分配算法
CN104090490A (zh) * 2014-07-04 2014-10-08 北京工业大学 一种基于混沌粒子群优化算法的输入整形器闭环控制方法
CN105205838A (zh) * 2015-08-24 2015-12-30 重庆邮电大学 一种基于混沌粒子群算法的矢量量化码书构造方法
CN105654476A (zh) * 2015-12-25 2016-06-08 江南大学 基于混沌粒子群优化算法的双目标定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980470A (zh) * 2010-10-03 2011-02-23 鲁东大学 一种基于混沌粒子群优化的ofdm系统资源分配算法
CN104090490A (zh) * 2014-07-04 2014-10-08 北京工业大学 一种基于混沌粒子群优化算法的输入整形器闭环控制方法
CN105205838A (zh) * 2015-08-24 2015-12-30 重庆邮电大学 一种基于混沌粒子群算法的矢量量化码书构造方法
CN105654476A (zh) * 2015-12-25 2016-06-08 江南大学 基于混沌粒子群优化算法的双目标定方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘福才等: "基于混沌粒子群优化算法的异结构混沌反同步自抗扰控制", 《物理学报》 *
张益: "基于协同粒子群算法的PMSM在线参数辨识", 《中国优秀硕士学位论文全文数据库》 *
张良安等: "Ahut-Delta并联机构改进混沌粒子群算法尺度综合", 《农业机械学报》 *
贾亚飞: "自抗扰控制器研究及其应用", 《中国优秀硕士学位论文全文数据库》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490961A (zh) * 2017-07-26 2017-12-19 东华大学 一种用于控制不稳定滞后对象的双闭环结构的控制器
CN108171241B (zh) * 2018-01-22 2020-11-03 大连大学 基于IFCS/Otsu的IOFR火焰识别方法
CN108171241A (zh) * 2018-01-22 2018-06-15 大连大学 基于IFCS/Otsu的IOFR火焰识别方法
CN109799703A (zh) * 2018-12-20 2019-05-24 广西师范大学 一种粒子群自抗扰控制方法、装置及存储介质
CN109799703B (zh) * 2018-12-20 2021-08-31 广西师范大学 一种粒子群自抗扰控制方法、装置及存储介质
CN109901383A (zh) * 2019-03-01 2019-06-18 江苏理工学院 一种交流伺服电机驱动器控制方法
CN110095981A (zh) * 2019-04-02 2019-08-06 南京交通职业技术学院 一种自抗扰控制器参数的整定方法、装置和电子设备
CN110275441A (zh) * 2019-07-02 2019-09-24 武汉科技大学 一种psorbfd快速自适应解耦控制方法
CN110275441B (zh) * 2019-07-02 2022-04-12 武汉科技大学 一种psorbfd快速自适应解耦控制方法
CN110378057A (zh) * 2019-07-26 2019-10-25 大连海事大学 一种内置式永磁同步电机抗干扰控制器及其设计方法
CN110378057B (zh) * 2019-07-26 2023-10-27 大连海事大学 一种内置式永磁同步电机抗干扰控制器及其设计方法
CN110802589A (zh) * 2019-10-23 2020-02-18 山东科技大学 一种工业机器人单关节伺服控制的迟滞补偿方法
CN110794877A (zh) * 2019-11-22 2020-02-14 北京理工大学 一种车载摄像头云台伺服系统及控制方法
CN110794877B (zh) * 2019-11-22 2020-10-13 北京理工大学 一种车载摄像头云台伺服系统及控制方法
CN111211718A (zh) * 2020-01-14 2020-05-29 浙江大学 一种用于永磁同步电机矢量控制的自抗扰控制器参数自动调节系统
CN111211718B (zh) * 2020-01-14 2021-06-08 浙江大学 永磁同步电机矢量控制的自抗扰控制器参数自动调节系统
CN113726240A (zh) * 2020-05-21 2021-11-30 北京机械设备研究所 一种基于二阶自抗扰控制的永磁同步电机控制方法及系统
CN111628687A (zh) * 2020-05-28 2020-09-04 武汉理工大学 一种基于熵权法的永磁同步电机多目标参数优化方法
CN111628687B (zh) * 2020-05-28 2023-04-18 武汉理工大学 一种基于熵权法的永磁同步电机多目标参数优化方法
CN112671291A (zh) * 2020-11-06 2021-04-16 北京工业大学 一种基于改进粒子群的电机串级自抗扰控制参数优化方法
CN112486100B (zh) * 2020-12-11 2022-02-22 华中科技大学 一种交流伺服系统控制参数稳定域求解方法
CN112486100A (zh) * 2020-12-11 2021-03-12 华中科技大学 一种交流伺服系统控制参数稳定域求解方法
CN114167909B (zh) * 2021-07-05 2022-05-27 山西大学 基于改进细菌菌落的主蒸汽温度线性自抗扰串级控制方法
CN114167909A (zh) * 2021-07-05 2022-03-11 山西大学 基于改进细菌菌落的主蒸汽温度线性自抗扰串级控制方法
CN114879502A (zh) * 2022-05-23 2022-08-09 中国科学院光电技术研究所 一种位置环自抗扰控制器参数自整定方法
CN114879502B (zh) * 2022-05-23 2023-06-30 中国科学院光电技术研究所 一种位置环自抗扰控制器参数自整定方法

Similar Documents

Publication Publication Date Title
CN106647283A (zh) 一种基于改进cpso的自抗扰位置伺服系统优化设计方法
CN109901606A (zh) 一种用于四旋翼精确轨迹跟踪的混合有限时间控制方法
CN106788044B (zh) 一种基于干扰观测器的永磁同步电机自适应非奇异终端滑模控制方法
CN109725644A (zh) 一种高超声速飞行器线性优化控制方法
CN103701368B (zh) 双电机节能消隙控制方法
CN109343350A (zh) 一种基于模型预测控制的水下机器人路径跟踪控制方法
CN108241292B (zh) 一种基于扩张状态观测器的水下机器人滑模控制方法
CN107263483B (zh) 二自由度关节机器人轨迹的协调控制方法
CN105915121A (zh) 一种采用遗传算法优化的伺服系统惯量辨识方法
CN107942670A (zh) 一种双柔性空间机械臂模糊鲁棒滑模削抖运动控制方法
CN111496796B (zh) 基于指令滤波器的机械臂轨迹跟踪控制方法及装置
CN106557088A (zh) 一种基于事件触发机制的船舶航向控制器及其控制方法
CN105388764A (zh) 基于动态矩阵前馈预测的电液伺服pid控制方法及系统
CN106272436B (zh) 一种基于变负载的服务机器人自适应控制方法
CN108681327A (zh) 基于分数阶饱和函数切换控制律的四旋翼飞行控制方法
CN113419565A (zh) 四旋翼飞行器预设性能轨迹跟踪反演控制方法及系统
CN106877769B (zh) 一种伺服电机速度控制器增益参数自整定的方法
CN117093033A (zh) 基于粒子群算法优化pid参数的电阻加热炉温度控制系统
Zhang et al. Low-level control technology of micro autonomous underwater vehicle based on intelligent computing
CN112486209B (zh) 一种自主水下机器人三维路径跟踪方法、装置及存储介质
CN112947077B (zh) 一种基于切换性能函数技术的auv鲁棒轨迹跟踪控制方法
Chu et al. Robust event triggered control for lateral dynamics of intelligent vehicle with designable inter-event times
CN116079741B (zh) 一种电机驱动单连杆机械臂的自适应控制方法
CN106292285B (zh) 一种模糊自适应pi控制器参数确定方法
Abdulla et al. Roll control system design using auto tuning LQR technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510