CN106756423A - 一种19价电子n型NbCoSbSn热电材料及其制备方法 - Google Patents

一种19价电子n型NbCoSbSn热电材料及其制备方法 Download PDF

Info

Publication number
CN106756423A
CN106756423A CN201611105682.8A CN201611105682A CN106756423A CN 106756423 A CN106756423 A CN 106756423A CN 201611105682 A CN201611105682 A CN 201611105682A CN 106756423 A CN106756423 A CN 106756423A
Authority
CN
China
Prior art keywords
nbcosbsn
powder
shaped
thermoelectric materials
valence electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611105682.8A
Other languages
English (en)
Inventor
黄丽宏
王浚臣
张勤勇
任志锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CN201611105682.8A priority Critical patent/CN106756423A/zh
Publication of CN106756423A publication Critical patent/CN106756423A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/007Preparing arsenides or antimonides, especially of the III-VI-compound type, e.g. aluminium or gallium arsenide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及半导体热电材料领域,尤其是一种19价电子n型NbCoSbSn热电材料及其制备方法。该材料化学式为NbCoSb1‑xSnx,其中x=0.01~0.4。按照物质的量的比例,选取原料后,可通过混料冷压、真空密封、固态烧结、固块磨粉、快速热压后得到产品,也可以通过电弧熔融、固块磨粉、快速热压后得到产品。该体系热电材料物理单胞内具有19个价电子,突破以往的理论观念,开发新材料,具有创新意义。通过Sn掺杂/合金化,本发明所制备的n型热电材料NbCoSbSn较NbCoSb的热导率低,Seebeck系数高,功率因子高,热电性能好。

Description

一种19价电子n型NbCoSbSn热电材料及其制备方法
技术领域
本发明涉及半导体热电材料领域,具体涉及一种名义上物理单胞内具有19个价电子的n型half-Heusler化合物NbCoSbSn热电材料及其制备方法。
背景技术
近年来,能源和环境问题逐渐凸显,能源和环境危机日益引发关注。目前,全球每年消耗的能源中约有70%以废热的形式被浪费掉,如何将这些废热有效的回收并利用将极大的缓解能源短缺问题。热电材料是一种能够实现电能与热能之间直接相互转换的半导体功能材料,1823年发现的Seebeck效应和1834年发现的Petier效应为热电能量转换器和热电制冷器的应用提供了理论依据。由热电材料制作的温差发电或制冷器件具有无污染、无噪声、无机械运动部件、体积小、可移动、安全可靠等突出优点,在工业余热发电、汽车废热发电、航天航空探测、野外作业及制冷等领域具有广泛的应用前景。另外,利用热电材料制备的微型元件可用于制备微型电源、微区冷却、光通信激光二极管和红外线传感器的调温系统等,大大拓展了热电材料的应用领域。
热电材料的性能通常用无量纲热电优值ZT来表征,ZT = (S 2 σ/κ)T,其中Sσκ分别是材料的Seebeck系数,电导率和热导率,T是绝对温度。因此,为了获得较高的热电性能,需要材料具有较大的Seebeck系数,从而在相同的温差下可以获得更大的电动势;较大的电导率,以减少由于焦耳热所引起的热量损失;同时具有较低的热导率以保持材料两端的温差。高性能的热电器件还要求n型和p型材料的性能和结构相匹配。
就工业废热和汽车排热利用而言,这些热源属于中高温范围,适用的热电材料有PbTe基合金、skutterudite和half-Heusler(HH)化合物。PbTe中含有Pb毒性强,对环境污染严重,且该材料的机械性能极差;Skutterudite热稳定性差,所用稀土金属匮乏且昂贵,这些都限制了它们的大规模生产及应用。Half-Heusler化合物作为一种高性能的中高温热电材料,具有机械性能强、热稳定性高、储量丰富、环境友好等优势,应用前景广阔。
Half-Heusler化合物的化学式通常ABX来表示,A为元素周期表中左边副族元素(Ti、Zr、Hf、V、Nb等),B为过渡族元素(Fe、Co、Ni等),X为ⅣA、ⅤA元素(Sn、Sb等)。这种三元金属间化合物有很多种,多呈现出金属、半金属或半导体特征。现有理论认为,具有半导体性质的half-Heusler化合物应有18个价电子,基于这个规律,热电性能研究也主要集中在这些半导体化合物中。而对于具有19价电子的half-Heusler化合物作为热电材料的相关研究甚少。
发明内容
本发明针对上述问题提出了一种19价电子n型NbCoSbSn热电材料及其制备方法,提供了一种性能优越的热电材料。
为了实现上述目的,本发明所采用的技术方案为,一种19价电子n型NbCoSbSn热电材料,其化学式为NbCoSb1-xSnx,x=0.01~0.4。
一种如上所述的19价电子n型NbCoSbSn热电材料的制备方法,包括以下步骤:
a混料冷压:首先按照NbCoSb1-xSnx,x=0.01~0.4的摩尔比比例称取一定量Nb粉、Co粉、Sb粉、Sn粉,充分混合后再在一定压力下冷压成块;
b真空密封:将冷压得到的粉末块材置入容器中,抽真空密封;
c固态烧结:将密封后的容器进行高温烧结;
d固块磨粉:将烧结得到的产品进行磨制得纳米粉末;
e快速热压:将纳米粉末装入模具中进行快速高温热压,即得所述的19价电子n型NbCoSbSn热电材料。
进一步的所述步骤a混料冷压为按照摩尔比NbCoSb1-xSnx,x=0.01~0.4的摩尔比比例称取一定量Nb粉、Co粉、Sb粉、Sn粉,在惰性气体保护下,在高能球磨机上充分混合25~35 min,均匀混合后的粉末装入冷压模具中,在400~500 Mpa下压力下保压15~20 min,冷压成块。
所述步骤b真空密封中,真空度低于8×10-6 Pa。
进一步的所述步骤c固态烧结在热处理炉中进行,烧结时升温速率:150~250 ℃/h;烧结温度:1000~1100 ℃;保温时间:20~48 h。
进一步的所述步骤d固块磨粉是将烧结得到的产品在高能球磨机上,在惰性气体保护下,球磨3~7 h制得纳米粉末。
进一步的所述步骤e快速热压是将纳米粉末装入石墨模具中进行快速高温热压,在950~1000 ℃,70~80 MPa下保压2~3 min。
所述步骤c固态烧结,烧结时升温速率为200 ℃/h。
所述步骤a混料冷压与步骤d固块磨粉均在手套箱里操作装料。
一种如上所述的19价电子n型NbCoSbSn热电材料的制备方法,包括以下步骤:
①电弧熔炼:按组分为NbCoSb1-xSnx,x=0.01~0.4的化学计量比称取一定量的各金属原材料(Nb、Co、Sb、Sn),再额外添加5~10%的Sb。原材料经电弧熔炼法得到铸锭;
②固块磨粉:将铸锭进行磨制得纳米粉末;
③快速热压:将纳米粉末装入模具中进行快速高温热压,即得所述的n-type half-Heusler热电材料NbCoSbSn。
进一步,所述步骤①电弧熔融中原材料经电弧熔炼法,在流通惰性气体保护下熔炼4~5次后得到铸锭。
进一步,所述步骤②固块磨粉为将铸锭在高能球磨机上球磨3~9 h制得纳米粉末。
进一步,所述步骤③快速热压为将纳米粉末装入石墨模具中进行快速高温热压,在950~1000 ℃,70~80 MPa下保压2~3 min,即得所述所述的19价n型NbCoSbSn热电材料,产品的颗粒尺寸在200 nm~10 μm之间。
所述步骤②和步骤③均在手套箱中操作装料。
与传统n-type half-Heusler热电材料(化合物晶体结构物理单胞内具有18个价电子)相比,本发明所述的体系热电材料具有19个价电子,突破以往观念,对开发新材料具有理论创新意义。通过Sn掺杂/合金化,本发明所制备的n型热电材料NbCoSbSn较NbCoSb的热导率低,Seebeck系数高,功率因子高,热电性能好。此外,在传统n型half-Heusler热电材料(TiZrHf)NiSnSb中,Hf的单位价格是任意一种其他元素的6倍以上,高成本限制其大规模生产应用,本发明所述新型n-type half-Heusler热电材料NbCoSbSn不含Hf,且材料成分所含的元素在地壳中的储量丰富,因此成产成本相对低廉。而且,本发明中通过两种方法制备的n-type half-Heusler热电材料NbCoSbSn的高温稳定性好,机械性能好,制备工艺简单,生产周期短,生产效率高。
附图说明
图1为实施例1制备的NbCoSb0.8Sn0.2的XRD谱图;
图2为实施例2制备的NbCoSb0.8Sn0.2的XRD谱图;
图3为实施例2-5制备得到的NbCoSb1-xSnx试样与NbCoSb对比的电导率、Seebeck系数、热导率、功率因子随温度变化图;
图4为实施例2-5制备得到的NbCoSb1-xSnx试样与NbCoSb对比的ZT值随温度变化图。
具体实施方式
为进一步阐述本发明所达到的预定目的与技术手段及功效,以下结合实施例及附图,对本发明的具体实施方案进行详细说明。
实施例1:一种19价电子n型NbCoSbSn热电材料,其化学式为NbCoSb0.8Sn0.2
如上所述的NbCoSb0.8Sn0.2的制备方法,包括一下步骤:
①电弧熔炼:按组分为NbCoSb0.8Sn0.2的化学计量比称取一定量的各金属原材料(Nb、Co、Sb、Sn),再额外添加5%的Sb。原材料在流通氩气保护下进行电弧熔炼,反复熔炼5次后获得铸锭;
②固块磨粉:将铸锭采用高能球磨方法球磨7 h将铸锭粉粹获得纳米级粉末;
③快速热压:将纳米粉末装入模具中采用快速热压方法在1000 ℃,77 MPa下保压烧结2 min,获得产品。
采用PANalytical X’Pert Pro型X射线多晶衍射仪(XRD)对本实施例制得的试样进行物相分析,如图1(a)所示,确认为NbCoSb基half-Heusler,属于立方MgAgAs型结构,空间群号为216号。根据采用Netzsch LFA 457型激光脉冲热分析仪测量的热扩散系数,采用Netzsch DSC 404型差分比热议测量的比热以及材料的密度计算得到材料NbCoSb0.8Sn0.2在室温下的热导率κ= 5.41 W m−1 K−1,较NbCoSb降低了近20 %。本实施例制得的试样在700 ℃时的热导率为3.79 W m−1 K−1。采用ULVAC ZEM-3设备测得材料在700 ℃时的Seebeck系数S = 191 μV K−1,电导率σ= 0.6×105 S m−1。根据上述测量值按ZT =(S 2 σ/κ)T计算,本实施例制得的试样的ZT值在700 ℃时为0.56,较未掺杂样品NbCoSb提高了40%。
实施例2:一种19价电子n型NbCoSbSn热电材料,其化学式为NbCoSb0.8Sn0.2
如上所述的NbCoSb0.8Sn0.2的制备方法,包括一下步骤:
a混料冷压:首先按照NbCoSb0.8Sn0.2,的摩尔比比例称取一定量Nb粉、Co粉、Sb粉、Sn粉,在惰性气体保护下,在高能球磨机上充分混合25 min,均匀混合后的粉末装入冷压模具中,在400 MPa下冷压20 min成块;
b真空密封:将冷压得到的粉末块材置入容器中,抽真空密封,真空度低于8×10-6 Pa;
c固态烧结:将密封后的容器在热处理炉加热并升温至1100 ℃保温24 h后取出空冷,升温速率为200 ℃/h;
d固块磨粉:将烧结得到的产品采用高能球磨方法球磨7 h获得纳米粉末;
e快速热压:将纳米粉末装入模具中在1000 ℃,77 MPa下保压烧结2 min,即得所述的19价n型NbCoSbSn热电材料。
本实施例制得试样在700 ℃时的热导率、Seebeck系数、电导率分别为κ= 3.75 Wm−1 K−1S = 192 μV K−1σ= 0.58×105 S m−1。根据上述测量值按ZT = (S 2 σ/κ)T计算,本实施例制得试样的ZT值在700 ℃时约为0.57。
实施例3:一种19价电子n型NbCoSbSn热电材料,其化学式为NbCoSb0.75Sn0.25
如上所述的NbCoSb0.75Sn0.25的制备方法,包括一下步骤:
①电弧熔炼:按组分为NbCoSb0.75Sn0.25的化学计量比称取一定量的各金属原材料(Nb、Co、Sb、Sn),再额外添加8%的Sb。原材料在流通氩气保护下进行电弧熔炼,反复熔炼5次后获得铸锭;
②固块磨粉:将铸锭采用高能球磨方法球磨3 h将铸锭粉粹获得纳米级粉末;
③快速热压:将纳米粉末装入模具中采用快速热压方法在950 ℃,70 MPa下保压烧结3min,获得产品。
本实施例制得试样在700 ℃时的热导率、Seebeck系数、电导率分别为κ= 4.2 W m−1 K−1S = 163 μV K−1σ= 0.69×105 S m−1。根据上述测量值按ZT = (S 2 σ/κ)T计算,本实施例制得试样的ZT值在700 ℃时约为0.43。
实施例4:一种19价电子n型NbCoSbSn热电材料,其化学式为NbCoSb0.85Sn0.15
如上所述的NbCoSb0.85Sn0.15的制备方法,包括一下步骤:
①电弧熔炼:按组分为NbCoSb0.85Sn0.15的化学计量比称取一定量的各金属原材料(Nb、Co、Sb、Sn),再额外添加10%的Sb。原材料在流通氩气保护下进行电弧熔炼,反复熔炼4次后获得铸锭;
②固块磨粉:将铸锭采用高能球磨方法球磨9 h将铸锭粉粹获得纳米级粉末;
③快速热压:将纳米粉末装入模具中采用快速热压方法在1000 ℃,80 MPa下保压烧结2 min,获得产品。
本实施例制得试样在700 ℃时的热导率、Seebeck系数、电导率分别为κ= 3.92 Wm−1 K−1S = 178 μV K−1σ= 0.65×105 S m−1。根据上述测量值按ZT = (S 2 σ/κ)T计算,本实施例制得试样的ZT值在700 ℃时约为0.51。
实施例5:一种19价电子n型NbCoSbSn热电材料,其化学式为NbCoSb0.9Sn0.1
如上所述的NbCoSb0.9Sn0.1的制备方法,包括一下步骤:
a混料冷压:首先按照NbCoSb0.9Sn0.1,的摩尔比比例称取一定量Nb粉、Co粉、Sb粉、Sn粉,在惰性气体保护下,在高能球磨机上充分混合35 min,均匀混合后的粉末装入冷压模具中,在500 MPa下冷压15 min成块;
b真空密封:将冷压得到的粉末块材置入容器中,抽真空密封,真空度低于8×10-6 Pa;
c固态烧结:将密封后的容器在热处理炉加热并升温至1000 ℃保温48 h后取出空冷,升温速率为150 ℃/h;
d固块磨粉:将烧结得到的产品采用高能球磨方法球磨5 h获得纳米粉末;
e快速热压:将纳米粉末装入模具中在1000 ℃,70 MPa下保压烧结3 min,即得所述的19价n型NbCoSbSn热电材料。
本实施例制得试样在700 ℃时的热导率、Seebeck系数、电导率分别为κ= 4.25 Wm−1 K−1S = 182 μV K−1σ= 0.64×105 S m−1。根据上述测量值按ZT = (S 2 σ/κ)T计算,本实施例制得试样的ZT值在700 ℃时约为0.49。
实施例6:一种19价电子n型NbCoSbSn热电材料,其化学式为NbCoSb0.6Sn0.4
如上所述的NbCoSb0.6Sn0.4的制备方法,包括一下步骤:
a混料冷压:首先按照NbCoSb0.6Sn0.4,的摩尔比比例称取一定量Nb粉、Co粉、Sb粉、Sn粉,在惰性气体保护下,在高能球磨机上充分混合30 min,均匀混合后的粉末装入冷压模具中,在450 MPa下冷压18 min成块;
b真空密封:将冷压得到的粉末块材置入容器中,抽真空密封,真空度低于8×10-6 Pa;
c固态烧结:将密封后的容器在热处理炉加热并升温至1100 ℃保温20 h后取出空冷,升温速率为250 ℃/h;
d固块磨粉:将烧结得到的产品采用高能球磨方法球磨3 h获得纳米粉末;
e快速热压:将纳米粉末装入模具中在950 ℃,80 MPa下保压烧结2 min,即得所述的19价n型NbCoSbSn热电材料。
分析实施例1-5可得,将所得新型n-type热电材料NbCoSb1-xSnx(x=0.1,0.15,0.2,0.25)与NbCoSb进行比对得图1至图4,由图1和图2可得:确认所得产品NbCoSb1-xSnx的XRD图谱均与标准谱一致,为NbCoSb基half-Heusler化合物,不过产品中含有少量杂相,这可能是冷却过程中包晶反应造成的,且方法二制得的材料所含杂相更少。从图3和图4可以看出,与未掺杂的NbCoSb相比,使用一定量的Sn部分替代Sb后,材料的热导率显著下降,功率因子提升,最终产品NbCoSb0.8Sn0.2在700 ℃的ZT值提高到接近0.6。
如上所述,仅为本发明较佳实施例而已,故任凡未脱离本方案技术内容,依据本发明的技术实质对以上实施例做出任何简单的更改、等同变化与修饰,均仍属于本发明技术方案的范围。

Claims (10)

1.一种19价电子n型NbCoSbSn热电材料,其特征在于:其化学式为NbCoSb1-xSnx,其中x=0.01~0.4。
2.一种制备如权利要求1所述的19价电子n型NbCoSbSn热电材料的方法,其特征在于,包括以下步骤:
a混料冷压:首先按照NbCoSb1-xSnx,x=0.01~0.4的摩尔比比例称取一定量Nb粉、Co粉、Sb粉、Sn粉,充分混合后再在一定压力下冷压成块;
b真空密封:将冷压得到的粉末块材置入容器中,抽真空密封,真空度低于8×10-6 Pa;
c固态烧结:将密封后的容器进行高温烧结;
d固块磨粉:将烧结得到的产品进行磨制得纳米粉末;
e快速热压:将纳米粉末装入模具中进行快速高温热压,即得所述的NbCoSbSn热电材料。
3.根据权利要求2所述的一种19价电子n型NbCoSbSn热电材料的制备方法,其特征在于:所述步骤a混料冷压为按照摩尔比NbCoSb1-xSnx,x=0.01~0.4的摩尔比比例称取一定量Nb粉、Co粉、Sb粉、Sn粉,在惰性气体保护下,在高能球磨机上充分混合25~35 min,均匀混合后的粉末装入冷压模具中,在400~500 Mpa下压力下保压15~20 min,冷压成块。
4.根据权利要求2所述的一种19价电子n型NbCoSbSn热电材料的制备方法,其特征在于:所述步骤c固态烧结在热处理炉中进行,烧结时升温速率:150~250 ℃/h;烧结温度:1000~1100 ℃;保温时间:20~48 h。
5.根据权利要求2所述的一种19价电子n型NbCoSbSn热电材料的制备方法,其特征在于:所述步骤d固块磨粉是将烧结得到的产品在高能球磨机上,在惰性气体保护下,球磨3~7 h制得纳米粉末。
6.根据权利要求2所述的一种19价电子n型NbCoSbSn热电材料的制备方法,其特征在于:所述步骤e快速热压是将纳米粉末装入石墨模具中进行快速高温热压,在950~1000℃,70~80 MPa下保压2~3 min。
7.一种制备如权利要求1所述的19价电子n型NbCoSbSn热电材料的方法,其特征在于,包括以下步骤:
①电弧熔炼:按组分为NbCoSb1-xSnx,x=0.01~0.4的化学计量比称取一定量的各金属原材料,再额外添加5~10%的Sb;
原材料经电弧熔炼法得到铸锭;
②固块磨粉:将铸锭进行磨制得纳米粉末;
③快速热压:将纳米粉末装入模具中进行快速高温热压,即得所述的19价电子n型NbCoSbSn热电材料。
8.根据权利要求7所述的一种19价电子n型NbCoSbSn热电材料的制备方法,其特征在于:所述步骤①电弧熔融中原材料经电弧熔炼法,在流通惰性气体保护下熔炼4~5次后得到铸锭。
9.根据权利要求7所述的一种19价电子n型NbCoSbSn热电材料的制备方法,其特征在于:所述步骤②固块磨粉为将铸锭在高能球磨机上球磨3~9 h制得纳米粉末。
10.根据权利要求7所述的一种19价电子n型NbCoSbSn热电材料的制备方法,其特征在于:所述步骤③快速热压为将纳米粉末装入石墨模具中进行快速高温热压,在950~1000℃,70~80 MPa下保压2~3 min,即得所述的19价电子n型NbCoSbSn热电材料。
CN201611105682.8A 2016-12-05 2016-12-05 一种19价电子n型NbCoSbSn热电材料及其制备方法 Pending CN106756423A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611105682.8A CN106756423A (zh) 2016-12-05 2016-12-05 一种19价电子n型NbCoSbSn热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611105682.8A CN106756423A (zh) 2016-12-05 2016-12-05 一种19价电子n型NbCoSbSn热电材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106756423A true CN106756423A (zh) 2017-05-31

Family

ID=58878400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611105682.8A Pending CN106756423A (zh) 2016-12-05 2016-12-05 一种19价电子n型NbCoSbSn热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106756423A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937749A (zh) * 2017-11-28 2018-04-20 西华大学 一种half‑Heusler合金块体热电材料的制备方法
CN113399665A (zh) * 2021-05-08 2021-09-17 桂林电子科技大学 一种制备NbFeSb块体热电材料的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347838A (zh) * 2008-09-11 2009-01-21 清华大学 一种Ag纳米颗粒复合CoSb3基热电材料的制备方法
CN105219995A (zh) * 2015-11-17 2016-01-06 西华大学 一种新型n-type热电材料NbCoSb的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347838A (zh) * 2008-09-11 2009-01-21 清华大学 一种Ag纳米颗粒复合CoSb3基热电材料的制备方法
CN105219995A (zh) * 2015-11-17 2016-01-06 西华大学 一种新型n-type热电材料NbCoSb的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKEYUKI SEKIMOTO ET AL.: "Thermoelectric properties of Sn-doped TiCoSb half-Heusler compounds", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937749A (zh) * 2017-11-28 2018-04-20 西华大学 一种half‑Heusler合金块体热电材料的制备方法
CN113399665A (zh) * 2021-05-08 2021-09-17 桂林电子科技大学 一种制备NbFeSb块体热电材料的方法

Similar Documents

Publication Publication Date Title
Liu et al. High thermoelectric figure-of-merit in p-type nanostructured (Bi, Sb) 2 Te 3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering
CN102339946B (zh) 一种高性能热电复合材料及其制备方法
CN103011838B (zh) 一种BiCuSeO基热电氧化物粉体的制备方法
CN105244435B (zh) 一种新型n‑type热电材料NbVTaCoSb及其制备方法
CN105671344B (zh) 一步制备高性能CoSb3基热电材料的方法
CN109534303B (zh) 一种高性能低温热电材料及其制备方法
US10553771B2 (en) High figure of merit p-type FeNbHfSb thermoelectric materials and the preparation method thereof
CN104032194B (zh) 共掺杂Mg‑Si‑Sn 基热电材料及其制备方法
CN105219995B (zh) 一种n‑type热电材料NbCoSb的制备方法
CN106252499A (zh) 一种高性能N型PbTe基热电材料及其制备方法
JP6250172B2 (ja) 高性能指数のP型FeNbTiSb熱電材料およびその調製方法
CN106145062A (zh) 一种快速制备碲化锑热电材料的方法
CN108649115B (zh) 基于晶体拓扑实现粉末合金烧结相变的五元系n型热电材料与制备方法
CN106756423A (zh) 一种19价电子n型NbCoSbSn热电材料及其制备方法
Ioannidou et al. Microwave synthesis and characterization of the series Co 1− x Fe x Sb 3 high temperature thermoelectric materials
CN103247752B (zh) Ge‑Pb‑Te‑Se复合热电材料及其制备方法
CN107937749A (zh) 一种half‑Heusler合金块体热电材料的制备方法
Katsuyama et al. Fabrication of thermoelectric module consisting of rare-earth-filled skutterudite compounds and evaluation of its power generation performance in air
CN105990510A (zh) 一种铜硒基高性能热电材料及其制备方法
CN107032763A (zh) 一种制备n型CaMnO3基热电陶瓷的方法
CN106098922A (zh) 一种Cu掺杂立方相Ca2Si热电材料
CN105633267A (zh) 一种Cu2-xS/CNT复合热电材料及其制备方法
US3285019A (en) Two-phase thermoelectric body comprising a lead-tellurium matrix
CN104885240A (zh) 热电材料
Chen et al. N-type B a 0. 2 C o 4 S b 1 1. 5 T e 0. 5: Optimization of thermoelectric properties by different pressures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication