CN106772577B - Source inversion method based on microseism data and SPSA optimization algorithm - Google Patents

Source inversion method based on microseism data and SPSA optimization algorithm Download PDF

Info

Publication number
CN106772577B
CN106772577B CN201611113560.3A CN201611113560A CN106772577B CN 106772577 B CN106772577 B CN 106772577B CN 201611113560 A CN201611113560 A CN 201611113560A CN 106772577 B CN106772577 B CN 106772577B
Authority
CN
China
Prior art keywords
difference
data
calculated
observation
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611113560.3A
Other languages
Chinese (zh)
Other versions
CN106772577A (en
Inventor
张凯
吴海洋
张黎明
姚军
李丽欣
张秀清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum UPC East China
Original Assignee
China University of Petroleum UPC East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201610497393 priority Critical
Priority to CN2016104973930 priority
Application filed by China University of Petroleum UPC East China filed Critical China University of Petroleum UPC East China
Publication of CN106772577A publication Critical patent/CN106772577A/en
Application granted granted Critical
Publication of CN106772577B publication Critical patent/CN106772577B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6169Data from specific type of measurement using well-logging

Abstract

The source inversion method based on microseism data and SPSA optimization algorithm that the present invention relates to a kind of, method includes the following steps: establishing horizontal layer rate pattern according to well-log information and subsurface rock property analysis;Forward simulation is carried out to micro-seismic event, the preferred ray tracing path of x-ray angle is adjusted with dichotomy, first-arrival traveltime is calculated, then calculates difference when walking of adjacent two wave detector;Random perturbation is added as observation in difference when will walk;Microseism hypocentral location that iteration updates is calculated to the difference of first-arrival traveltime using SPSA algorithm according to preceding method, hypocentral location is continued to optimize by the Fitting Calculation data and observation, check the difference for calculating data and observation, stop updating if meeting precision or reaching maximum number of iterations, export result, positioning is completed, next iteration is otherwise continued.The present invention improves the accuracy of seismic source location by solution micro-seismic event source rapidly and efficiently.

Description

Source inversion method based on microseism data and SPSA optimization algorithm
Technical field
The invention belongs to petroleum gas field of seismic exploration, and in particular, to one kind is based on microseism data and SPSA The source inversion method of optimization algorithm.
Background technique
In low permeability oil and gas field production process, fracturing technology is an important measures of increasing yield and injection, and pressure break is produced Raw crack (there is close relationship in fracture orientation with crustal stress again) and pressure break scale, are the important references of well net deployment, Fracture orientation and form are thus in depth studied, in time carries out Well pattern edjustment, this is always oil field project urgently to be resolved.
The artificial microseism real-time monitoring assessment technique of fractured well is built upon an oil on the basis of microseismic Field production performance observation technology.Micro-seismic monitoring is most accurate, most timely, the most abundant monitoring hand of information in current reservoir fracturing Section.Microseismic imaging can instruct fracturing engineering in time, adjust fracturing parameter in due course;Range, fracture development to pressure break Direction, size be tracked, position, objectively evaluate the effect of fracturing engineering, the production development of next step provided effective Guidance reduces development cost, preferably provides foundation for subsequent field management.
The most crucial problem of the data processing of micro-seismic monitoring is seismic source location, and the most commonly used is based on inverting side when walking Method, such as longitudinal and shear wave time difference method or homotype wave time difference method, such methods are the conventional methods in microseism source inversion, but the party Method needs to solve linearly or nonlinearly equation group, in the solution procedure of equation group there may be overdetermination, owe fixed or ill-conditioning problem, Furthermore event time detected on this method heavy dependence wave detector, positioning accuracy cannot be met the requirements.
Currently used inversion method is also varied, including some gradient class algorithms, such as Newton method, conjugate gradient method It in advantage is that convergence is very fast, but is easily trapped into locally optimal solution, and big to the selection dependence of initial value Deng, such method; There are also some random class algorithms, such as particle swarm algorithm, genetic algorithm, simulated annealing, such algorithm to well solve The problem of locally optimal solution, but the speed that such algorithm solves is slower.
Summary of the invention
To overcome defect of the existing technology, the present invention provides a kind of based on microseism data and SPSA optimization algorithm Source inversion method can rapidly and efficiently realize seismic source location.
To achieve the above object, the present invention uses following proposal:
Microseism seismic source location method based on SPSA algorithm, comprising the following steps:
Step 1: horizontal layer rate pattern is established according to well-log information and subsurface rock property analysis;
Step 2: forward simulation is carried out to micro-seismic event, first-arrival traveltime is calculated, then calculates adjacent two wave detector Difference when walking;
Step 3: difference when walking being calculated in step 2 is added to one group of Gaussian distributed in (0,1) The random perturbation of random number composition, in this, as observation;
Step 4: SPSA algorithm, by the Fitting Calculation data and observation, the optimal hypocentral location of Optimization Solution are applied.
In terms of ray tracing positioning, depending critically upon radiographic density factor for local ray casting leads to accuracy The disadvantage of difference, the present invention propose the shooting method that the ray tracing based on Snell law is improved using dichotomy, are given first Then initial ray angle is constantly adjusted according to dichotomy, this method is examined to not only increase convergence rate, and precision It is significantly promoted, improves the speed and accuracy of positioning.
In the selection of objective function, difference when walking that the present invention uses same focus to monitor in adjacent wave detector as Fitting parameter has not only been evaded solve the cumbersome of focus generation moment in this way, but also reduced seismic wave in earth-layer propagation process In the annoyance level that receives, improve anti-noise ability.
In addition, the invention also provides using SPSA algorithm to come inverting hypocentral location, this method gradient class algorithm and with Machine class algorithm is combined together consideration, gives the direction of search and stochastic gradient using random class algorithm, then utilizes gradient optimizing It solves, can consider the rapid solving of global optimum and objective function, convergence rate is very fast, can be realized quick standard True seismic source location has the advantages that calculating speed is fast, high-efficient.
Detailed description of the invention
Fig. 1 is the source inversion method flow schematic diagram based on microseism data and SPSA optimization algorithm;
Fig. 2 is that the ray tracing based on Snell law positions schematic diagram;
Fig. 3 is SPSA algorithm optimization inversion process figure;
Fig. 4 is the ray tracing path profile that forward simulation obtains;
Fig. 5 is the first-arrival traveltime diagram that forward simulation obtains;
Fig. 6 is the difference diagram for the first-arrival traveltime that forward simulation obtains;
Fig. 7 is that observation data diagram is obtained after random perturbation is added;
Fig. 8 is that true hypocentral location and inverting obtain hypocentral location diagram.
Specific embodiment
As shown in Figure 1, the source inversion method based on microseism data and SPSA optimization algorithm, includes the following steps:
Step 1: horizontal layer rate pattern is established according to well-log information and subsurface rock property analysis;
The specific method is as follows:
1. carrying out classifying and dividing layer position to stratum according to well-log information and subsurface rock property analysis, stratum is divided into M Layer position, number consecutively, dielectric interface are all horizontal planes from deep to shallow, and each layer is Layer_h=apart from ground depth [Layer_h1Layer_h2……Layer_hM];
2. assuming oil reservoir and upper overlying strata stone homogeneous, it is full of fluid in pore media, then can establish according to Raymer model Formation velocity field:
V=(1- φ)2·vsolid+φ·vfluid
Wherein,
Kfliud=Kw×Sw+Ko×So+Kg×Sg
ρfliudw×Swo×Sog×Sg
In formula, v is speed (m/s), and φ is porosity, and K is elasticity modulus (Pa), and μ is modulus of shearing (Pa), and ρ is density (kg/cm3), fiFor the shared volume fraction of i-th kind of composition in solid, NsolidFor number of components included in solid, SmFor phase m Saturation degree;Subscript solid, fliud respectively indicates solid, fluid, and w, o, g respectively indicate water, oil, gas three-phase.
As can be seen from the above equation, Raymer model has comprehensively considered the essential characteristic of underground solid and fluid, passes through well logging The above parameter value can be obtained in data and subsurface rock property analysis, and seismic wave can thus be calculated in each Es-region propagations Speed.Since to have the advantages that spread speed fast, easy to identify for P wave (longitudinal wave), so generally selecting the P wave of bed boundary to carry out Seismic source location, such velocity field is from shallowly to deep respectively Layer_v=[Layer_v1Layer_v2……Layer_vM]。
Step 2: forward simulation is carried out to micro-seismic event, first-arrival traveltime is calculated, then calculates adjacent two wave detector Difference when walking;
The specific method is as follows:
1. the ray tracing based on Snell law is defined as follows:
Stratum is divided into M layers in test area, and the spread speed of P wave (longitudinal wave) is Layer_v=in every layer from shallow to deep [Layer_v1Layer_v2……Layer_vM], wave detector series is N, and seismic wave, which is pointed out to be dealt into up to i-stage wave detector from S, to be somebody's turn to do Ray propagation angle, propagation path and calculation formula when walking in stratum is as follows:
Wherein, siIt is that seismic wave points out the path being dealt into up to the i-stage wave detector ray in stratum, n from SiIt is wave detector It numbers (number in corresponding stratum from top to bottom), hijIt is ray in longitudinal projection's height, θijIt is seimic wave propagation to Pass through the angle (angle with vertical direction) when jth layer stratum, Layer_v during i grades of wave detectorsjIt is seismic wave in jth The speed propagated in layer stratum, ToibsBe seismic wave pointed out from S be dealt into up to the i-stage wave detector ray in stratum when walking.
2. improve shooting method progress ray tracing, the launch angle θ of ray initial position given first:
A=0, b=90
θ=(a+b)/2 (θ ∈ [a, b])
Wherein, θ is the launch angle of ray initial position, and a, b are the bound of initial position launch angle.
From focal point, the propagation of seismic wave between the layers follows Snell law, judges the final position of ray Whether be receiving point position, if ray final position is not receiving point position, if be higher than receiving point position, have:
B=(a+b)/2
θ=(a+b)/2 (θ ∈ [a, b])
Conversely, then having:
A=(a+b)/2
θ=(a+b)/2 (θ ∈ [a, b])
X-ray angle is constantly adjusted according to dichotomy, is recalculated until meeting the requirements.
3. since the fracturing process duration is longer, focus time of origin is not easy to determine, therefore by calculating detection The difference of first-arrival traveltime between device is evaded the origin time of earthquake of focus, and the annoyance level that can also be effectively reduced in stratum, is calculated It is as follows:
Wherein,Difference when being walked for adjacent two-stage wave detector.
Step 3: the random number that one group of Gaussian distributed in (0,1) is added in difference when walking in step 2 is formed Random perturbation as observation;
The specific method is as follows:
The random perturbation of the random number composition of one group of Gaussian distributed is generated in (0,1)
Δ t=[Δ t1Δt2……ΔtN-1]
Then observation is
Wherein, Δ t is random perturbation vector, Δ TobsTo observe data vector.
Step 4: SPSA algorithm, by the Fitting Calculation data and observation, the optimal hypocentral location of Optimization Solution are applied;
The specific method is as follows:
1. given micro-seismic event initial position X at random0=(x0,y0,z0), according to first arrival is calculated described in step (2) When walkingAnd then obtain the difference of first-arrival traveltime
It obtains calculating data and observes the difference of data
Given k=0 (k is current search number), maxIter=100 (maximum search number).
Wherein, Δ Tcal0For the difference vector of the first-arrival traveltime of initial position, | | Δ T0| | for calculating data and observation at this time The difference of data.
0) and direction step delta 2. searching times k adds 1, a random given iteration direction α is not (between [- 1,1] and for X then has
K=k+1
X1=X0+αΔX
Also according to according to first-arrival traveltime is calculated described in step 2And then obtain first arrival Difference when walking
It can equally succeed in one's scheme and count according to and observe the difference of data
If | | Δ T0| | > | | Δ T1| |, then selected directions areOtherwise
Wherein, Δ Tcal1To calculate the difference vector for updating obtained first-arrival traveltime, | | Δ T1| | at this time calculating data with The difference of data is observed, α is iteration direction, and Δ X is the step-length of iteration direction.
Micro-seismic event position is updated 3. calculating
Xupdate=X0+αgStep
Wherein, XupdateFor updated hypocentral location, Step is iteration step length.
4. according to according to first-arrival traveltime is calculated described in step 2And then it obtains The difference of first-arrival traveltime
It obtains calculating data and observes the difference of data
Wherein, g (Xupdate) it is the objective function that iteration updates, Δ TupdateFor the difference vector of the first-arrival traveltime of update, Δ TobsTo observe data vector.
5. judging g (Xupdate) whether meet precision, X is exported if meetingbest=Xupdate;Otherwise X0=Xupdate, return It returns and continues to execute 3. iteration update micro-seismic event position, until g (Xupdate) no longer decline, it returns execute 2. at this time, judge k Whether maxIter is greater than, if then exporting Xbest=Xupdate, iteration direction α is otherwise chosen again, and searching times k adds 1.This Outside, if there is g (X in iteration renewal processupdate) meet required precision and then export Xbest=Xupdate, stop updating.
Embodiment
Based on step 1, horizontal layer rate pattern is established according to well-log information and subsurface rock property analysis: this calculation 400 meters long, 400 meters wide, high 400 meters of the region of example choosing, stratum are divided into 4 layer positions, from deep to shallow number consecutively, medium boundary Face is all horizontal plane, and each layer is Layer_h=[2,100 2,150 2,300 2400] m, the P wave of bed boundary apart from ground depth (longitudinal wave) speed is from shallowly to deep respectively Layer_v=[1,600 2,000 2,400 2800] m/s.
Based on step 2, forward simulation is carried out to given micro-seismic event, first-arrival traveltime is calculated, then calculates adjacent Difference when walking of two wave detectors:
It is as shown in table 1 below that acceleration geophone parameter is set:
1 acceleration geophone parameter of table
Series 1 2 3 4 5 6 7 8 9 10 11 12
X 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 600 600 600 600 600 600
Z 2017 2032 2047 2062 2077 2092 2107 2122 2137 2152 2167 2182
Series 13 14 15 16 17 18 19 20 21 22 23 24
X 600 600 600 600 600 600 600 600 600 600 600 600
Y 0 0 0 0 0 0 600 600 600 600 600 600
Z 2197 2212 2227 2242 2257 2272 2287 2302 2317 2332 2347 2362
Z coordinate is the depth on relative degree ground, and first order wave detector depth is -2017 meters, the 24th grade of wave detector depth be - 2362 meters, every grade 15 meters of wave detector height difference.
It is as shown in table 2 below that true focus event location is set:
The true focus event argument of table 2
X-ray angle is adjusted according to improved ray tracing shooting method, and based on dichotomy, forward simulation obtains ray and chases after Fig. 4 is seen in track path.
After obtaining path, divided by the seismic wave propagation speed of place layer, first arrival of the focus at detector position is obtained Fig. 5 is shown in distribution when walking, and then the difference cloth for obtaining first-arrival traveltime is shown in Fig. 6.
Based on step 3, one group of Gaussian distributed in (0,1) is added in difference when walking that step 2 is calculated Random number composition random perturbation, in this, as observation;
Random perturbation Δ t=[the Δ t of the random number composition of one group of Gaussian distributed is generated in (0,1)1Δt2…… ΔtN-1], then observation is
Observation data distribution is obtained after addition random perturbation sees Fig. 7.
Based on step 4, using SPSA algorithm, by the Fitting Calculation data and observation, the optimal focus position of Optimization Solution It sets:
Fig. 3 is seen using SPSA optimization method inverting hypocentral location flow chart, is executed according to step shown in Fig. 3, inverting obtains Focal shock parameter is as shown in table 3:
The hypocentral location that 3 inverting of table obtains
True hypocentral location and inverting obtain hypocentral location and see Fig. 8.
Can intuitively it be found out by table 3 and Fig. 8, due to it joined certain disturbance on the basis of true value after, really The hypocentral location error that hypocentral location and inverting obtain is up to 21.9219m, minimum 4.0864m, total through program test inverting About 140s when shared, the result of inverting is in the reasonable scope.

Claims (1)

1. a kind of source inversion method based on microseism data and SPSA optimization algorithm, comprising the following steps:
Step 1: horizontal layer rate pattern is established according to well-log information and subsurface rock property analysis;
Step 2: forward simulation is carried out to micro-seismic event, first-arrival traveltime is calculated, then calculates walking for adjacent two wave detector When difference;
Step 3: the random number of one group of Gaussian distributed in (0,1) is added in difference when walking that step 2 is calculated The random perturbation of composition, in this, as observation;
Step 4: SPSA algorithm, by the Fitting Calculation data and observation, the optimal hypocentral location of Optimization Solution are applied;
It is characterized by:
Step 1 the following steps are included:
1. carrying out classifying and dividing layer position to stratum according to well-log information and subsurface rock property analysis, stratum is divided into M layer position, Number consecutively from deep to shallow, dielectric interface are all horizontal planes, give each layer apart from ground depth;
2. assuming oil reservoir and upper overlying strata stone homogeneous, and it is full of fluid in pore media, then can establish ground according to Raymer model Layer longitudinal wave (P wave) velocity field;
Step 2 the following steps are included:
(1), based on the ray tracing localization method of Snell law:
Stratum is divided into M layers in presumptive test region, can calculate seismic wave according to Snell law and points out from S and is dealt into up to i-th Grade the wave detector ray propagation angle, ray propagation path and first-arrival traveltime in stratum;
(2), when improving shooting method progress ray tracing, the launch angle θ of ray initial position given first:
The propagation of seismic wave between the layers follows Snell law, judge ray final position whether be monitoring point position It sets, if ray final position is not monitoring location, x-ray angle is constantly adjusted according to dichotomy, recalculate until full Foot requires;
(3), since the fracturing process duration is longer, focus time of origin is not easy to determine, therefore, by calculating wave detector Between the difference of first-arrival traveltime evade origin time of earthquake of focus, and the annoyance level in stratum can also be effectively reduced in this method, Improve the robustness of inverting;
Step 3 the following steps are included:
The random perturbation that the random number composition of one group of Gaussian distributed is generated in (0,1), the first-arrival traveltime being calculated Difference observation can be obtained plus random perturbation;
Step 4 the following steps are included:
(1), firstly, setting initial parameter, according to first-arrival traveltime is calculated described in step 2, and then obtain first-arrival traveltime it Then difference is calculated observation data and calculates the difference of data;
(2), iterative parameter is updated, also according to the difference and calculating that first-arrival traveltime, first-arrival traveltime are calculated described in step 2 Data and the difference for observing data select search iteration direction;
(3), it is calculated according to the iteration direction of selection, obtains updated micro-seismic event position;
(4), according to updated first-arrival traveltime is calculated described in step 2, so obtain the difference of updated first-arrival traveltime with And it calculates data and observes the difference of data;
(5), judge whether calculate data and the difference of observation data meets precision, if it is satisfied, stopping updating;Conversely, selected new The direction of search continue to iterate to calculate.
CN201611113560.3A 2016-06-29 2016-12-07 Source inversion method based on microseism data and SPSA optimization algorithm Active CN106772577B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610497393 2016-06-29
CN2016104973930 2016-06-29

Publications (2)

Publication Number Publication Date
CN106772577A CN106772577A (en) 2017-05-31
CN106772577B true CN106772577B (en) 2019-04-26

Family

ID=58879373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611113560.3A Active CN106772577B (en) 2016-06-29 2016-12-07 Source inversion method based on microseism data and SPSA optimization algorithm

Country Status (1)

Country Link
CN (1) CN106772577B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967756A (en) * 2018-09-30 2020-04-07 中国石油化工股份有限公司 Microseism positioning precision evaluation method and system based on normal distribution
CN109188515B (en) * 2018-10-31 2021-02-26 中国石油化工股份有限公司 Method and system for calculating position of seismic source of microseism monitoring crack
CN112114359B (en) * 2020-08-13 2021-07-02 中南大学 Dangerous area detection method, system and terminal based on active and passive seismic source signals and readable storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455440B (en) * 2011-12-02 2014-10-01 中国科学院地质与地球物理研究所 Travel time calculation time of seismic waves in VTI (vertical transverse isotropic) medium
CN102841373B (en) * 2012-08-23 2015-02-04 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Microseism positioning method based on azimuth angle constraint
CN102937721B (en) * 2012-11-07 2015-07-08 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Limited frequency tomography method for utilizing preliminary wave travel time
CN105589100B (en) * 2014-10-21 2018-03-09 中国石油化工股份有限公司 A kind of microseism hypocentral location and rate pattern Simultaneous Inversion method
WO2016097859A1 (en) * 2014-12-19 2016-06-23 Cgg Services Sa Method for updating velocity model used for migrating data in 4d seismic data processing
CN104730581B (en) * 2015-03-23 2017-03-22 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Method for locating microseism event point
CN104777514A (en) * 2015-04-16 2015-07-15 中国海洋石油总公司 Geometric spreading compensation method based on uniform horizontal layered medium model

Also Published As

Publication number Publication date
CN106772577A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106772577B (en) Source inversion method based on microseism data and SPSA optimization algorithm
AU2013325194B2 (en) Geometrical presentation of fracture planes
Feng et al. Sectional velocity model for microseismic source location in tunnels
CN105386756B (en) A method of brittle formation porosity is calculated using dependent variable
CN108254780A (en) A kind of microseism positioning and anisotropic velocity structure tomographic imaging method
CN105093319B (en) Ground micro-seismic static correcting method based on 3D seismic data
KR101618713B1 (en) 3-Dimensional Space Modeling Method based on the Geotechnical Information
CN105549077B (en) The microseism seismic source location method calculated based on multistage multiple dimensioned grid likeness coefficient
US10810331B2 (en) System for predicting induced seismicity potential resulting from injection of fluids in naturally fractured reservoirs
CN105093274A (en) Hydrofracture focal mechanism inversion method and system
CN108064348A (en) Chromatography conversion method when a kind of earthquake based on two spots ray tracing is walked
CN107132571B (en) A kind of multi-source seismic interference method for tunnel geological forecast
CN103399345B (en) The investigation method of a kind of buried hill fissure distribution and device
CN108614307B (en) Inverted arch quality detection method and system by using comprehensive geophysical prospecting technology
CN106814391B (en) Ground micro-seismic state event location method based on Fresnel zone tomographic inversion
CN107942372A (en) Between well and well combine seismic CT imaging method and device
Karakonstantis et al. Tomographic imaging of the NW edge of the Hellenic volcanic arc
CN109085642A (en) A kind of anisotropic medium micro-seismic event localization method
CN105259577B (en) A kind of method and device for the angle information for determining bed boundary
von Ketelhodt et al. Elastic parameters from compressional and shear wave tomographic survey: A case study from Kuala Lumpur, Malaysia
Kassaras et al. Correlation between damage distribution and soil characteristics deduced from ambient vibrations in the old town of Lefkada (W. Greece)
CN109085644A (en) True earth's surface imaging method when being walked based on dual-beam
CN107797148A (en) A kind of aeromagnetic anomaly field separation method and system based on three-dimensional geological modeling
GAUCHER et al. Propagation of Velocity Model Errors in Earthquake Absolute Locations: Application to the Rittershoffen Geothermal Field
CN109212594A (en) A kind of anisotropic medium longitudinal and shear wave joint positioning method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant