CN106772257B - 一种低旁瓣稳健自适应波束形成方法 - Google Patents

一种低旁瓣稳健自适应波束形成方法 Download PDF

Info

Publication number
CN106772257B
CN106772257B CN201710016055.5A CN201710016055A CN106772257B CN 106772257 B CN106772257 B CN 106772257B CN 201710016055 A CN201710016055 A CN 201710016055A CN 106772257 B CN106772257 B CN 106772257B
Authority
CN
China
Prior art keywords
array
mutual coupling
formula
sidelobe
null
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710016055.5A
Other languages
English (en)
Other versions
CN106772257A (zh
Inventor
赵中惠
赵惠玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710016055.5A priority Critical patent/CN106772257B/zh
Publication of CN106772257A publication Critical patent/CN106772257A/zh
Application granted granted Critical
Publication of CN106772257B publication Critical patent/CN106772257B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种低旁瓣稳健自适应对零的波束形成方法。首先建立基于最差性能最优准则,保证在校正互耦后,阵列存在误差时,能够形成低旁瓣的同时获得更低的零陷电平的波束形成方法。然后结合稳健低旁瓣理论构建一种新的波束形成系统,系统能自适应对抗干扰、降低旁瓣电平及实现宽零陷。尤其是系统根据输入信号能够自适应的选取合理的参数,使得波束形成器在不同的接收信号下都能得到统一的低旁瓣电平。

Description

一种低旁瓣稳健自适应波束形成方法
技术领域
本发明涉及阵列信号处理技术领域,具体涉及一种低旁瓣稳健自适应对零的波束形成方法。
背景技术
自适应波束形成是用自适应算法处理阵列接收到的期望信号和干扰信号并形成相应的波束,以达到增强有用信号或需要方向的信号的同时抑制干扰,实现在恶劣的敌方干扰和电磁兼容环境中提高雷达、通信等系统的抗干扰能力的目的。然而在实际应用中由于互耦、观察方向误差、阵列流形误差等误差导致阵列的真实期望信号和理想的期望信号方向失配。常规的波束形成器,如Capon波束形成器是建立在阵列期望信号方向和阵列接收数据精确已知的条件下,其对阵列的误差比较敏感。而稳健波束形成可以有效提高波束形成方法在误差下的性能。
对于固定阵型和噪声场,常规的波束形成的旁瓣是固定的。而仅考虑阵增益和稳健性的波束形成,为了实现高增益往往会造成波束旁瓣升高,有时会达到不能忍受的程度。并且,在实际应用中,由于阵元互耦、通道不一致等会导致旁瓣电平进一步升高。高的旁瓣会使系统的虚警概率升高,因此在波束形成中要考虑旁瓣降低的问题。
Gershman等人将自适应波束形成问题转化为凸优化问题进行求解,并且考虑到阵列的旁瓣电平(参见:Adaptive beamforming with sidelobe control:a second-ordercone programming approach.IEEE Signal Processing Letters,2003,10(11),331-334.),而文中未考虑波束形成器的稳健性。Ser W.先校正阵列互耦,提出一种考虑阵列互耦的条件下构建了稳健的阵列综合,(参见:Robust Beampattern Synthesis for AntennaArrays With Mutual Coupling Effect.IEEE Transactions on Antennas&Propagation,2011, 59(8):2889-2895)
综上所述,波束形成的目的有二,一是作为阵列发射波束形成,二是阵列接收自适应波束形成,即波束形成中要同时实现低旁瓣和对干扰形成零陷两个目的。因此,合理的选取限制条件将自适应波束形成和阵列旁瓣降低等结合起来,并且考虑各种误差情况下实现稳健的低旁瓣自适应波束形成是有必要的。
发明内容
要解决的技术问题
为了解决现有方法在实际工作中由于互耦、波达方向误差等实际问题下,波束形成器输出信干噪比严重下降的问题,本发明提出一种稳健的自适应波束形成算法。
技术方案
一种低旁瓣稳健自适应波束形成方法,其特征在于步骤如下:
步骤1:根据阵列模型,计算天线阵元间互耦系数,并建立互耦等效模型,导出阵列互耦矩阵Z;
步骤2:构建考虑互耦影响及误差下的阵列的导向矢量:
s(θ)=ZHa(θ)+e
式中,a(θ)为阵列的导向矢量,e为真实的导向矢量与理想的导向矢量的误差;
步骤3:建立考虑互耦模型的稳健波束形成器,并将其转化为凸优化问题:
构建稳健的波束形成器为:
subject to|sH(θ)w+ε||w||≤U(θ)θ∈[θlu]
Re{sH(θ)w}+ε||w||≥L(θ)θ∈[θlu]
式中,w为阵列最优权值,代替假设的接收数据数据 X(t)=ss(t)+i(t)+n(t),ss(t)、i(t)和n(t)分别为互不相关的期望信号、干扰信号和噪声;其中L(θ)和U(θ)为幅度响应的上限和下限,θl和θu为主瓣约束范围的上限和下限,ρ为控制波束形成器的输出功率和旁瓣电平的参数;Θn为零陷区间,为其对应的零陷值约束;θk,k=1,2,...,K为对应的旁瓣区间,LK为对旁瓣电平的软约束;
稳健的波束形成器求解最优权矢量的问题本质为最优化问题,为方便求解,将其转化为凸优化问题:
subject to Re{(s(θ))Hw}≥ε||w||+L,θ∈[θlu]
|(s(θ))Hw|+ε||w||≤U,θ∈[θlu]
步骤4:来波方向预估及波束形成器参数设置;
根据阵列接收数据确定ρ的值:
ρ=ρr·max(eig(Lu))
式中的Lu为阵列接收的协方差矩阵的分解矩阵最大特征值,ρr为相对应的系数;
根据阵列接收的数据,采用基本的Capon空间谱估计方法估计来波信号方向;
零陷宽度的选取以Capon空间谱估计的方向为中间点,零陷宽度和主瓣宽度根据阵元数、阵列应用需求选取;
步骤5:采用凸优化工具箱对波束形成器进行求解,输出阵列对应的最优权值。
当阵列模型采用阵元为半波振子的偶极子阵列,所述的步骤1具体如下:
步骤1a:采用阵元为半波振子的偶极子阵列,其互耦系数计算公式:
式中,u0=kdhdh为相邻两振子之间的距离,l为振子长度,k为角波数;Ci(u)和Si(u)分别为余弦函数和辛格函数积分,分别定义为
步骤1b:采用由N个天线阵元,阵元间距为半波长的等间距线阵,各阵元接负载ZL,采用开路电压法等效互耦模型,阵列的互耦矩阵如下:
式中,Zm,n为阵元间的互耦系数,其中m=1,2,...,N,n=1,2,...,N。
有益效果
本发明提出的一种低旁瓣稳健自适应波束形成方法,预先对互耦校正,减少了互耦对自适应波束形成的影响。而且本发明不仅实现自适应对抗干扰且降低旁瓣电平。并且针对不同输入信号下,从旁瓣电平不一致的问题出发,选取合理的比例值,使得波束形成器在不同的接收信号下都能得到统一的旁瓣电平。通过DOA估计,增加约束条件系统还能实现宽零陷,有效对抗移动干扰。通过不同的优化系统结合,得到高性能的稳健波束形成系统。
附图说明
图1:稳健低旁瓣波束形成系统实现框图
图2:阵列输出SINR随输入SNR变化图
图3:阵列输出SINR随SNAP变化图
图4:静态权矢量下波束形成方向图
图5:100个快拍数据时干扰运动速度从0°/快拍变化至0.04°/快拍的阵列输出SINR
图6:干扰以0.01°/快拍变化时不同快拍数得到的输出SINR
具体实施方式
现结合实施例、附图对本发明作进一步描述:
图1是本发明所述稳健低旁瓣波束形成器的整体流程图,如图1所示,包括以下步骤:
步骤S100、首先根据阵列形式,求阵元间的互耦系数及建立互耦等效模型;
步骤S200、构建低旁瓣的稳健波束形成算法
步骤S300、选取波束形成器的参数
步骤S400、求得阵列对应的最优权矢量。
本发明在保证自适应波束形成器稳健的同时实现低旁瓣和对干扰形成零陷两个目的。当旁瓣电平系数选取过大时,阵列对零效果会降低,而旁瓣电平系数选取过小时,阵列的旁瓣电平会升高。
进一步的所述步骤S100具体包括:
步骤S1001、本发明中采用阵元为半波振子的偶极子阵列,其互耦系数可以通过经验公式求得:
式中u0=kdhdh为相邻两振子之间的距离,l为振子长度,k为角波数。Ci(u)和Si(u)分别为余弦函数和辛格函数积分,分别定义为
步骤S1002、采用由N个天线阵元,阵元间距为半波长的等间距线阵,各阵元接负载ZL,采用开路电压法等效互耦模型,阵列的互耦矩阵如下:
式中,Zmn(m=1,2,...,N,n=1,2,...,N)为阵元间的互耦系数。但是此互耦矩阵不仅适用于半波振子阵列,不同的阵列将其互耦系数添加至阵列同样适用。
进一步的所述步骤S200具体包括:
步骤S2001、首先对互耦进行处理,互耦校正后的阵列的导向矢量表示为
s0(θ)=ZHa(θ)
即在阵列综合前预先考虑互耦对阵列的影响,预先对互耦校正,以此降低互耦对阵列性能的影响。
考虑互耦影响及误差的阵列的导向矢量可以表示为:
s(θ)=ZHa(θ)+e
式中a(θ)为阵列的导向矢量,e为真实的导向矢量与理想的导向矢量的误差。
步骤S2002、阵列接收的快拍数据为包含期望信号、干扰信号和噪声的向量:
X(t)=ss(t)+i(t)+n(t)
式中,ss(t)、i(t)和n(t)分别为互不相关的期望信号、干扰信号和噪声。
阵列天线接收信号协方差矩阵的估算值:
阵列接收信号的失配矩阵定义为:
式中,和X分别为真实的和假设的接收数据矩阵。假设的接收数据矩阵对应于训练数据。对于实时的自适应波束形成,训练数据早于测试数据。真实的采样信号协方差矩阵表示为
由于误差矩阵未知,所以真实的采样协方差矩阵是未知的。运用最差情况最优准则对误差矩阵取上限为
||Δ||f≤η
式中||·||f为矩阵的Frobenius范数,波束形成问题的成本函数转化为
构建稳健的波束形成器,表示为:
subject to|sH(θ)w+ε||w||≤U(θ)θ∈[θlu] (1)
Re{sH(θ)w}+ε||w||≥L(θ)θ∈[θlu] (2)
式中,w为阵列最优权值,代替假设的接收数据矩阵,L(θ)和U(θ)为幅度响应的上限和下限,θl和θu为主瓣约束范围的上限和下限,ρ为控制波束形成器的输出功率和旁瓣电平的参数。Θn为零陷区间,为其对应的零陷值约束。θk,k=1,2,...,K为对应的旁瓣区间,LK为对旁瓣电平的软约束。
L(θ)和U(θ)的取值由主瓣响应的微扰量决定,且L和U的取值需满足如下条件:
步骤S2003、稳健的波束形成器求解最优权矢量的问题本质为最优化问题,为方便求解,将其转化为凸优化问题:
subject to Re{(s(θ))Hw}≥ε||w||+L,θ∈[θlu]
|(s(θ))Hw|+ε||w||≤U,θ∈[θlu]
进一步的所述步骤S300具体包括:
步骤S3001、根据阵列接收数据,根据接收的数据ρ确定的值:
ρ=ρr ·max(eig(Lu))
式中的Lu为阵列接收的协方差矩阵的分解矩阵最大特征值。当输入信号改变时,其也会随之改变。由此,可以通过调节ρr实现动态的调节阵列输出功率和旁瓣电平的目的。
步骤S3002、根据阵列接收的数据,采用基本的Capon空间谱估计方法估计来波信号方向。
步骤S3003、在这里,实现以静态的权矢量对抗移动干扰。根据来波信号方向,选取合适的零陷宽度,以展宽零陷对抗移动干扰。零陷宽度的选取以DOA估计的方向为中间点。零陷宽度和主瓣宽度根据如阵元数、阵列应用需求选取。
所述稳健低旁瓣波束形成方法,其中,所述步骤S400用凸优化工具箱对波束形成器进行求解,输出对应的最优阵列权矢量。
下面仿真分析稳健低旁瓣自适应波束形成算法。选取16元均匀线阵,阵列间距为半波长,阵列法向量为0°。期望信号方向选取为0°,主瓣宽度选取为22°,主瓣限制为[-1°,1°],主瓣区间为[-11°,11°],其余区间为旁瓣区间,设置干扰方向为40°,-30°,扰动量为1.5,η设为1,RCB的误差限设为1,采样快拍数设置为32,MVDR、RCB、 RAB_SL算法随输入SNR,阵列输出SINR如图2所示,本发明中波束形成的性能优于其余两种算法。
阵列接收的采样快拍数从16到160,SNR为10dB,阵列其余参数设置同上,阵列输出SINR随SNAP变化如图3所示,本发明中波束形成的性能在低快拍数下保持良好的性能。
对于干扰移动时,期望信号选取为0°,主瓣宽度选取为22°,主瓣限制为[-1°,1°],主瓣区间为[-11°,11°],其余区间为旁瓣区间。定义干扰在两个快拍间隔内的方位变化率为运动速度,假设40°方向干扰以一定速度做匀速运动,以DOA估计的干扰方向为中间点,零陷展宽为5°。扰动量为2,两个干扰分别为-30°和40°,INR为 40dB,期望信号方向选取为0°,SNR为10dB,且不存在导向矢量偏差。静态权矢量下波束形成方向图如图4所示,在-30°干扰方向实现零陷,且运动干扰方向40°实现宽零陷。
图5是100个快拍数据时干扰运动速度从0°/快拍变化至0.04°/快拍的阵列输出SINR。从图中可以看出,干扰运动速度变大到一定范围时,CMT算法性能下降,而本发明中波束形成一直保持良好的性能。
干扰运动时,干扰运动角度大小和快拍数成正比,快拍数越大,干扰移动的角度范围越大,因此考察不同快拍数下输出的SINR是有意义的。图6是干扰以0.01°/ 快拍变化时不同快拍数得到的输出SINR。从图中可以看出,在采样快拍数变大到一定范围时,CMT算法性能下降,而高快拍数下,本发明中波束形成一直保持良好的性能。

Claims (2)

1.一种低旁瓣稳健自适应波束形成方法,其特征在于步骤如下:
步骤1:根据阵列模型,计算天线阵元间互耦系数,并建立互耦等效模型,导出阵列互耦矩阵Z;
步骤2:构建考虑互耦影响及误差下的阵列的导向矢量:
s(θ)=ZHa(θ)+e
式中,a(θ)为阵列的导向矢量,e为真实的导向矢量与理想的导向矢量的误差;
步骤3:建立考虑互耦等效模型的稳健波束形成器,并将其转化为凸优化问题:
构建稳健的波束形成器为:
subject to|sH(θ)w|+ε||w||≤U(θ)θ∈[θlu]
Re{sH(θ)w}+ε||w||≥L(θ)θ∈[θlu]
式中,w为阵列最优权值,代替假设的接收数据X(t)=ss(t)+i(t)+n(t),ss(t)、i(t)和n(t)分别为互不相关的期望信号、干扰信号和噪声;其中L(θ)和U(θ)为幅度响应的上限和下限,θl和θu为主瓣约束范围的上限和下限,ρ为控制波束形成器的输出功率和旁瓣电平的参数;Θn为零陷区间,为其对应的零陷值约束;θk,k=1,2,...,K为对应的旁瓣区间,LK为对旁瓣电平的软约束;
稳健的波束形成器求解最优权矢量的问题本质为最优化问题,为方便求解,将其转化为凸优化问题:
subject to Re{(s(θ))Hw}≥ε||w||+L,θ∈[θlu]
|(s(θ))Hw|+ε||w||≤U,θ∈[θlu]
步骤4:来波方向预估及波束形成器参数设置;
根据阵列接收数据确定ρ的值:
ρ=ρr·max(eig(Lu))
式中的max(eig(Lu))为阵列接收的协方差矩阵的分解矩阵最大特征值,ρr为相对应的系数;
根据阵列接收的数据,采用基本的Capon空间谱估计方法估计来波信号方向;
零陷宽度的选取以Capon空间谱估计的方向为中间点,零陷宽度和主瓣宽度根据阵元数、阵列应用需求选取;
步骤5:采用凸优化工具箱对波束形成器进行求解,输出阵列对应的最优权值。
2.根据权利要求1所述的一种低旁瓣稳健自适应波束形成方法,其特征在于当阵列模型采用阵元为半波振子的偶极子阵列,所述的步骤1具体如下:
步骤1a:采用阵元为半波振子的偶极子阵列,其互耦系数计算公式:
式中,u0=kdhdh为相邻两振子之间的距离,l为振子长度,k为角波数;Ci(u)和Si(u)分别为余弦函数和辛格函数积分,分别定义为
步骤1b:采用由N个天线阵元,阵元间距为半波长的等间距线阵,各阵元接负载ZL,采用开路电压法等效互耦模型,阵列的互耦矩阵如下:
式中,Zm,n为阵元间的互耦系数,其中m=1,2,...,N,n=1,2,...,N。
CN201710016055.5A 2017-01-10 2017-01-10 一种低旁瓣稳健自适应波束形成方法 Expired - Fee Related CN106772257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710016055.5A CN106772257B (zh) 2017-01-10 2017-01-10 一种低旁瓣稳健自适应波束形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710016055.5A CN106772257B (zh) 2017-01-10 2017-01-10 一种低旁瓣稳健自适应波束形成方法

Publications (2)

Publication Number Publication Date
CN106772257A CN106772257A (zh) 2017-05-31
CN106772257B true CN106772257B (zh) 2019-02-26

Family

ID=58948696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710016055.5A Expired - Fee Related CN106772257B (zh) 2017-01-10 2017-01-10 一种低旁瓣稳健自适应波束形成方法

Country Status (1)

Country Link
CN (1) CN106772257B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167804A (zh) * 2017-06-28 2017-09-15 南京理工大学 一种稳健低副瓣自适应波束形成方法
CN109379124B (zh) * 2018-08-29 2021-12-10 南京理工大学 加权子空间自适应天线方向图旁瓣形状精确控制方法
CN110045334B (zh) * 2019-02-28 2023-04-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 低副瓣零陷波束形成方法
CN110501675A (zh) * 2019-07-16 2019-11-26 北京工业大学 一种基于mimo雷达低旁瓣发射方向图设计方法
CN110907888A (zh) * 2019-12-17 2020-03-24 哈尔滨工业大学(威海) 一种基于波束形成的快速极化-doa估计方法
CN111313949B (zh) * 2020-01-14 2023-04-28 南京邮电大学 一种阵列流形误差条件下方向调制信号鲁棒性的设计方法
CN112162266B (zh) * 2020-09-28 2022-07-22 中国电子科技集团公司第五十四研究所 一种基于凸优化理论的共形阵二维波束优化方法
CN112347681B (zh) * 2020-11-20 2022-11-15 中国舰船研究设计中心 一种基于宏基函数阵列互耦特性预测的稳健波束形成方法
CN113593596B (zh) * 2021-07-07 2022-05-31 中国科学院声学研究所 一种基于子阵划分的鲁棒自适应波束形成定向拾音方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006850A2 (en) * 2000-07-13 2002-01-24 Raytheon Company Simultaneous nulling in low sidelobe sum and difference antenna beam patterns
US6531976B1 (en) * 2001-09-07 2003-03-11 Lockheed Martin Corporation Adaptive digital beamforming radar technique for creating high resolution range profile for target in motion in the presence of jamming
CN104199052A (zh) * 2014-09-22 2014-12-10 哈尔滨工程大学 一种基于范数约束的波束旁瓣抑制方法
CN105306123A (zh) * 2015-10-15 2016-02-03 哈尔滨工程大学 一种抗阵列系统误差的稳健波束形成方法
CN105655727A (zh) * 2015-09-28 2016-06-08 中国电子科技集团公司第二十九研究所 一种基于凸优化的增益损失恒定波束的形成方法及装置
CN105974366A (zh) * 2016-04-29 2016-09-28 哈尔滨工程大学 互耦条件下基于四阶累积量稀疏表示的mimo雷达波达方向估计方法
CN106295122A (zh) * 2016-07-26 2017-01-04 中国人民解放军火箭军工程大学 一种稳健的零陷展宽自适应波束形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006850A2 (en) * 2000-07-13 2002-01-24 Raytheon Company Simultaneous nulling in low sidelobe sum and difference antenna beam patterns
US6531976B1 (en) * 2001-09-07 2003-03-11 Lockheed Martin Corporation Adaptive digital beamforming radar technique for creating high resolution range profile for target in motion in the presence of jamming
CN104199052A (zh) * 2014-09-22 2014-12-10 哈尔滨工程大学 一种基于范数约束的波束旁瓣抑制方法
CN105655727A (zh) * 2015-09-28 2016-06-08 中国电子科技集团公司第二十九研究所 一种基于凸优化的增益损失恒定波束的形成方法及装置
CN105306123A (zh) * 2015-10-15 2016-02-03 哈尔滨工程大学 一种抗阵列系统误差的稳健波束形成方法
CN105974366A (zh) * 2016-04-29 2016-09-28 哈尔滨工程大学 互耦条件下基于四阶累积量稀疏表示的mimo雷达波达方向估计方法
CN106295122A (zh) * 2016-07-26 2017-01-04 中国人民解放军火箭军工程大学 一种稳健的零陷展宽自适应波束形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A Four-Element Linear Dielectric Resonator Antenna Array for Beamforming Applications With Compensation of Mutual Coupling;JAMAL NASIR等;《IEEE access》;20161011;第4卷;6427-6437

Also Published As

Publication number Publication date
CN106772257A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106772257B (zh) 一种低旁瓣稳健自适应波束形成方法
Kutty et al. Beamforming for millimeter wave communications: An inclusive survey
US10794984B2 (en) System, method and computer-readable medium for estimating direction of arrival of a signal incident on at least one antenna array
US6798380B2 (en) Robust capon beamforming
CN109946664B (zh) 一种主瓣干扰下的阵列雷达导引头单脉冲测角方法
CN105306124B (zh) 一种具有联合鲁棒性的波束形成方法
CN108445486A (zh) 基于协方差矩阵重建和导向矢量修正的波束形成方法
CN103954950A (zh) 一种基于样本协方差矩阵稀疏性的波达方向估计方法
CN105306123A (zh) 一种抗阵列系统误差的稳健波束形成方法
US10320461B2 (en) System, method and computer-readable medium for estimating direction of arrival of a signal incident on at least one antenna array
CN107315162A (zh) 基于内插变换和波束形成的远场相干信号doa估计方法
CN107728112B (zh) 在目标导向矢量严重失配情况下的稳健波束形成方法
CN109600152A (zh) 一种基于子空间基变换的自适应波束形成方法
CN106324625A (zh) 一种基于二范数多目标优化的卫星导航系统自适应抗干扰方法
CN110149126A (zh) 一种3d-mimo系统的波束赋形方法及波束赋形装置
CN107342836B (zh) 脉冲噪声下的加权稀疏约束稳健波束形成方法及装置
Hamza et al. Optimum sparse array beamforming for general rank signal models
CN107167804A (zh) 一种稳健低副瓣自适应波束形成方法
CN104703196B (zh) 基于局部搜索的鲁棒波束形成方法
CN107037406A (zh) 一种稳健自适应波束形成方法
CN101268632A (zh) 到达方向估算方法及其装置
CN108987948B (zh) 多端口次阵列及基频信号处理器所组成的天线架构
US9893788B2 (en) Node in a wireless communication system with four beam ports and corresponding method
CN110361697B (zh) 一种基于协方差矩阵混合重构的稳健波束形成方法
CN108872947A (zh) 一种基于子空间技术的海杂波抑制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190226

Termination date: 20200110

CF01 Termination of patent right due to non-payment of annual fee